

EE 6885 Statistical Pattern Recognition

Fall 2005
Prof. Shih-Fu Chang
http://www.ee.columbia.edu/~sfchang

Lecture 13 (10/26/05)

EE6887-Chang

13-1

Reading

- Linear Discriminant Functions
 - DHS Chap. 5.5-5.8
- Review of vector derivative and chain rule
- Discriminant Functions with Higher Dimensions
 - DHS Chap. 5.3
- Grading options
 - Option A: complete HW#5-8, no project required
 - Option B: complete a project on image classification, no more HWs
 - Final exam required for either option
- Class schedules
 - No classes on
 - 10/31 (M), 11/7 (M, Uni. Holiday), 11/9 (W), 11/14 (M)
 - Long lectures (start at 12 noon)
 - 11/2 (W), 11/16 (W), 11/21 (M)

EE6887-Chang

13-2

Linear Discriminant Classifiers

 $g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 \implies \text{find weight } \mathbf{w} \text{ and bias } w_o$

Augmented Vector $\mathbf{y} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \implies g(\mathbf{x}) = g(\mathbf{y}) = \mathbf{a}^t \mathbf{y}$

13-3

map **y** to class ω_1 if $g(\mathbf{y})>0$, otherwise class ω_2

distance from **y** to boundary in **y** space: $r = \frac{g(\mathbf{y})}{\|\mathbf{w}\|}$

- Normalization $\forall \mathbf{y}_i \text{ in class } \omega_2, \mathbf{y}_i \leftarrow -(\mathbf{y}_i)$
- Design Objective

$$\mathbf{a}^{\mathsf{t}}\mathbf{y}_{i} > \mathbf{b}, \ \forall \mathbf{y}_{i}$$

- Each y_i defines a half plane in the weight space
- Note we search weight solutions in the a-space.

EE6887-Chang

a-space

y-space

Example: GD based on perceptron criterion

$$\mathbf{J}_{p}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (-\mathbf{a}^{\mathsf{t}}\mathbf{y}),$$
 where Y is the set of misclassified samples

$$\nabla \mathbf{J}_{p}(\mathbf{a}) = \sum_{\mathbf{v} \in Y} (-\mathbf{y})$$
 GD: $\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k) \nabla \mathbf{J}(\mathbf{a}(k))$

 Batch Perceptron Update initialize $\mathbf{a}(1)$, choose rate $\eta(.)$, and stop criterion θ

Loop
$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in Y} \mathbf{y}$$

until $\left| \eta(k) \sum_{\mathbf{y} \in Y} \mathbf{y} \right| < \theta$

- Add sum of misclassified samples
- Theorem: If samples are separable, then a solution can

EE6887-Chang

Relaxation Procedure

- $\mathbf{J}_{q}(\mathbf{a}) = \sum (\mathbf{a}^{\mathsf{t}}\mathbf{y})^{2}$ Problems with Quadratic Criterion
 - Too smooth, solution trapped at boundaries
 - Dominated by large mis-classified sample

• Gradient Decent with single sample \mathbf{y}^k

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \frac{\left(b - \mathbf{a}^{t}(k)\mathbf{y}^{k}\right)}{\left\|\mathbf{y}^{k}\right\|^{2}} \mathbf{y}^{k}$$

$$= \mathbf{a}(k) + \eta(k) \frac{\left(b - \mathbf{a}^{t}(k)\mathbf{y}^{k}\right)}{\left\|\mathbf{y}^{k}\right\|} \frac{\mathbf{y}^{k}}{\left\|\mathbf{y}^{k}\right\|}$$

Move **a** towards boundary $\mathbf{a}^{t}(k)\mathbf{y}^{k} = b$

 $0 < \eta < 1$: underrelaxation $1 < \eta < 2$: overrelaxation

EE6887-Chang

13-6

Vector Derivative (Gradient) and Chain Rule

Consider scalar function of vector input: $J(\mathbf{x})$

- Vector derivative (gradient) $\nabla_x J(\mathbf{x}) = [\partial J / \partial x_1, \partial J / \partial x_2, \dots, \partial J / \partial x_d]^T$
- inner product $J=\mathbf{a}^t\mathbf{b}=\sum_k a_k b_k \ \partial J/\partial a_i=b_i$

$$\Rightarrow \nabla_{\mathbf{a}} \mathbf{a}^t \mathbf{b} = \mathbf{b} \qquad \nabla_{\mathbf{b}} \mathbf{a}^t \mathbf{b} = \nabla_{\mathbf{b}} \mathbf{b}^t \mathbf{a} = \mathbf{a}$$

