

EE 6885 Statistical Pattern Recognition

Fall 2005
Prof. Shih-Fu Chang
http://www.ee.columbia.edu/~sfchang

Lecture 10 (10/12/05)

EE6887-Chang

10-1

Reading

- Nearest Neighbor Estimation, Distance Metrics
 - DHS Chap. 4.4-4.5, 4.6
 - Reference Book HTF Chap. 11.1-11.3
- Midterm Exam
 - Oct. 24th 2005 Monday 1pm-2:30pm (90mins)
 - Open books/notes, no computer

EE6887-Chang

k_n -Nearest-Neighbor

$$p_n(x) \simeq \frac{k_n/n}{V_n}$$

For classification, estimate p(x) for each class ω_i

$$p_n(x, \omega_i) = \frac{k_i / n}{V}$$

$$p_n(\omega_i \mid x) = \frac{p_n(x, \omega_i)}{\sum_{i=1}^{c} p_n(x, \omega_j)} = \frac{k_i}{k}$$

 Performance bound of 1-nearest neighbor (Cover & Hart '67)

$$P^* \le \lim_{n \to \infty} P_n(e) \le P^* (2 - \frac{c}{c - 1} P^*)$$

$$P^*(e \mid x) = 1 - \max_{i} P(\omega_i \mid x) \quad P^* = \int P^*(e \mid x) p(x) dx$$

EE6887-Chang

Deriving the error bound ...

Assume n samples: $(x_1, \theta_1), (x_2, \theta_2), \dots, (x_n, \theta_n)$

Assume x'_n is the nearest neighbor to x

Assume 1.1.d.
$$P_n(e \mid x, x'_n) = 1 - \sum_{i=1}^c P(\theta = \omega_i, \theta'_n = \omega_i \mid x, x'_n) = 1 - \sum_{i=1}^c P(\omega_i \mid x) P(\omega_i \mid x'_n)$$

10-3

assume $p(x'_n)$ peaks at x

$$\lim_{n \to \infty} P_n(e \mid x) = \lim_{n \to \infty} \int P_n(e \mid x, x_n') p(x_n') dx_n' = \lim_{n \to \infty} \int P_n(e \mid x, x_n') \delta(x_n' - x) dx_n'$$

$$= \int \left[1 - \sum_{i=1}^{c} P(\omega_i \mid x) P(\omega_i \mid x_n') \right] \delta(x_n' - x) dx_n' = 1 - \sum_{i=1}^{c} P^2(\omega_i \mid x)$$

$$P = \lim_{n \to \infty} P_n(e) = \lim_{n \to \infty} \int P_n(e \mid x) p(x) dx = \int [1 - \sum_{i=1}^{c} P^2(\omega_i \mid x)] p(x) dx$$

We are interested in relation between P & P* (the min. error prob.)

$$P^* = \int P^*(e \mid x) p(x) dx \qquad P^*(e \mid x) = 1 - \max_{i} P(\omega_i \mid x) = 1 - P(\omega_m \mid x)$$

EE6887-Chang 10-4

Deriving the 1-NN error bound (cont.)

We are interested in relation between P & P* (the min. error prob.)

$$P = \int [1 - \sum_{i=1}^{c} P^{2}(\omega_{i} \mid x)] p(x) dx$$
 Let's fix $P(\omega_{m} \mid x)$, i.e., fix P^{*}

$$\sum_{i=1}^{c} P^{2}(\omega_{i} \mid x) \text{ is minimized when} \quad P(\omega_{i} \mid x) \text{ are equal } \forall i \neq m$$

$$\text{namely } P(\omega_{i} \mid x) = \begin{cases} P(\omega_{m} \mid x) & i = m \\ \frac{1 - P(\omega_{m} \mid x)}{c - 1} & i \neq m \end{cases} = \begin{cases} 1 - P^{*}(e \mid x) & i = m \\ \frac{P^{*}(e \mid x)}{c - 1} & i \neq m \end{cases}$$

$$\Rightarrow \sum_{i=1}^{c} P^{2}(\omega_{i} \mid x) \geq (1 - P^{*}(e \mid x))^{2} + \frac{P^{*2}(e \mid x)}{c - 1}$$

