

EE 6885 Statistical Pattern Recognition

Fall 2005
Prof. Shih-Fu Chang
http://www.ee.columbia.edu/~sfchang

Lecture 11 (10/17/05)

EE6887-Chang

11-1

Reading

- Distance Metrics
 - DHS Chap. 4.6
- Linear Discriminant Functions
 - DHS Chap. 5.1-5.4
- Midterm Exam
 - Oct. 24th 2005 Monday 1pm-2:30pm (90mins)
 - Open books/notes, no computer
- Review Class
 - Oct. 21st Friday 4pm. Location TBA

EE6887-Chang

*k*_n-Nearest-Neighbor

• For classification, estimate $p_n(\omega_i \mid x)$ for each class ω_i

$$p_n(\omega_i \mid x) = \frac{p_n(x, \omega_i)}{\sum_{j=1}^{c} p_n(x, \omega_j)} = \frac{k_i}{k}$$

 Performance bound of 1-nearest neighbor (Cover & Hart '67)

$$P^* \le \lim_{n \to \infty} P_n(e) \le P^* (2 - \frac{c}{c - 1} P^*)$$

- Combine K-NN with clustering
 - K-Means, LVQ, GMM
 - Reduce complexity
 - When K increases, complexity?
 - Smooth decision boundaries

EE6887-Chang

11-3

Distance Metrics

- Nearest neighbor rules need distance metrics
- Required properties of a metric
 - 1. non-negativity: $D(a,b) \ge 0$
 - 2. reflexivity: D(a,b) = 0 iff a = b
 - 3. symmetry: D(a,b) = D(b,a)
 - 4. triangular inequality: $D(a,b) + D(b,c) \ge D(c,a)$ $D(a,b) \ge D(c,a) - D(b,c)$

useful in indexing

- Minkowski Metric
 - Euclidean
 - Manhattan
- $L_k(a,b) = (\sum_{i=1}^d |a_i b_i|^k)^{1/k}$
- L_{∞}
- $D_{\text{tanimono}}(S_1, S_2) = \frac{n_1 + n_2 2n_{12}}{n_1 + n_2 n_{12}} = \frac{(n_1 n_{12}) + (n_2 n_{12})}{n_1 + n_2 n_{12}}$ Tanimono Metric
 - sets of elements
 - Point-point distance not useful

EE6887-Chang

Discriminant Functions Revisited

define discriminant function $g_i(x)$ for class ω_i map x to class ω_i if $g_i(x) \ge g_i(x) \ \forall j \ne i$

e.g.,
$$g_i(x) = \ln P(x \mid \omega_i) + \ln P(\omega_i)$$
 MAP classifier

- Gaussian Case: $P(x \mid \omega_i) = N(\mu_i, \Sigma_i)$ $P(\mathbf{x} \mid w_i) = \frac{1}{\left(2\pi\right)^{d/2} \sqrt{|\Sigma_i|}} \exp(\frac{-1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i))$
- $\quad \text{Case I:} \quad \Sigma_i = \Sigma$

 $g_i(x) = w_i^t x + w_{i0}$ a hyperplane with bias w_{i0}

• Case II: $\Sigma_i = \text{arbitrary}$ $g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$

 $g_i(x) = x^t W_i x + w_i^t x + w_{i0}$

Decision boundaries may be Hyperplane, hypersphere, hyperellipsoid, hyperparaboloids, hyperhyperboloids

EE6887-Chang

Discriminant Functions (Chap. 5)

- Directly define discriminant functions
 - Without assuming parameter distribution functions for $P(x \mid \omega_i)$
 - Easy to derive useful classifiers
- Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0$$
, weight vector, w_0 : bias

Two-Category Case

map **x** to class ω_1 if $g(\mathbf{x})>0$, otherwise class ω_2

Decision surface $H: g(\mathbf{x}) = 0$

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|}\right) = r\mathbf{w}^t \frac{\mathbf{w}}{\|\mathbf{w}\|} = r\|\mathbf{w}\| \implies r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$$

EE6887-Chang

Multi-category Case

c categories: $\omega_1, \omega_2, ..., \omega_c$

Approaches

number of classifiers needed?

Use two-class discriminant for each class

 \Rightarrow **x** belongs to class ω_{i} or not?

■ Use two-class discriminant for each pair of classes → x belongs to

 \Rightarrow **x** belongs to class ω_i or ω_i ?

General Approach

one function for each class $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$ map x to class ω_i if $g_i(x) \ge g_j(x) \ \forall j \ne i$ decision boundary H_{ij} : $g_i(\mathbf{x}) = g_j(\mathbf{x})$

$$H_{ij}$$
: $(\mathbf{w}_i - \mathbf{w}_j)^t \mathbf{x} + (w_{i0} - w_{j0}) = 0$

- Each decision regions is convex and singly connected.
- Good for monomodal distributions

EE6887-Chang

11-7

Method for searching decision boundaries

 $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0} \implies \text{find weight } \boldsymbol{\omega} \text{ and bias } \omega_o$

- Augmented Vector $\mathbf{y} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \quad \mathbf{a}_i = \begin{bmatrix} w_{i0} \\ \mathbf{w}_i \end{bmatrix} = \begin{bmatrix} w_{i0} \\ \vdots \\ w_{id} \end{bmatrix} \quad \Rightarrow g_i(\mathbf{x}) = g_i(\mathbf{y}) = \mathbf{a}_i \mathbf{y}$
- Decision Boundary

$$H_{ij}$$
: $(\mathbf{w}_i - \mathbf{w}_j)^t \mathbf{x} + (w_{i0} - w_{j0}) = 0 \quad \Rightarrow H_{ij}$: $(\mathbf{a}_i - \mathbf{a}_j)^t \mathbf{y} = 0$

2-category case

$$H: (\mathbf{w})^t \mathbf{x} + w_{i0} = 0$$

 $H: \mathbf{a}^t \mathbf{y} = 0$

 A hyperplane in augmented y space, with normal vector a $y_{o} = 1$ $y_{o} = 1$ $y_{o} = 0$ $y_{o} = 0$

EE6887-Chang

Search Method for Linear Discriminant

all sample points reside in the $y_1 = 1$ subspace distance from **x** to boundary in **x** space: $r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$ distance from **x** to boundary in **y** space:

stance from **x** to boundary in **y** space:

$$r' = |\mathbf{a}'\mathbf{y}| / ||\mathbf{a}|| \le r$$
 i.e., r' and r same signs, r' lower bound for r

- Design Objective for finding a
 - Find **a** that correctly classify each sample data

 $\forall \mathbf{y}_i \text{ in class } \omega_1, \mathbf{a}^t \mathbf{y}_i > 0 \quad \forall \mathbf{y}_i \text{ in class } \omega_2, \mathbf{a}^t \mathbf{y}_i < 0$

- Normalization $\forall \mathbf{y}_i \text{ in class } \omega_2, \mathbf{y}_i \leftarrow -(\mathbf{y}_i)$
- New Design Objective $\forall \mathbf{y}_i$ in class ω_1 or ω_2 , $\mathbf{a}^{\mathrm{t}}\mathbf{y}_i{>}0$
- Solution region
- Intersection of positive sides of all hyperplanes EE6887-Chang

Searching Linear Discriminant Solutions

Stricter criterion: Solution region with margin

 $\forall \mathbf{y}_i \text{ in class } \omega_1 \text{ or } \omega_2, \mathbf{a}^t \mathbf{y}_i > \mathbf{b}$

- Search Approaches
 - Gradient decent methods to find a solution in the solution region
 - Maximize margin
 - Mapping to high-dimensional space

EE6887-Chang