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Abstract
Underdetermined Source Separation Using Speaker Subspace Models

Ron J. Weiss

Sounds rarely occur in isolation. Despite this, significant effort has been dedicated to the
design of computer audition systems, such as speech recognizers, that can only analyze
isolated sound sources. In fact, there are a variety of applications in both human and
computer audition for which it is desirable to understand more complex auditory scenes.
In order to extend such systems to operate on mixtures of many sources, the ability to
recover the source signals from the mixture is required. This process is known as source
separation.

In this thesis we focus on the problem of underdetermined source separation where the
number of sources is greater than the number of channels in the observed mixture. In
the worst case, when the observations are derived from a single microphone, it is often
necessary for a separation algorithm to utilize prior information about the sources present
in the mixture to constrain possible source reconstructions. A common approach for
separating such signals is based on the use of source-specific statistical models. In most
cases this approach requires that significant training data be available to train models for
the sources known in advance to be present in the mixed signal. We propose a speaker
subspace model for source adaptation that alleviates this requirement.

We report a series of experiments on monaural mixtures of speech signals and demonstrate
that the use of the proposed speaker subspace model can separate sources far better than
the use of unadapted, source-independent models. The proposed method also outperforms
other state of the art approaches when training data is not available for the exact speakers
present in the mixed signal.

Finally, we describe an system for binaural speech separation that combines constraints
based on interaural localization cues with constraints derived from source models. Al-
though a simpler system based only on localization cues is sometimes able to adequately
isolate sources, the incorporation of a source-independent model is shown to significantly
improve performance. Further improvements are obtained by using the proposed speaker
subspace model to adapt to match the sources present in the signal.
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1

Chapter 1

Introduction

Recognition of audio signals containing contributions from multiple sources continues to
pose a significant problem for computer audition. In contrast, human listeners often have
little trouble paying attention to a single source in the presence of conflicting sources. Such
mixtures are extremely commonplace, and therefore represent an important challenge. For
example, this class of scenarios is often referred to as the “cocktail party problem” [13],
emphasizing the everyday nature of this challenge. Much research effort has been devoted
to building computational systems that can solve this problem.

Audio source separation systems have a variety of potential applications in the context
of computer audition, including automatic speech recognition under especially noisy
conditions, and multimedia or music analysis where signals are virtually always mixtures
of multiple sources. Such systems generally output a high level description of the audio
input and do not necessarily require that the underlying source signals be separated and
reconstructed with high fidelity. However, it is often possible to configure such a system
to operate on single-source inputs and simply offer source separation as pre-processing
whenever necessary. This is the approach taken in many of the experiments we will
describe in this thesis.

Other important application areas are targeted at human listeners and therefore require
that the source signals be reconstructed accurately. Although human listeners are often
able to attend to individual sources even in dense mixtures, this ability is significantly
reduced in people with impaired hearing. In fact, one of the primary complaints of
hearing aid users relates to their poor performance in cocktail party-like situations [51].
Incorporating source separation algorithms into hearing aids could vastly improve their
usefulness in situations with significant background noise. Other similar application
areas include speech enhancement for telecommunications or other artificial listening
situations where many of the perceptual cues humans use to solve the cocktail party
problem, e.g. binaural localization cues, are not available, or music remixing when the
original multi-track recordings are unavailable.

Separation is especially difficult when the mixed signal is particularly constrained, such
as in underdetermined conditions when there are fewer observed channels than there are
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distinct sources comprising the mixture. In this thesis we focus on the use of statistical
source models for separation of underdetermined mixtures in which observations consist
of only one or two channels. We primarily focus on speech separation, i.e. the cocktail
party problem, where the mixture is composed of speech from multiple talkers. However,
the methods we describe could be extended to work on other types of audio signals as
well.

Separation algorithms based on such source models have been quite successful under
underdetermined conditions, especially in monaural mixtures. However, they suffer from
an important disadvantage in that the models must be specific to the sources present in
the mixture. This requires that the identities of all sources be known in advance and that
sufficient data be available to train models for each of them. In this thesis we focus on the
model-based approach to source separation when the precise source characteristics are not
known a priori.

