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= Reading

= Nearest Neighbor Estimation, Distance Metrics
= DHS Chap. 4.4-4.5, 4.6
= Reference Book HTF Chap. 11.1-11.3

= Midterm Exam

= Oct. 24" 2005 Monday 1pm-2:30pm
(90mins)
= Open books/notes, no computer
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= Performance bound of 1-nearest
neighbor (Cover & Hart '67)
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Deriving the error bound ...

Assume n samples: (x,6)),(X,,6,),...,(x,.6,)

Assume X/ is the nearest neighbor to x Assume i.i.d.

PIXX) =1-Y P(0=0,0;=0,1%X) =1-3 P(& [P |X)
i=1 i=1

assume p(x;) peaks at x
lim P, (e| x)=1im [ P, (e | x, X, )p(x)dx; = !iijn(e| X, X )S (X, = X)dx!

n

- [1—2% |)P(@ |x;)}>‘(x; i =1-Y P (@ |%)

i=1

P =limP, (€) =1im [ P, (e )POOdX = [[1- " P*(@) | )Ip(x)dx

= We are interested in relation between P & P (the min. error prob.)
P’ = j P (e|x)p(x)dx  P"(e|x) =1-max P(@ | x) =1-P(a, | X)
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Deriving the 1-NN error bound (cont.)
= We are interested in relation between P & P* (the min. error prob.)

P= I[l— ZC: P?(w, | X)]p(x)dx Let's fix P(@, | X), i.e., fix P”

Z P?(w, | x) is minimized when P(@; | x) are equal V i =m
i=1

Plw,|x) i=m 1-P'(e[x) i=m
namely P(a, | X) =41-P(w, | X) iem ] Pl L
c-1 c-1
C *2
=3P ) > @-P (el o)+
i=1 -

jl—iPZ(w.IX) SZP*(e|X)_ﬁP*z(e|X)

i=1 X *_ 2

.,-IP “(ex) p(x)dx ZUP (e] X)p(x)dx} _p>

=P =[[1-Y P(@ [ 9Ip()d <op- C p
i=1 _

Q.E.D.
EE6887-Chang 10-5

K-NN example (Ref. HTF Chap 13)

=  Two Classes, data in each class generated by Gaussian Mixtures

7-Nearest Neighbors

= Cross-validation performance
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K-méans - § Profatypes per Class

Reduce Complexity by Clustering

= Training data from each class
3 classes from GMM
= Apply K-Means clustering to each class

= K-means clustering
= Randomly select K prototypes
= Map samples to the closest prototype

(hard decision)
X1, Xp,..y Xy SAMples
fori=1,2,...,N,
X; = Cy,if Dist(x;,C,) < Dist(x;,C. ),k k"
end
= Re-compute the prototypes

= Use only cluster prototypes in
nearest neighbor classification
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Learning Vector Quantization (LVQ)

= Learn the prOtOtypeS JOIntIy LVQ - 5 Prototypes per Class

= Find K prototypes for each class
ml(j)vmz(j)v"'!mK(j)v j=1,2,...,C

= Randomly sample data X
find the closest prototype m, ( j)

if class label of x = j, ;
then move prototype m, (j) closer to x : .

m,(J) < m,(J) +&(x=m,(J))

otherwise, move ptotype away from x
m,(J) < m(j) - e(x-m(j))

= Repeat the above step, with the learning rate ¢ decreasing to 0
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Comparing LVQ with KNN

LV@ - 5 Prototypes per Class

1-Nearest Meighbor
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Toy problems for comparison
10-dimensional features in the unit hypercube
X={X,X%,,..., %o}, Xuniformly distributed in [0,1]

100 training samples, 1000 test samples

= Easy problem class label Y = 1(x, > 0.5) hyperplane
= Difficult problem
3

class label Y = I (sign {H (x; —0.5)} >0) checkerboard ;!

i=0

= What's the Bayesian Error Rate?
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Performance Comparison

earest Neighbors / Easy K-means & LVQ / Easy
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Distance Metrics
= Nearest neighbor rules need distance metrics
= Required properties of a metric h
1. non-negativity: D(a,b) >0 /\/'
2. reflexivity: D(a,b) =0 iffa=Db <
3. symmetry: D(a,b) = D(b,a) X
4. trangular inequality: D(a,b)+ D(b,c) > D(c,a)
D(a,b) > D(c,a)—D(b,c)

useful in indexing

=  Minkowski Metric

= Euclidean B d "
= Manhattan Lk (a'b) = (Zl| ai —bi | )
- L, =

= Tanimono Metric  D_._(S,S,)= n+n,—2n, (n—n,)+(n,—n,)

=« sets of elements n+n, —ny, n+n,—ny,
= Point-point distance not n, n,

useful @
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