EE E6887 (Statistical Pattern Recognition) Solutions for homework 4

P.1 In this problem, we would like to get familiar with the procedure of computing the error probability of 1-nearest neighbor. Consider data samples from the following two distributions. Assume the two classes have equal priors, i.e., $P(\omega_1) = P(\omega_2) = 0.5$

$$p(x|\omega_1) = \begin{cases} 2x & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad p(x|\omega_2) = \begin{cases} 2(1-x) & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Derive the Bayesian decision rule and its probability of classification
- (b) Suppose we have one single training sample from class ω_1 and one single training sample from class ω_2 . Now given a randomly selected test sample, we would like to use 1-nearest neighbor classifier to classify the test data. What is the probability of classification error of such 1-NN classifier?

Answer:

(a) since $p(\omega_1) = p(\omega_2) = 0.5$, the discriminant function turns to:

$$g_1(x) = p(x|\omega_1)$$

$$g_2(x) = p(x|\omega_2)$$

When $g_1(x) > g_2(x)$, we classify x to ω_1 , when $g_1(x) < g_2(x)$, we classify x to ω_2 . That is:

$$x \in \omega_1$$
, when $\frac{1}{2} < x \le 1$
 $x \in \omega_2$, when $0 \le x < \frac{1}{2}$

In such case, the classification error is given by:

$$P^{*}(e) = \int_{0}^{1} \min[p(\omega_{1}|x), p(\omega_{2}|x)]p(x)dx$$
$$= \frac{1}{2} \int_{0}^{1/2} 2xdx + \frac{1}{2} \int_{1/2}^{1} 2(1-x)dx = \frac{1}{4}$$

(b) Suppose x_1 and x_2 are the training samples from ω_1 and ω_2 respectively. For a given test image x, We classify x to ω_1 if $|x-x_1| < |x-x_2|$, and to ω_2 otherwise.

Therefore the probability of error is given by:

$$P(e) = \int_{x_1} \int_{x_2} \int_x p(e|x_1, x_2, x) p(x_1, x_2, x) dx_1 dx_2 dx$$

An error occurs when

1. $|x - x_1| < |x - x_2|$, if $x \in \omega_2$ 2. $|x - x_1| > |x - x_2|$, if $x \in \omega_1$

This can be further broken up into 4 cases below:

1. $x < \frac{x_1+x_2}{2}$, if $x \in \omega_2$ and $x_2 > x_1$ 2. $x > \frac{x_1+x_2}{2}$, if $x \in \omega_2$ and $x_2 < x_1$ 3. $x > \frac{x_1+x_2}{2}$, if $x \in \omega_1$ and $x_2 > x_1$ 4. $x < \frac{x_1+x_2}{2}$, if $x \in \omega_1$ and $x_2 < x_1$

In probability, the above idea is expressed as below. Denote x_{ti} as the test sample from ω_i :

$$\begin{split} P(e) &= \int_{x_1} \int_{x_2} \int_{x_{t2}} p(e|x_1, x_2, x) p(x_1, x_2, x) dx_1 dx_2 dx \\ &= \int_{x_1} \int_{x_2} \int_{x_{t1}} p(|x_{t2} - x_1| < |x_{t2} - x_2| |x_1, x_2, x_{t2}) p(x_1, x_2, x_{t2}) p(\omega_2) dx_1 dx_2 dx_{t2} \\ &+ \int_{x_1} \int_{x_2} \int_{x} p(|x_{t1} - x_1| > |x_{t1} - x_2| |x_1, x_2, x_{t1}) p(x_1, x_2, x_{t1}) p(\omega_1) dx_1 dx_2 dx_{t1} \\ &= p(\omega_2) \int_{x_1} \int_{x_2} \int_{x_{t2}} p(|x_{t2} - x_1| < |x_{t2} - x_2| |x_1, x_2, x_{t2}) p(x_1, x_2, x_{t2}) dx_1 dx_2 dx_{t2} \\ &+ p(\omega_1) \int_{x_1} \int_{x_2} \int_{x_{t1}} p(|x_{t1} - x_1| > |x_{t1} - x_2| |x_1, x_2, x_{t1}) p(x_1, x_2, x) dx_1 dx_2 dx_{t1} \\ &= p(\omega_2) I_1 + p(\omega_1) I_2 \end{split}$$

By symmetry, the first integral is equal to the second integral, i.e., $I_1 = I_2$, therefore we only need to evaluate the first one.

