
EE E6887 (Statistical Pattern Recognition)
Solutions for homework 2

P.1 Let p(x|ωi) ∼ N(µi, Σ) for i = 1, 2 in a two-category d-dimensional
problem with the same covariance but arbitrary means and prior prob-
abilities. Consider the square Mahalanobis distance:

r2
i = (x− µi)

tΣ−1(x− µi)

(a) Show that the gradient of r2
i is given by

∇r2
i = 2Σ−1(x− µi)

(b) Show that any position on a given line through µi the gradient
∇r2

i points in the same direction. Must this direction be parallel
to that line?

(e) True or False: For a two-category problem involving normal densi-
ties with arbitrary means and covariances, and P (ω1) = P (ω2) =
1/2, the Bayes decision boundary consists of the set of points of
equal Mahalanobis distance from the respective sample means.
Explain.

Answer:

(a) ∇r2
i can be written as:

∇r2
i =

[
Σ−1(x− µi) + ((x− µi)

tΣ−1)t
]

=
[
Σ−1(x− µi) + (Σ−1)t(x− µi)

]

Since the covariance matrix Σ is symmetry, (Σ−1) = Σ−1.

∇r2
i = 2Σ−1(x− µi)

(b) In a given line through µi, for any point x on this line, ∇r2
i =

2Σ−1(x − µi) = 2||x − µi||Σ−1( x−µi

||x−µi||). Σ−1( x−µi

||x−µi||) is a constant for

any point on the line. Thus for all points on this line, ∇r2
i points to

the same direction.

When Σ = σ2I, for any σ > 0, the direction parallel to the line. Oth-
erwise, the direction doesn’t parallel to the line.
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(e) This statement is true. When P (ω1) = P (ω2) = 1/2 and the
covariance matrix are equal for the two classes, the Bayes decision
function turns to:

gi(x) = −1

2
(x− µi)

tΣ−1(x− µi) = −1

2
r2
i

The decision boundary corresponds to the points which have

g1(x) = g2(x) ⇒ r2
1 = r2

2

Thus the Bayes decision boundary consists of the set of points of equal
Mahalanobis distance from the respective sample means. Otherwise,
this will be false if the covariance matrix are not equal.

P.2 Suppose we have three categories in two dimensions with the following
distributions:

– p(x|ω1) ∼ N(0, I)

– p(x|ω2) ∼ N([1, 1]t, I)

– p(x|ω2) ∼ 1
2
N([0.5, 0.5]t, I) + 1

2
N([−0.5, 0.5]t, I)

with P (ωi) = 1/3, i = 1, 2, 3.

(a) By explicit calculation of posterior probabilities, classify the point
x = [0.3, 0.3]t for minimum probability error.

(b) Suppose that for a particular test point the first feature is missing.
That is, classify x = [∗, 0.3]t.

(c) Suppose that for a particular test point the second feature is miss-
ing. That is, classify x = [0.3, ∗]t.

Answer:

(a) p(ωi|x) = p(x|ωi)P (ωi)
p(x)

. Since P (ω1) = P (ω2) = P (ω3) = 1/3, we just

need to compare the likelihood p(x|ωi).

p(x|ω1) =
1

2π
exp

[
−1

2
[0.3, 0.3][0.3, 0.3]t

]
= 0.1455

p(x|ω2) =
1

2π
exp

[
−1

2
[−0.7,−0.7][−0.7,−0.7]t

]
= 0.0975
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p(x|ω3) =
1

4π
exp

[
−1

2
[−0.2,−0.2][−0.2,−0.2]t

]

+
1

4π
exp

[
−1

2
[0.8,−0.2][0.8,−0.2]t

]

= 0.1331

Since p(x|ω1) is the largest likelihood, x is classified to be from class 1.

(b) Assume that x = [x1, x2]
t,

p(ωi|x2) =

∫
p(x1, x2|ωi)P (ωi)dx1

p(x2)

Still since P (ω1) = P (ω2) = P (ω3) = 1/3, we just need to compare∫
p(x1, x2|ωi)dx1.

∫
p(x1, x2|ω1)dx1 =

1

2π

∫
exp

[
−1

2
(x2

1 + 0.09)
]
dx1

=
1√
2π

exp(−0.09

2
) = 0.3813

∫
p(x1, x2|ω2)dx1 =

1

2π

∫
exp

[
−1

2

(
(x1 − 1)2 + 0.49

)]
dx1

=
1√
2π

exp(−0.49

2
) = 0.3122

∫
p(x1, x3|ω2)dx1=

1

4π

∫
exp

[
−1

2

(
(x1 − 0.5)2 + 0.04

)]
dx1

+
1

4π

∫
exp

[
−1

2

(
(x1 + 0.5)2 + 0.04

)]
dx1

=
1

2
√

2π
exp(−0.04

2
) +

1

2
√

2π
exp(−0.04

2
)

= 0.3910

Thus x is classified to be from class 3.

(c) Still x = [x1, x2]
t,

p(ωi|x1) =

∫
p(x1, x2|ωi)P (ωi)dx2

p(x1)
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We need to compare
∫

p(x1, x2|ωi)dx2.

∫
p(x1, x2|ω1)dx2 =

1

2π

∫
exp

[
−1

2
(x2

2 + 0.09)
]
dx2

=
1√
2π

exp(−0.09

2
) = 0.3813

∫
p(x1, x2|ω2)dx2 =

1

2π

∫
exp

[
−1

2

(
(x2 − 1)2 + 0.49

)]
dx2

=
1√
2π

exp(−0.49

2
) = 0.3122

∫
p(x1, x3|ω2)dx2 =

1

4π

∫
exp

[
−1

2

(
(x2 − 0.5)2 + 0.04

)]
dx2

+
1

4π

∫
exp

[
−1

2

(
(x2 − 0.5)2 + 0.64

)]
dx2

=
1

2
√

2π
exp(−0.04

2
) +

1

2
√

2π
exp(−0.64

2
)

= 0.3403

Thus in this case x is classified to be in class 1.

The solution of this problem can be simplified by noticing the special
covariance structure of the Gaussian pdf’s. Identity covariance ma-
trix implies independence of the random variables for each dimension.
Therefore, a 2D Gaussian pdf can be factorized into the product of two
1D Gaussian pdf’s. The marginalization step becomes much simplified
after the factorization because the integration of a pdf simply gives us
one.
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