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= Reading
= Linear Discriminant Functions
= DHS Chap. 5.5-5.8
= Review of vector derivative and chain rule
= Discriminant Functions with Higher Dimensions
= DHS Chap. 5.3
= Grading options
= Option A: complete HW#5-8, no project required
= Option B: complete a project on image classification, no more HWs
= Final exam required for either option

= Class schedules
= No classes on
= 10/31 (M), 11/7 (M, Uni. Holiday), 11/9 (W), 11/14 (M)
= Long lectures (start at 12 noon)
« 11/2 (W), 11/16 (W), 11/21 (M)
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Linear Discriminant Classifiers
g(x)=w'x+w, = find weight w and bias w,

1 W,
= Augmented Vector
Y a=W°]= " =900 =g(y)=aly
X : w :
X4 Wy B

map y to class w, if g(y)>0, otherwise class w,

distance fromy to boundary iny space: r :ﬁ
w

= Normalization Vy. in class Wy, Y, _(yi)

= Design Objective

a'y;>b, vy,

= Each y, defines a half plane in the weight space
@.

= Note we search weight solutions in the a-space. -
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Gradient Decent Search with Different Criterion Functions

J(a) Jofa)

—

| ;
A

ot

J,@=>(-a'y)
yey
Not differentiable

# misclassified

GD not applicable a

Ja) - ' I(a)

:
t 2
/a , 1. (a'y—b)
J@=>@Y) ~ @)=
: vl
Smooth, but solutions may
be trapped to boundaries Solutions moved away

from boundaries
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Example: GD based on perceptron criterion

J, (@)= Z(—a‘y), where Y is the set of misclassified samples
yeY

Vi, (a)= Z (-y) GD: a(k +1) = a(k) —n(k)VI(a(k))

yeY
= Batch Perceptron Update

initialize a(1), choose rate 7(.), and stop criterion 6
Loop a(k+1)=a(k)+n(k)> _y Ia)

(k)Y

yeY
= Example a(l)=0, n(k)=1
= Add sum of misclassified samples

until <6

= Theorem:

If samples are separable, then a solution can B
always be found within finite steps. :
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Relaxation Procedure

to 2
= Problems with Quadratic Criterion Jq(a):y;(a y)
= Too smooth, solution trapped at boundaries
= Dominated by large mis-classified sample

= Relaxation Criterion 1 (ay—b) a |
J,(@) 22(2> V3,(@) :Z P
= vl
= Gradient Decent with single sample y*

ak +1) =a(k)+ W(k)% k ¥
y

=a(k)+ n(k)(b_a—ik)y)%
A

= Move a towards boundary a'(k)y* =b

0 < n <1: underrelaxation
1<n < 2: overrelaxation
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Vector Derivative (Gradient) and Chain Rule
Consider scalar function of vector input: J (x)
= Vector derivative (gradient) VXJ(x):[a]/é)xl,aJ/8x2,~~,8\]/(9xd]l

= inner product J=a'b = Zakbk 03 /0a, =h
K

=V,ab=b V,ab=V,ba=a
= Hermitian :XlAXzZZXiAjXJ :>VXXtAX: Ax_|_ Atx
if Ais symrﬁetﬁc, then V,J=2Ax
ifA=1, then V,J = 2x
s  Generalized chain rule

now consider x = Ax/, i.e. :Zijj’ = 6x /5xj’ =A

t ]

j
OX;
5x.!

]

VJ =V I=AV]

X

m_{
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Example of gradient chain rule
if x=Ax" thenV, J=AVJ
example (mean squared error) J = HYa—bH2 = (Ya—Db)'(Ya—b)
Letx=Ya—b, X' =a
= X:YX/—b, VX/J =YtVXJ chain rule of gradient
noteJ, =x'x = V, J=2x=2(Ya—h)
=V, =Y'V J =2Y'(Ya—h)
~V.,J =2Y'(Ya—b)
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Minimal Squared-Error Solution

yll Training sample matrix Objective: ' y, =b, vy;
Y= y:z dimension: n x (d+1) = define J, = Z(a Y, —b)?
v, =|va— b|| = (Ya b)'(Ya—b)

VI, =2Y'(Ya—b)=0 =YYa=Y'b
if Y'Y is nonsingular :>a:(YtY)71Y‘b:YTb

-1
Y'= (YtY> Y! | pseudo-inverse : (d+1) x n
= Example

training samples: class w, : (1,2)",(2,0) class w,: (3,2)",(2,3)'

11 2 1

,_|1 2 o 1 findY" then computea =Y'b
-1 -3 -1 1 (see figure in textbook)
-1 -2 -3 1
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Generalized Linear Discriminant Functions
= Include more than just the linear terms
g(x) = w, JrZW,xI —i—Z:Z:w”x,xJ =W, +W'Xx + X' Wx

i=1l j=1
= Shape of deC|S|on boundary

= ellipsoid, hyperhyperboloid, lines etc
d
= Ingeneral g(x)= Zai y,(x) = a'y

i=1
= Example

g(x):"5‘1"""5‘2)(4"5‘3)(2 g(x)=a1x1+a2x2 T XX,

:[a1 a, aa][l X XZ]I :[31 &, as][l X X1X2]t

= SVM

= learning all the parameters
is hard (curse of dim.)

= instead, try to maximize margins
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