

EE 6885 Statistical Pattern Recognition

Fall 2005

Prof. Shih-Fu Chang

http://www.ee.columbia.edu/~sfchang

Lecture 12 (10/19/05)

Reading

- Linear Discriminant Functions
 - DHS Chap. 5.3-5.6

Midterm Exam

- Oct. 24th 2005 Monday 1pm-2:30pm (90mins)
 - Main Material, Textbook Chap. 1 5.3
 - Open books/notes, no computer

Review Class

Oct. 21st Friday 4pm. EE Conf. Room (Mudd Rm 1312)

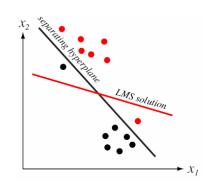
Discriminant Functions (Chap. 5)

Define discriminant functions, e.g., linear functions

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0$$
, weight vector, w_0 : bias

Two-Category Case

map **x** to class ω_1 if $g(\mathbf{x})>0$, otherwise class ω_2

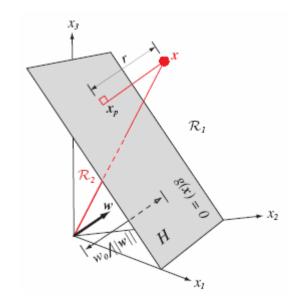


Decision surface $H: g(\mathbf{x}) = 0$

distance from x to H:
$$r = g(\mathbf{x}) / \|\mathbf{w}\|$$

$$\mathbf{x} = \mathbf{x}_p + r \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

 \mathbf{x}_p : projection of \mathbf{x} onto H, $g(\mathbf{x}_p) = 0$



Method for searching decision boundaries

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0$$
 \Rightarrow find weight \mathbf{w} and bias w_o

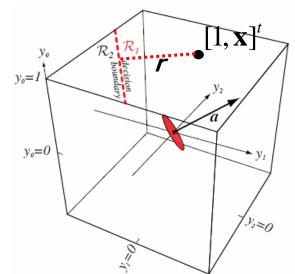
- Augmented Vector $\mathbf{y} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{vmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{vmatrix} \quad \mathbf{a} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix} = \begin{vmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \quad \Rightarrow g(\mathbf{x}) = g(\mathbf{y}) = \mathbf{a}^t \mathbf{y}$

$$H: (\mathbf{w})^t \mathbf{x} + w_0 = 0 \implies H: (\mathbf{a})^t \mathbf{y} = 0$$

A hyperplane in augmented y space, with normal vector a all sample points reside in the $y_1 = 1$ subspace

distance from **x** to boundary in **x** space: $r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|} \int_{y_0 = l}^{y_0} \mathbf{x} dt$ distance from \mathbf{x} to boundary in \mathbf{y} space:

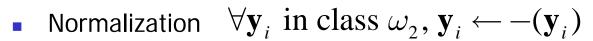
$$r' = |\mathbf{a}^t \mathbf{y}| / ||\mathbf{a}|| \le r$$
 i.e., r' and r same signs, if $r' \ge b$ then $r \ge b$

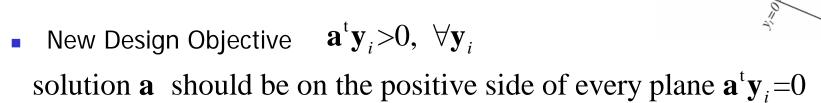


Search Method for Linear Discriminant

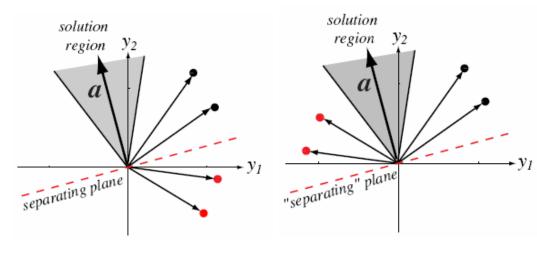
- Design Objective for finding a
 - Find a that correctly classify each sample data
 - Assume data are separable

 $\forall \mathbf{y}_i \text{ in class } \omega_1, \mathbf{a}^t \mathbf{y}_i > 0 \quad \forall \mathbf{y}_i \text{ in class } \omega_2, \mathbf{a}^t \mathbf{y}_i < 0$





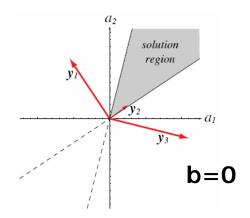
- Solution region
 - Intersection of positive sides of all hyperplanes

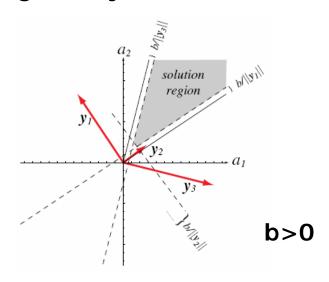


Searching Linear Discriminant Solutions

- Stricter criterion: Solution region with margin b
 - Ensure each sample unambiguously classified

 $\forall \mathbf{y}_i \text{ in class } \omega_1 \text{ or } \omega_2, \mathbf{a}^t \mathbf{y}_i > \mathbf{b}$





- Search Approaches
 - Gradient decent methods to find a solution in the solution region
 - Maximize margin

Gradient Decent (GD)

- Choose criterion function J(a)
 - $\mathbf{J}(\mathbf{a})$ is minimized when \mathbf{a} is in the solution region
 - Examples of criterion function
 - # of samples misclassified # of $y \in Y$: misclassified samples
 - Sum of distances from misclassified samples to H
 → perceptron distance

