EE E6887 (Statistical Pattern Recognition)
Solutions for homework 4

P.1 In this problem, we would like to get familiar with the procedure of
computing the error probability of 1-nearest neighbor. Consider data
samples from the following two distributions. Assume the two classes
have equal priors, i.e., P(wy) = P(w2) = 0.5

20 for0<zx <1

(zlon) = 21 —2z) for0<z<1
pirien) = 0 otherwise

and p(x]wg):{ 0 otherwise
(a) Derive the Bayesian decision rule and its probability of classification

(b) Suppose we have one single training sample from class w; and one single
training sample from class ws. Now given a randomly selected test
sample, we would like to use 1-nearest neighbor classifier to classify the
test data. What is the probability of classification error of such 1-NN
classifier?

Answer:

(a) since p(wy) = p(wz) = 0.5, the discriminant function turns to:

gi(r) = p(z|wr)
g2(7) = p(z|ws)

When gy () > g2(x), we classify = to wy, when g (z) < g2(x), we classify
T to wy. That is:

1
T € wy, When§<x§1
1
T € wo, When0§x<§

In such case, the classification error is given by:

Pe) = [ minlporle). plwsla)lp(a)ds
1 1

P pde+ 2 [ 201 — 2y =
N 2/0 xx—|—2 1/2 * x—4

1



(b) Suppose x; and x5 are the training samples from w; and ws respec-
tively. For a given test image x, We classify x to wy if |z —z1| < |z — 2|,
and to w, otherwise.

Therefore the probability of error is given by:

P(e) :/ / p(e‘l'l,xg,x)p(xl,.Tg,x)dl'ldl'gd]f

An error occurs when

L |z —m| <|z—x2f,if v € Wy

2. |z —x1| > |z — 2o, if v € wy
This can be further broken up into 4 cases below:

Lo <8 if ¢ € wy and 2o > 24
2. x> 8E8 if ¢ € wy and 2y < 1y
3. x> 8En if ¢ € wy and 25 > 1y

4. x < BE2 if ¢ € wy and @ < 14

In probability, the above idea is expressed as below. Denote x;; as the
test sample from w;:

P(e) = /x /x /x p(€|$1,$27$)p($1,$27$)d901d902d$

1 2 t2

= /// p(\ﬂﬂw—ﬂﬂlf<\ﬂﬂtz—$2H$1,$2,33t2)p(5131,332,$t2)p(w2)d$1d$2d$t2
r1 JIT2 JTt1

+ / / p(|l‘t1—961|>|l‘t1—$2||l‘1,1‘27fﬂ)p(%,$27$t1)p(w1)d$1d$2d96t1
1 Jxo Jx

= p(WQ)/ // p(\9€t2—$1’<’%2—$2H5L’1,5132,l"tz)p(flfla332,33t2)d$1d952d33t2

r1 JIT2 JIt2

+ p(wl)/ / / p(|lze — x| > |xn — xol|z1, T2, 201)p(21, T2, T)dT1dTodTy
X1 J T2 JITt1
= plwa)ly + p(wr)ls



P2

By symmetry, the first integral is equal to the second integral, i.e.,
I, = I, therefore we only need to evaluate the first one.

I, = /// p(’$t2—331\<’%2—3U2H$1,5132,$t2)p($1,$2,3§)d$1d952d95t2
Tl JI2 JTt2

T+ x
= / / / p($t2< ! 2|$1,$27$t2,9€2>961)p($2>$1|$1,$2)p(l‘1,$27$t2)
z1 Jzo J340 2

xr1 + T2

9 ’xl,l’z,l’m% < 951)17(5132 < $1’$1,$2)p($1,$2,$t2)d331d332d$t2

+ p(:l:tg >

Observe that,

T1+T2

52, and it is equal

plr < me|x1,xg,x,x € Wy, >1x1) =1if <
to 0 otherwise.

Similarly,
p(ra > xq|21,9) = 1 if 5 > 21, and it is equal to 0 otherwise.
Furthermore, as x1, xa, ;; are independent, so p(z1, T, T2) = p(x1|wr)p(xe|ws)p(xy|w;).

Therefore,

r1+z9

1 1
L, = /_Od$1p($1’(m)/ - 1dx2p(x2\w2)/ _20 dxp(Tie|ws)

1 1 1
+ / Od$2p($2|w2)/ 2d$1P($1|w1)/ S dz2p(72|ws)
xro= 1= ItQIT
= 035=1

Since P(w1) = P(ws) = 0.5,

P(e) = p(wa) Iy + p(w1)l2 = 0.35

Computing distances in a high-dimensional feature space sometimes
could be costly prohibitive. One popular trick is to compute a certain
distance in a lower dimension space as a pre-filtering step.



Assume ¥ = {xy,29,..., 24} and ¥ = {y1,99,...,ya} are two feature
vectors in a d-dimensional space. Prove that

d d 2 4
{F3 a3 uf <2
Vit o vdimt) T IS
Namely the distance between the scaled means of two vectors is less
than their L, distance. Discuss how we may use this property to re-
duce the computational complexity of the process of finding the nearest
neighbor point.

Answer:

Let z; = x; — vy,

2

(X 7axy)
~a(35-)

Let z be a random variable with z € {z]i = 1,...,d} and p(z;) =

L% p(z) = 1. By Jensen’s inequality, we have f(E[z]) < E[f(2)]
for a convex function f. As f(x) = 2% is a convex function. Therefore,

To reduce computational complexity for the nearest neighbor classifiers,
we can pre-compute the scaled mean of the training data. Then, when
given a test data, we first compute its scaled mean and then compute its
distance to the pre-computed training data. As the distance function is
1d instead of the original dimension, there is a reduced computational
complexity:.