- Hermitian $J = \mathbf{x}^t A \mathbf{x} = \sum_i \sum_j x_i A_{ij} x_j$ $\Rightarrow \nabla_{\mathbf{x}} \mathbf{x}^t A \mathbf{x} = A \mathbf{x} + A^t \mathbf{x}$ if A is symmetric, then $\nabla_{\mathbf{x}} J = 2A \mathbf{x}$ if A = I, then $\nabla_{\mathbf{x}} J = 2\mathbf{x}$
- Generalized chain rule

now consider
$$\mathbf{x} = A\mathbf{x}'$$
, i.e. $x_i = \sum_j A_{ij} x_j' \implies \delta x_i / \delta x_j' = A_{ij}$

$$\nabla_{\mathbf{x}'} J = \left(\frac{\delta x_i}{\delta x_j'}\right)^t \nabla_{\mathbf{x}} J \qquad \Longrightarrow \nabla_{\mathbf{x}'} J = A' \nabla_{\mathbf{x}} J$$

EE6887-Chang

13-7

Example of gradient chain rule

if
$$\mathbf{x} = A\mathbf{x}'$$
 then $\nabla_{\mathbf{x}'}J = A^t\nabla_{\mathbf{x}}J$

example (mean squared error)
$$J = ||Y\mathbf{a} - \mathbf{b}||^2 = (Y\mathbf{a} - \mathbf{b})^t (Y\mathbf{a} - \mathbf{b})$$

Let
$$\mathbf{x} = Y\mathbf{a} - \mathbf{b}$$
, $\mathbf{x}' = \mathbf{a}$

$$\Rightarrow \ \mathbf{x} = Y\mathbf{x}' - \mathbf{b}, \ \
abla_{\mathbf{x}'}J = Y'
abla_{\mathbf{x}}J$$
 chain rule of gradient

note
$$J_{\mathbf{x}} = \mathbf{x}^{t}\mathbf{x}$$
 $\Rightarrow \nabla_{\mathbf{x}}J = 2\mathbf{x} = 2(Y\mathbf{a} - \mathbf{b})$
 $\Rightarrow \nabla_{\mathbf{x}'}J = Y^{t}\nabla_{\mathbf{x}}J = 2Y^{t}(Y\mathbf{a} - \mathbf{b})$
 $\therefore \nabla_{\mathbf{a}}J = 2Y^{t}(Y\mathbf{a} - \mathbf{b})$

EE6887-Chang

13-8

Minimal Squared-Error Solution

$$Y = \begin{bmatrix} \mathbf{y_1}^t \\ \mathbf{y_2}^t \\ \vdots \\ \mathbf{y_n}^t \end{bmatrix}$$
Training sample matrix
$$Y = \begin{bmatrix} \mathbf{y_1}^t \\ \mathbf{y_2}^t \\ \vdots \\ \mathbf{y_n}^t \end{bmatrix}$$
Objective: $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}, \ \forall \mathbf{y}_i$

$$\Rightarrow \text{ define } J_s = \sum_{i=1}^n (\mathbf{a}^t \mathbf{y}_i - b_i)^2$$

$$= \|Y\mathbf{a} - \mathbf{b}\|^2 = (Y\mathbf{a} - \mathbf{b})^t (Y\mathbf{a} - \mathbf{b})$$

$$\nabla_{\mathbf{a}} J_s = 2Y^t (Y\mathbf{a} - \mathbf{b}) = 0 \quad \Rightarrow Y^t Y\mathbf{a} = Y^t \mathbf{b}$$

if Y'Y is nonsingular $\Rightarrow \mathbf{a} = (Y'Y)^{-1}Y'\mathbf{b} = Y^{\dagger}\mathbf{b}$

$$Y^{\dagger} = (Y^t Y)^{-1} Y^t$$
 pseudo-inverse : (d+1) x n

Example

training samples: $class \ \omega_1$: $(1,2)^t,(2,0)^t$ $class \ \omega_2$: $(3,1)^t,(2,3)^t$

$$Y = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ -1 & -3 & -1 \\ -1 & -2 & -3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \text{find } Y^{\dagger}, \text{ then compute } \mathbf{a}^{*} = Y^{\dagger} \mathbf{b}$$
 (see figure in textbook)

EE6887-Chang 13-9

Generalized Linear Discriminant Functions

- Include more than just the linear terms $g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j = w_0 + \mathbf{w}^t \mathbf{x} + \mathbf{x}^t \mathbf{W} \mathbf{x}$
- Shape of decision boundary
 - ellipsoid, hyperhyperboloid, lines etc
- In general $g(\mathbf{x}) = \sum_{i=1}^{d} a_i y_i(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$

$$g(x) = a_1 + a_2 x + a_3 x^2$$

$$= \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} 1 & x & x^2 \end{bmatrix}^t$$

$$= \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} 1 & x_1 & x_1 x_2 \end{bmatrix}^t$$

- SVIV
 - learning all the parameters is hard (curse of dim.)
 - instead, try to maximize margins