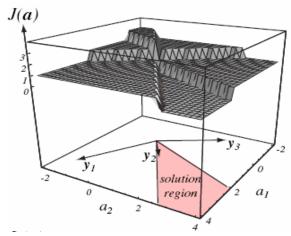
$$\mathbf{J}_{p}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (-\mathbf{a}^{t}\mathbf{y}),$$
 where Y is the set of misclassified samples

- Quadratic error $\mathbf{J}_q(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (\mathbf{a}^t \mathbf{y})^2$
- Quadratic error with margin (Relaxation Criterion)

$$\mathbf{J}_{q}(\mathbf{a}) = \frac{1}{2} \sum_{\mathbf{y} \in Y} \frac{\left(\mathbf{a}^{\mathsf{t}} \mathbf{y} - b\right)^{2}}{\left\|\mathbf{y}\right\|^{2}}, \text{ where } Y : \{\mathbf{y} \mid \mathbf{a}^{\mathsf{t}} \mathbf{y} < b\}$$

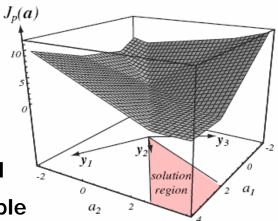
Repeat
$$\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k)\nabla \mathbf{J}(\mathbf{a}(k))$$
 $\eta(k)$: learning rate

Different Criterion Functions



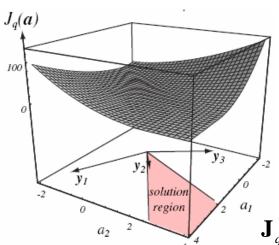
misclassified

GD not applicable



$$\mathbf{J}_{p}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (-\mathbf{a}^{\mathsf{t}}\mathbf{y})$$

Not differentiable



 $\mathbf{J}_{q}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (\mathbf{a}^{\mathsf{t}} \mathbf{y})^{2}$

 $J_r(a)$ \tilde{y}_{I} solution region

Smooth, but solutions may be trapped to boundaries

Solutions moved away from boundaries

Example: GD based on perceptron criterion

 $\mathbf{J}_{p}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (-\mathbf{a}^{t}\mathbf{y}),$ where Y is the set of misclassified samples

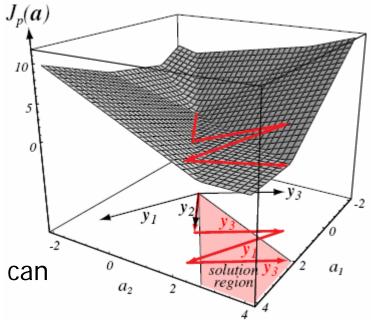
$$\nabla \mathbf{J}_{p}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (-\mathbf{y}) \qquad \text{GD: } \mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k) \nabla \mathbf{J}(\mathbf{a}(k))$$

• Batch Perceptron Update initialize $\mathbf{a}(1)$, choose rate $\eta(.)$, and stop criterion θ

Loop
$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in Y} \mathbf{y}$$

until $\left| \eta(k) \sum_{\mathbf{y} \in Y} \mathbf{y} \right| < \theta$

- Example $\mathbf{a}(1) = 0$, $\eta(\mathbf{k}) = 1$
 - Add sum of misclassified samples
- Theorem:
 If samples are separable, then a solution can always be found within finite steps.



Relaxation Procedure

- oblems with Quadratic Criterion $\mathbf{J}_{q}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} (\mathbf{a}^{t}\mathbf{y})^{2}$ Too smooth, solution trapped at boundaries Problems with Quadratic Criterion

 - Dominated by large mis-classified sample

$$\mathbf{J}_{q}(\mathbf{a}) = \frac{1}{2} \sum_{\mathbf{y} \in Y} \frac{\left(\mathbf{a}^{\mathsf{t}} \mathbf{y} - b\right)^{2}}{\left\|\mathbf{y}\right\|^{2}} \qquad \nabla \mathbf{J}_{q}(\mathbf{a}) = \sum_{\mathbf{y} \in Y} \frac{\left(\mathbf{a}^{\mathsf{t}} \mathbf{y} - b\right)}{\left\|\mathbf{y}\right\|^{2}} \mathbf{y}$$

$$J_q(a)$$

100

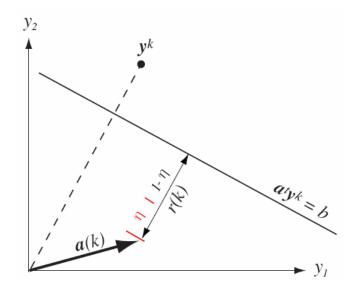
0

 y_1
 y_2
 y_3
 y_3
 y_4
 y_3
 y_4
 y_5
 y_5
 y_7
 y_7

Gradient Decent with single sample \mathbf{y}^k

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \frac{\left(b - \mathbf{a}^{t}(k)\mathbf{y}^{k}\right)}{\left\|\mathbf{y}^{k}\right\|^{2}} \mathbf{y}^{k}$$

$$= \mathbf{a}(k) + \eta(k) \frac{\left(b - \mathbf{a}^{t}(k)\mathbf{y}^{k}\right)}{\left\|\mathbf{y}^{k}\right\|} \frac{\mathbf{y}^{k}}{\left\|\mathbf{y}^{k}\right\|}$$



Move a towards boundary

$$\mathbf{a}^{t}(k+1)\mathbf{y}^{k}-b=(1-\eta(k))(\mathbf{a}^{t}(k)\mathbf{y}^{k}-b)$$

 $0 < \eta < 2$, $\eta < 1$: underrelaxation, $\eta > 1$: overrelaxation