$$\Rightarrow 1 - \sum_{i=1}^{c} P^{2}(\omega_{i} \mid x) \leq 2P^{*}(e \mid x) - \frac{c}{c - 1} P^{*2}(e \mid x)$$

$$\Rightarrow 1 - \sum_{i=1}^{n} P^{2}(\omega_{i} \mid x) \leq 2P^{2}(e \mid x) - \frac{1}{c-1} P^{2}(e \mid x)$$
$$\therefore \int P^{2}(e \mid x) p(x) dx \geq \left[\int P^{2}(e \mid x) p(x) dx \right]^{2} = P^{2}$$

$$\Rightarrow P = \int [1 - \sum_{i=1}^{c} P^{2}(\omega_{i} \mid x)] p(x) dx \le 2P^{*} - \frac{c}{c-1} P^{*2}$$
 Q.E.D.

EE6887-Chang

Two Classes, data in each class generated by Gaussian Mixtures

Cross-validation performance

EE6887-Chang

Reduce Complexity by Clustering

- Training data from each class
 3 classes from GMM
- Apply K-Means clustering to each class
- K-means clustering
 - Randomly select K prototypes
 - Map samples to the closest prototype (hard decision)

$$x_1, x_2, ..., x_N$$
 samples
 $for i=1,2,...,N,$
 $x_i \rightarrow C_k$, if $Dist(x_i, C_k) < Dist(x_i, C_{k'}), k \neq k'$
end
• Re-compute the prototypes

 Use only cluster prototypes in nearest neighbor classification

EE6887-Chang 10-7

LVQ - 5 Prototypes per Class

Learning Vector Quantization (LVQ)

- Learn the prototypes jointly
- Find K prototypes for each class $m_1(j), m_2(j), ..., m_K(j), j = 1, 2, ..., c$
- Randomly sample data X find the closest prototype $m_k(j)$ if class label of x = j, then move prototype $m_k(j)$ closer to x

$$m_k(j) \leftarrow m_k(j) + \varepsilon(x - m_k(j))$$

otherwise, move ptotype away from x

$$m_k(j) \leftarrow m_k(j) - \varepsilon(x - m_k(j))$$

• Repeat the above step, with the learning rate ${\cal E}$ decreasing to 0

EE6887-Chang

Toy problems for comparison

10-dimensional features in the unit hypercube $x = \{x_1, x_2, ..., x_{10}\}$, x_i uniformly distributed in [0,1] 100 training samples, 1000 test samples

- Easy problem
- class label $Y = I(x_1 > 0.5)$
- hyperplane

Difficult problem

class label
$$Y = I(sign\left\{\prod_{i=0}^{3} (x_i - 0.5)\right\} > 0)$$
 checkerboard

What's the Bayesian Error Rate?

EE6887-Chang

Performance Comparison K-means & LVQ / Easv Easy problem 0.4 Misclassification Error 0.3 15 20 Difficult problem Number of Prototypes per Class Number of Neighbors Nearest Neighbors / Difficult K-means & LVQ / Difficult Observations? 0.50 0.50 0.45 0.45 40 15 20 25 Number of Neighbors Number of Prototypes per Class EE6887-Chang 10-11

Distance Metrics

- Nearest neighbor rules need distance metrics
- Required properties of a metric
 - 1. non-negativity: $D(a,b) \ge 0$
 - 2. reflexivity: D(a,b) = 0 iff a = b
 - 3. symmetry: D(a,b) = D(b,a)
 - 4. trangular inequality: $D(a,b) + D(b,c) \ge D(c,a)$

$$D(a,b) \ge D(c,a) - D(b,c)$$

- Minkowski Metric
 - Euclidean
 - Manhattan

 $L_k(a,b) = (\sum_{i=1}^d |a_i - b_i|^k)^{1/k}$

- L_{∞}
- $D_{\text{tanimono}}(S_1, S_2) = \frac{n_1 + n_2 2n_{12}}{n_1 + n_2 n_{12}} = \frac{(n_1 n_{12}) + (n_2 n_{12})}{n_1 + n_2 n_{12}}$ Tanimono Metric
 - sets of elements
 - Point-point distance not useful

EE6887-Chang