1.1 Contributions

The primary contribution of this thesis is the development of a speaker-adaptive speech
model for use in speech separation. The use of this model enables a popular approach to
model-based source separation (e.g. [91]) to work on mixtures composed from utterances
from previously unseen speakers. This removes the unrealistic requirement that training
data for all possible speakers be available in advance and therefore makes such separation
systems significantly more useful in practice.

We demonstrate the proposed model’s effectiveness on monaural mixtures in the context
of the 2006 Speech Separation Challenge [16], an organized effort to evaluate monaural
speech separation systems for automatic speech recognition. We derive and compare the
performance of two different separation algorithms based on this source model, one based
on a hierarchical separation and adaptation approach, and a second variational learning
algorithm which is significantly faster than the first but not as accurate. Separation based on
the proposed speaker-adaptive model significantly outperforms the results obtained using
speaker-independent models. We further show that the proposed system outperforms
other state of the art approaches when training data is not available for the exact speakers
present in the mixed signal.

We also demonstrate the effectiveness of the speaker adaptation model on the easier task
of separating binaural speech mixtures. Unlike monaural mixtures, binaural mixtures can
often be separated by assuming that the signal from each source arrives from a spatially
distinct location without using any prior knowledge of the source statistics. In this thesis
we extend the model-based expectation maximization source separation and localization
(MESSL) algorithm of Mandel and Ellis [67] to incorporate additional constraints from
prior source models. We demonstrate that even the use of relatively simple source models
can improve separation performance over the baseline algorithm which utilizes source
location alone. Because of the localization information present in binaural mixtures such
an improvement is possible even when the models are relatively broad compared to those
used for monaural separation, consisting of small speaker-independent models. The
additional constraints from the source model essentially serve to guide the estimation of
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the model’s localization parameters. Furthermore, we demonstrate that the addition of
source adaptation based on the proposed speaker subspace model improves performance
over a similar system that uses speaker-independent models in some conditions, although
the improvement is not as large as it is in the monaural case.

Portions of the work in this thesis have been previously published in [29, 116, 117, 118, 120,
119, 68].

1.2 Thesis overview

The remainder of the thesis is structured as follows:

In chapter 2 we give an overview of the commonly used approaches to source separation
and introduce the idea of utilizing source-specific constraints that can guide separation
under very difficult conditions.

In chapter 3 we describe a speaker subspace speech model appropriate for speech separa-
tion. The subspace model can accurately capture the high frequency resolution, speaker-
dependent characteristics of speech signals across a broad set of speakers in a parametric
manner. This enables a source-adaptive approach to source separation where the subspace
model can be used to effectively separate mixtures comprised of utterances from talkers
different from those used to train it.

In chapter 4 we describe how the speaker subspace model described in chapter 3 can be
applied to monaural speech separation. This requires estimation of the subspace model
parameters for each of the sources present in the mixture. We describe two algorithms for
learning the adaptation parameters directly from the mixed signal and compare them to
an algorithm for model selection from a predefined set of speaker parameters. We then
review some experimental results comparing our adaptation based separation system to
other state of the art techniques in the context of the 2006 Speech Separation Challenge. We
also compare the performance of the proposed model adaptation algorithm and the model
selection algorithm on mixtures of utterances from speakers not present in the training set.

In chapter 5 we describe a system for separating multiple sources from an underdetermined,
reverberant, two-channel recording using the proposed speaker subspace model. We extend
the MESSL model to incorporate the speaker subspace model of source statistics described
in chapter 3 and show that this can improve performance over the original algorithm.

Finally, in chapter 6 we present concluding thoughts and sketch out directions for future
work.
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Chapter 2

Overview of Audio Source
Separation

In this chapter we review the state of the art in the field of audio source separation. Many
closely related variants of the source separation problem have been studied in the literature,
with the earliest approaches dating back over thirty years [75]. We begin by introducing the
topic of blind source separation where minimal assumptions are made about the sources
present in a mixture. We then describe more challenging separation problems where
perfect separation is impossible and strong models of the underlying source signals are
required.

2.1 Blind source separation

Many approaches to source separation have been proposed to operate under different
situations. There are a number of scenarios under which the problem comes up, each of
which requires a different approach. In general, we can express the problem of source
separation as the problem of recovering the source signals {xi(t)}1≤i≤I from a set of
observations {yj(t)}1≤j≤J . In the simplest case, the source signals are assumed to arrive at
the microphones at the same time without being filtered, i.e. each source contributes to
each observed channel with some multiplicative gain. Such instantaneous mixtures can be
written as a linear combination of source signals:

y1(t)
y2(t)

...
yJ(t)

 =


a11 a12 . . . a1I
a21 a22 . . . a2I
...

