|September 28th, 2005

EE E6887 (Statistical Pattern Recognition)
Solutions for homework 1

P.1a Suppose two equally probable 1-dimensional densities are of the form
p(x|w;) < exp (—|z — a;|/b;), fori=1,2, and b; > 0

(a) write an analytic expression for each density function. Namely,
you have to normalize a; and b; for each function.
(b) Write the likelihood ration p(z|w:)/p(z|ws)
(c) Sketch a graph of the likelihood ratio for the case a; = 1, by = 2,
ag = 0, b2 =1.
Answer:

(a) Since [% p(x|w;)dx =1, so we have
/ai Aexp ((x — a;)/b;) de + /OerXp (—(z —a;)/b;)de =1
So A = 1/2b;. Then we get the analytic expression:

1
p(z|w;) = o5, XP (—|x —a;|/b;), fori=1,2, and b; >0

(b)
p(alwn) /p(alws) = B exp (=5l 4 loeal)

(¢c) When ay =1, by =2, az = 0, by = 1, we have the following
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p(xlwr)/p(zlws) =
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sexp —”Tx) if <0
= %exp 35”2_1) ifo<z<1
%exp ”T“) ifx>0

see figure below:
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likelihood ration

P.1b Under the Bayesian decision rule, the classification error is given by
P(error) = /P(err0r|x)p(x)dx = /min[P(wﬂx),P(w2|x)]p(.r)dx

Show that for arbitrary density functions, and upper bound of the
classification error can be found by replacing min[P(w;|z), P(ws|x)]
with 2P(wy|x)P(ws|z). And a lower bound can be found by replac-
ing min|[P(w;|x), P(we|z)] with P(wq|z)P(wslx).

Answer: Without loss of generality, we can assume that P(w;|z) >
P(ws|x), then we have P(error) = [ P(ws|z)p(x)dx.

Obviously P(ws|z) > P(wi|x)P(ws|z) (since 0 < P(wi|z) < 1). So a
lower bound of P(error) is [ P(w;|z)P(ws|x)p(z)dz.

On the other hand, since P(w;|z) = 1 — P(ws|z), so P(wi|z) > 5 =
2P(wi|x) > 1. Thus we have P(wq|z) < 2P(wq|z)P(ws|x). So a upper
bound of P(error)is [2P(wi|z)P(ws|x)p(z)dz.

P.3 Matlab Exercise



(a) Write a function to calculate the discriminant function of the fol-
lowing form

1 d 1
gi(z) = —5(3: — )" (= ) — 5 In2m — 3 In|%;| 4+ In P(w;)
for a given mean vector and a covariance matrix

(b) Write a function to calculate the Mahalanobis distance between
an arbitrary point x and the mean, p, of a Gaussian distribution
with covariance matrix .

(c) Use the data set shown in the table on page 80 of the textbook,
Assume each category has Gaussian distribution. Compute the
mean and covariance matrix for each category. Assume the prior
probabilities are P(w;) = 0.8, P(wy) = P(w3) = 0.1. Then use
your procedures developed in the previous parts (a) and (b) to
classify the following test data points: (1,2,1), (5,3,1), (0,0,0) and
(1,0,0).

Answer:

(a) The function is as follows:

function y = gaussiandiscriminant(x,mu,sigma,prior)
dim = size(x,1);

y = -0.5%((x-mu)’)*(inv(sigma) ) * (x-mu)

-(0.5*dim*log(2*pi))-(0.5*log(det(sigma)))+log(prior);

(b) The function is as follows:
function y = mahalanobis(x,mu,sigma)

y = sqrt((x-mu)’*(inv(sigma) ) *(x-mu));

(c)
function d = test()

x1 = [[-5.01,-5.43,1.08,0.86,-2.67,4.94,-2.51 -2.25,5.56,1.03]",[-8.12,-3.48 -
5.52,-3.78,0.63,3.29,2.09,-2.13,2.86,-3.33],[-3.68,-3.54,1.66,-4.11,7.39,2.08 -
2.59,-6.94,-2.26,4.33] ]



x2 = [[-0.91,1.30,-7.75,-5.47,6.14,3.60,5.37,7.18 -7.39,-7.50]", [-0.18 -2.06,-
4.54,0.50,5.72,1.26,-4.63,1.46,1.17,-6.32],[-0.05,-3.53,-0.95,3.92,-4.85,4.36,-
3.65,-6.66,6.30,-0.31]];

x3 =[[5.35,5.12,-1.34,4.48,7.11,7.17,5.75,0.77,0.90,3.52],[2.26,3.22,-5.31,
3.42,2.39,4.33,3.97,0.27,-0.43,-0.36]",[8.13,-2.66,-9.87,5.19,9.21,-0.98,6.65,2.41 -
8.71,6.43]];

pl = [1L21]': p2 = [3.3.1]" p3 = [0,0.0]" pd = [L00]"
priorl = 0.8; prior2 = 0.1; prior3d = 0.1;

mul = (mean(x1))’; mu2 = (mean(x2))’; mu3 = (mean(x3))’;
sigmal = cov(x1); sigma2 = cov(x2); sigma3 = cov(x3);

gll = gaussiandiscriminant(pl,mul,sigmal,priorl);

g12 = gaussiandiscriminant(pl,mu2,sigma2,prior2);

g13 = gaussiandiscriminant(pl,mu3,sigma3,prior3);
[gl,d1]=max([gl1,g12,g13]);

g21 = gaussiandiscriminant(p2,mul,sigmal,priorl);
g22 = gaussiandiscriminant(p2,mu2,sigma2,prior2);
g23 = gaussiandiscriminant(p2,mu3,sigma3,prior3);
[g2,d2]=max([g21,g22,g23]);

g31 = gaussiandiscriminant(p3,mul,sigmal,priorl);
g32 = gaussiandiscriminant(p3,mu2,sigma2,prior2);
g33 = gaussiandiscriminant(p3,mu3,sigmas,prior3);
[g3,d3]=max([g31,832,33]);

g41 = gaussiandiscriminant(p4,mul,sigmal,priorl);
g42 = gaussiandiscriminant(p4,mu2,sigma2,prior2);
g43 = gaussiandiscriminant(p4,mu3,sigma3,prior3);
[g4,d4]=max([g41,g42,g43]);

d = [d1,d2,d3,d4]’;



The discriminant function for the four data points are

g1(21) = —T4565; go(ar1) = —9.4979; gy(z1) = —11.6499
g1(x9) = —8.1313; go(we) = —10.2826; g3(xe) = —8.3497
g1(z3) = =7.0614; go(x3) = —9.1658; g3(x3) = —10.5849
g1(xs) = —7.0601; go(xs) = —9.2319; gg(xs) = —9.1420

and by the rule of maximum discriminant function, the classification
results are d1=1, d2=1, d3=1, and d4=1, that is, all the four test data
points are classified to fall in the first category.

The Mahalanobis distances between the three points and mean vector
of each Gaussian distribution are:

d(xy, p1) = 1.0150; d(xy, pe) = 0.8581; d(xq, pug) = 2.6748
d(xe, p1) = 1.5427; d(xs, po) = 1.5184; d(xs, ug) = 0.7443
d(xg, u1) = 0.4900; d(z3, pe) = 0.2684; d(xs, u3) = 2.2415
d(xyg, 1) = 0.4872; d(xy, po) = 0.4518; d(xy4, pu3) = 1.4623

and by the rule of minimum Mahalanobis distance, the classification
results are d1=2, d2=3, d3=2, and d4=2.





