
EE E6887 (Statistical Pattern Recognition)
Solutions for homework 4

P.1 In this problem, we would like to get familiar with the procedure of
computing the error probability of 1-nearest neighbor. Consider data
samples from the following two distributions. Assume the two classes
have equal priors, i.e., P (ω1) = P (ω2) = 0.5

p(x|ω1)=

{
2x for 0 ≤ x ≤ 1
0 otherwise

and p(x|ω2)=

{
2(1 − x) for 0 ≤ x ≤ 1
0 otherwise

(a) Derive the Bayesian decision rule and its probability of classification

(b) Suppose we have one single training sample from class ω1 and one single
training sample from class ω2. Now given a randomly selected test
sample, we would like to use 1-nearest neighbor classifier to classify the
test data. What is the probability of classification error of such 1-NN
classifier?

Answer:

(a) since p(ω1) = p(ω2) = 0.5, the discriminant function turns to:

g1(x) = p(x|ω1)

g2(x) = p(x|ω2)

When g1(x) > g2(x), we classify x to ω1, when g1(x) < g2(x), we classify
x to ω2. That is:

x ∈ ω1, when
1

2
< x ≤ 1

x ∈ ω2, when 0 ≤ x <
1

2

In such case, the classification error is given by:

P ∗(e) =
∫ 1

0
min[p(ω1|x), p(ω2|x)]p(x)dx

=
1

2

∫ 1/2

0
2xdx +

1

2

∫ 1

1/2
2(1 − x)dx =

1

4

1



(b) Suppose x1 and x2 are the training samples from ω1 and ω2 respec-
tively. For a given test image x, We classify x to ω1 if |x−x1| < |x−x2|,
and to ω2 otherwise.

Therefore the probability of error is given by:

P (e) =
∫

x1

∫
x2

∫
x
p(e|x1, x2, x)p(x1, x2, x)dx1dx2dx

An error occurs when

1. |x − x1| < |x − x2|, if x ∈ ω2

2. |x − x1| > |x − x2|, if x ∈ ω1

This can be further broken up into 4 cases below:

1. x < x1+x2

2
, if x ∈ ω2 and x2 > x1

2. x > x1+x2

2
, if x ∈ ω2 and x2 < x1

3. x > x1+x2

2
, if x ∈ ω1 and x2 > x1

4. x < x1+x2

2
, if x ∈ ω1 and x2 < x1

In probability, the above idea is expressed as below. Denote xti as the
test sample from ωi:

P (e) =
∫

x1

∫
x2

∫
xt2

p(e|x1, x2, x)p(x1, x2, x)dx1dx2dx

=
∫

x1

∫
x2

∫
xt1

p(|xt2 − x1| < |xt2 − x2||x1, x2, xt2)p(x1, x2, xt2)p(ω2)dx1dx2dxt2

+
∫

x1

∫
x2

∫
x
p(|xt1 − x1| > |xt1 − x2||x1, x2, xt1)p(x1, x2, xt1)p(ω1)dx1dx2dxt1

= p(ω2)
∫

x1

∫
x2

∫
xt2

p(|xt2 − x1| < |xt2 − x2||x1, x2, xt2)p(x1, x2, xt2)dx1dx2dxt2

+ p(ω1)
∫

x1

∫
x2

∫
xt1

p(|xt1 − x1| > |xt1 − x2||x1, x2, xt1)p(x1, x2, x)dx1dx2dxt1

= p(ω2)I1 + p(ω1)I2

2



By symmetry, the first integral is equal to the second integral, i.e.,
I1 = I2, therefore we only need to evaluate the first one.

I1 =
∫

x1

∫
x2

∫
xt2

p(|xt2 − x1| < |xt2 − x2||x1, x2, xt2)p(x1, x2, x)dx1dx2dxt2

=
∫

x1

∫
x2

∫
xt2

p(xt2 <
x1 + x2

2
|x1, x2, xt2, x2 > x1)p(x2 > x1|x1, x2)p(x1, x2, xt2)

+ p(xt2 >
x1 + x2

2
|x1, x2, xt2, x2 < x1)p(x2 < x1|x1, x2)p(x1, x2, xt2)dx1dx2dxt2

Observe that,

p(x < x1+x2

2
|x1, x2, x, x ∈ ω2, x2 > x1) = 1 if x < x1+x2

2
, and it is equal

to 0 otherwise.

Similarly,

p(x2 > x1|x1, x2) = 1 if x2 > x1, and it is equal to 0 otherwise.

Furthermore, as x1, x2, xti are independent, so p(x1, x2, xt2) = p(x1|ω1)p(x2|ω2)p(xti|ωi).

Therefore,

I1 =
∫ 1

x1=0
dx1p(x1|ω1)

∫ 1

x2=x1
dx2p(x2|ω2)

∫ x1+x2
2

xt2=0
dxt2p(xt2|ω2)

+
∫ 1

x2=0
dx2p(x2|ω2)

∫ 1

x1=x2
dx1p(x1|ω1)

∫ 1

xt2=
x1+x2

2

dxt2p(xt2|ω2)

= 0.35 = I2

Since P (ω1) = P (ω2) = 0.5,

P (e) = p(ω2)I1 + p(ω1)I2 = 0.35

P.2 Computing distances in a high-dimensional feature space sometimes
could be costly prohibitive. One popular trick is to compute a certain
distance in a lower dimension space as a pre-filtering step.
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Assume �x = {x1, x2, . . . , xd} and �y = {y1, y2, . . . , yd} are two feature
vectors in a d-dimensional space. Prove that

{
1√
d

d∑
i=1

xi − 1√
d

d∑
i=1

yi

}2

≤
d∑

i=1

(xi − yi)
2

Namely the distance between the scaled means of two vectors is less
than their L2 distance. Discuss how we may use this property to re-
duce the computational complexity of the process of finding the nearest
neighbor point.

Answer:

Let zi = xi − yi,

(
1√
d

d∑
i=1

xi − 1√
d

d∑
i=1

yi

)2

= d

(
1

d

d∑
i=1

zi

)2

Let z be a random variable with z ∈ {zi|i = 1, . . . , d} and p(zi) =
1
d
,
∑d

i=1 p(zi) = 1. By Jensen’s inequality, we have f(E[z]) ≤ E[f(z)]
for a convex function f . As f(x) = x2 is a convex function. Therefore,

d

(
1

d

d∑
i=1

zi

)2

= d

(
d∑

i=1

1

d
zi

)2

≤ d
d∑

i=1

1

d
z2

i =
d∑

i=1

z2
i

To reduce computational complexity for the nearest neighbor classifiers,
we can pre-compute the scaled mean of the training data. Then, when
given a test data, we first compute its scaled mean and then compute its
distance to the pre-computed training data. As the distance function is
1d instead of the original dimension, there is a reduced computational
complexity.
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