
EE E6887 (Statistical Pattern Recognition)
Solutions for homework 7

P.1 One of the “conservation laws” for generalization states that the pos-
itive generalization performance of an algorithm in some learning sit-
uations must be offset by negative performance elsewhere. Consider a
very simple learning algorithm that seems to contradict this law. For
each test pattern, the prediction of the majority learning algorithm is
merely the category most prevalent in the training data.

(a) Show that averaged over all two-category problems of a given num-
ber of features the off-training set error is 0.5.

(b) Repreat (a) but for the minority learning algorithm, which always
predicts the category label of the category least prevalent in the
training data.

(c) Use your answers from (a) and (b) to illustrate Part (2) of the No
Free Lunch Theorem.

Answer:

(a) Let ω1 and ω2 represent the two categories. P (ω1) and P (ω2) = 1−
P (ω1) are, respectively, the probabilities that a randomly selected
training sample come from ω1 and ω2. For a new testing sample
x, the true probability that it comes from ω1 is also P (ω1).

Now let’s first fix the training set. That is, without loss of gener-
ality, we assume that with a particular fixed training set D, the
majority learning algorithm predict every test sample x as from
ω1. Then the expected error over all the two-category problem
will be:

E(E|D) =
∫ 1

0
(1− P (ω1))dP (ω1) = 0.5

Then lets consider all the possible training sets. The error aver-
aged over all the training set will be:

E =
∑

D
E(E|D)P (D)
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Since all the possible training sets are equally probable to occur,
we have

E = 0.5

(b) Similar to case (a), first let’s fix the training set. Without loss
of generality, we assume that with a particular fixed training set
D, the minority learning algorithm predict every test sample x
as from ω2. Then the expected error over all the two-category
problem will be:

E(E|D) =
∫ 1

0
P (ω1)dP (ω1) = 0.5

Then lets consider all the possible training sets. The error aver-
aged over all the training set will be:

E =
∑

D
E(E|D)P (D)

Since all the possible training sets are equally probable to occur,
we have

E = 0.5

(c) The part 2 of No Free Lunch is: For any fixed training set D,
uniformly averaged over F ,

∑
F E1(E|F,D)−E2(E|F,D) = 0. Case

(a) and (b) just gives an example for this. For a fixed training
set D, for a particular P (ω1), the majority learning and minority
learning algorithm may gives out different training error. But
when uniformly averaged over all possible target problems, the
expected error rate will be the same.

P.2 Consider AdaBoost with an arbitrary number of component classifiers.

(a) State clearly any assumptions you make, and derive Eq. 37 for
the ensemble training error of the full boosted system.
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(c) Recall that the training error for a weak learner applied to a two-
category problem can be written Ek = 1/2−Gk for some positive
value Gk. The training error for the first component classifier
is E1 = 0.25. Suppose that Gk decreases as a function of k.
Specifically, repeat part (b) with the assumption Gk = 0.05/k for
k = 1 to kmax (Plot the upper bound on the ensemble test error
given by Eq.37, such as shown in Fig.9.7.

Answer:

The following proof is outlined in [1]

(a) We can rewrite the weight updating rule as:

Wk+1(i) =
Wk(i)

Zk

× exp{−αkhk(xi)yi}

So

Wkmax+1(i) = W1(i)




kmax∏

k=1

1

Zk


 exp





kmax∑

k=1

[−αkhk(xi)yi]





If the ensemble hypothesis makes a mistake, yi·∑kmax
k=1 [−αkhk(xi)] =

−1, so exp{∑kmax
k=1 [−αkhk(xi)yi]} ≥ 1. Thus we have:

∑

i: hk(xi) 6=yi

W1(i) ≤ ∑

i: hk(xi)6=yi

W1(i) exp





kmax∑

k=1

[−αkhk(xi)yi]





=
∑

i: hk(xi)6=yi

Wkmax+1(i)




kmax∏

k=1

Zk




≤
(

N∑

i=1

Wkmax+1(i)

) 


kmax∏

k=1

Zk




=
kmax∏

k=1

Zk

That is:

E ≤
kmax∏

k=1

Zk (1)
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Moreover, since

Zk =
N∑

i=1

Wk(i) exp{−αkhk(xi)yi}

=
N∑

i=1

Wk(i) exp

{
−αk(

1 + hk(xi)yi

2
) + αk(

1− hk(xi)yi

2
)

}

≤
N∑

i=1

Wk(i)

[
(
1 + hk(xi)yi

2
)e−αk + (

1− hk(xi)yi

2
)eαk

]

= (1− Ek)e
−αk + Eke

αk

= (1− Ek)
(

1− Ek

Ek

)−1/2

+ Ek

(
1− Ek

Ek

)1/2

= 2
√

Ek(1− Ek)

So we get:

E ≤
kmax∏

k=1

2
√

Ek(1− Ek)

Since Ek = 1/2−Gk, we have

E ≤
kmax∏

k=1

√
1− 4G2

k ≤ exp


−2

kmax∑

k=1

G2
k




The second inequality is due to the fact that 1+x ≤ ex for (1+x is
the tangent line of ex at x = 0. As ex is convex, hence 1+x ≤ ex).

(c) We use the following program to plot the upper bound of the
training error.

kmax = 1000;

k = 1:kmax;

G = 0.05./k;

G(1) = 0.25;

for i=1:kmax

e(i) = exp(-2*(sum(G(1:i).ˆ 2)));

end
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plot(e);

xlabel(’k’);

ylabel(’upper bound for E’);

title(’training error’);

The result is as follows:
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