$$I_{1} = \int_{x_{1}} \int_{x_{2}} \int_{x_{t2}} p(|x_{t2} - x_{1}| < |x_{t2} - x_{2}||x_{1}, x_{2}, x_{t2}) p(x_{1}, x_{2}, x) dx_{1} dx_{2} dx_{t2}$$

$$= \int_{x_{1}} \int_{x_{2}} \int_{x_{t2}} p(x_{t2} < \frac{x_{1} + x_{2}}{2} |x_{1}, x_{2}, x_{t2}, x_{2} > x_{1}) p(x_{2} > x_{1} |x_{1}, x_{2}) p(x_{1}, x_{2}, x_{t2})$$

$$+ p(x_{t2} > \frac{x_{1} + x_{2}}{2} |x_{1}, x_{2}, x_{t2}, x_{2} < x_{1}) p(x_{2} < x_{1} |x_{1}, x_{2}) p(x_{1}, x_{2}, x_{t2}) dx_{1} dx_{2} dx_{t2}$$

Observe that,

 $p(x < \frac{x_1+x_2}{2}|x_1, x_2, x, x \in \omega_2, x_2 > x_1) = 1$ if $x < \frac{x_1+x_2}{2}$, and it is equal to 0 otherwise.

Similarly,

 $p(x_2 > x_1 | x_1, x_2) = 1$ if $x_2 > x_1$, and it is equal to 0 otherwise.

Furthermore, as x_1, x_2, x_{ti} are independent, so $p(x_1, x_2, x_{t2}) = p(x_1|\omega_1)p(x_2|\omega_2)p(x_{ti}|\omega_i)$. Therefore,

$$I_{1} = \int_{x_{1}=0}^{1} dx_{1} p(x_{1}|\omega_{1}) \int_{x_{2}=x_{1}}^{1} dx_{2} p(x_{2}|\omega_{2}) \int_{x_{t}=0}^{\frac{x_{1}+x_{2}}{2}} dx_{t2} p(x_{t2}|\omega_{2}) + \int_{x_{2}=0}^{1} dx_{2} p(x_{2}|\omega_{2}) \int_{x_{1}=x_{2}}^{1} dx_{1} p(x_{1}|\omega_{1}) \int_{x_{t}=0}^{1} dx_{t2} p(x_{t2}|\omega_{2}) = 0.35 = I_{2}$$

Since $P(\omega_1) = P(\omega_2) = 0.5$,

$$P(e) = p(\omega_2)I_1 + p(\omega_1)I_2 = 0.35$$

P.2 Computing distances in a high-dimensional feature space sometimes could be costly prohibitive. One popular trick is to compute a certain distance in a lower dimension space as a pre-filtering step.

Assume $\vec{x} = \{x_1, x_2, \dots, x_d\}$ and $\vec{y} = \{y_1, y_2, \dots, y_d\}$ are two feature vectors in a d-dimensional space. Prove that

$$\left\{\frac{1}{\sqrt{d}}\sum_{i=1}^{d}x_{i} - \frac{1}{\sqrt{d}}\sum_{i=1}^{d}y_{i}\right\}^{2} \leq \sum_{i=1}^{d}(x_{i} - y_{i})^{2}$$

Namely the distance between the scaled means of two vectors is less than their L_2 distance. Discuss how we may use this property to reduce the computational complexity of the process of finding the nearest neighbor point.

Answer:

Let $z_i = x_i - y_i$,

$$\left(\frac{1}{\sqrt{d}}\sum_{i=1}^{d}x_i - \frac{1}{\sqrt{d}}\sum_{i=1}^{d}y_i\right)^2$$
$$= d\left(\frac{1}{d}\sum_{i=1}^{d}z_i\right)^2$$

Let z be a random variable with $z \in \{z_i | i = 1, ..., d\}$ and $p(z_i) = \frac{1}{d}, \sum_{i=1}^{d} p(z_i) = 1$. By Jensen's inequality, we have $f(E[z]) \leq E[f(z)]$ for a convex function f. As $f(x) = x^2$ is a convex function. Therefore,

$$d\left(\frac{1}{d}\sum_{i=1}^{d}z_{i}\right)^{2} = d\left(\sum_{i=1}^{d}\frac{1}{d}z_{i}\right)^{2}$$
$$\leq d\sum_{i=1}^{d}\frac{1}{d}z_{i}^{2} = \sum_{i=1}^{d}z_{i}^{2}$$

To reduce computational complexity for the nearest neighbor classifiers, we can pre-compute the scaled mean of the training data. Then, when given a test data, we first compute its scaled mean and then compute its distance to the pre-computed training data. As the distance function is 1d instead of the original dimension, there is a reduced computational complexity.