EE E6887 Statistical Pattern Recognition

Homework #6

Due Date: Nov. 16th 2005 Wed.

Please complete all problems.

P.1 (Dual Problem of SVM)

In the lecture note (slide 14-6), we have formulated the unconstrained Lagrangean as follows

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{l} \alpha_i (y_i (\mathbf{w}^t \mathbf{x}_i + b) - 1)$$

subject to $\alpha_i \ge 0$. This is called the primal form.

Take the derivatives of the above with respect to \mathbf{w} and b. By making the derivatives vanish, show that you can derive the following "dual form"

$$L_{D} = \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$

P.2 (SVM)

Problem 34 of Chap 5.

Note you need to find the Lagrange multipliers α_i , point out which samples are support vectors, derive the discriminant function, and derive the equation of classification hyperplane in the higher-dimensional space. Though it is not mandatory, you are encouraged to plot the decision hyperplane and the hyperplanes crossing the support vectors in the original space (x₁, x₂).