...
. . .

...
aJ1 aJ2 . . . aJ I




x1(t)
x2(t)

...
xI(t)

 (2.1)
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Many approaches are targeted at the more difficult problem of separation of convolutive
mixtures due to e.g. reverberation:

yj(t) = ∑
I

hji(t) ∗ xi(t) (2.2)

where ∗ denotes convolution.

The selection of an appropriate separation method varies with the nature of the mixing
process. In the case of instantaneous mixing, separation is a matter of estimating and
inverting the mixing matrix A = [aji]. The use of longer filters complicate matters in the
case of convolutive mixing. One approach to dealing with this is to perform separation
in the short-time Fourier transform (STFT) domain where each frequency band can be
treated independently. Assuming that the filter impulse responses hji(t) are shorter
than the STFT window, the convolutive separation problem reduces to instantaneous
separation performed separately in each frequency band [102]. This leads to an additional
complication related to matching the separated sources in each frequency band with the
corresponding source in the other bands.

Note that equations (2.1) and (2.2) both reflect simplified mixing models where the mixing
parameters, i.e. the mixing matrix A or filters hji(t), are assumed to remain constant across
the entire signal, i.e. the sources and microphones are assumed to remain stationary. In
fact, we use this simplifying assumption throughout this thesis. However, it is possible to
extend many of the algorithms we describe in this chapter to work in an on-line fashion to
separate moving sources by allowing the mixing parameters to vary with time, e.g. [52].

2.1.1 Overdetermined mixtures

Another important issue to consider is the relationship between the number of observed
channels, J, and the number of underlying sources, I. In the overdetermined or critically
determined cases, J ≥ I and it is possible in principle to exactly recover the original source
signals. It is often possible to separate such overdetermined mixtures without making
strong assumptions about the sources or mixing parameters. Such methods are generally
referred to as blind source separation (BSS) methods. A common approach to this type of
problem is based on independent component analysis (ICA), a higher order generalization
of principal component analysis, in which the underlying source signals are constrained to
be statistically independent. The sources can be separated by optimizing a measure of their
mutual independence or “non-Gaussianity” using higher order statistics such as kurtosis
[44], or mutual information [9]. A wide variety of ICA algorithms have been developed
since the original work of Bell and Sejnowski [9]. Detailed reviews of ICA and other BSS
techniques can be found in Douglas [23] and Choi et al. [14].

While many of the early approaches were designed to work on instantaneous mixtures,
there has been significant work on applying to convolutive mixing as well [76]. As
described above this is typically done using ICA variants based on frequency-domain
analysis [102, 45]. The permutation ambiguity inherent in this approach can be solved
by applying additional constraints designed to align sources along frequency. Various
approaches have been proposed, based on enforcing that the time domain envelope of
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the source signals are consistent across all frequency bands [45], source localization using
beamforming [94], or correlation across frequency bands [95].

2.1.2 Underdetermined mixtures

The separation problem becomes significantly more difficult if the number of underlying
sources is larger than the number of observed channels, i.e. J ≤ I. Separation of such
underdetermined mixtures requires the separation algorithm to make stronger assumptions
about the source signals than in the overdetermined case. Even then, because the problem
is ill-posed, the sources can only be approximately recovered.

Basis decomposition

Many different methods for underdetermined separation have been proposed. One idea
common to many of these methods is that of decomposing the source signals into the
weighted sum of a set of basis functions, essentially projecting the signals onto the space
spanned by these bases. Assuming that the source signals comprising a mixture can be
represented using disjoint basis sets (i.e. they are generated from different subspaces), the
mixture can be separated by projecting the mixed signal onto the union of source bases.
Each source can then be reconstructed by utilizing only the bases known to be associated
with that source.

In general, this process is difficult because the source subspace bases are not known in
advance. Lee et al. [61] propose learning source-specific bases directly from underdeter-
mined mixtures using ICA. They extend ICA to learn an overcomplete representation of
the mixture containing more basis vectors than there are observed channels. This approach
is able to uniquely identify the sources in the overcomplete ICA representation because it
incorporates a sparse prior distribution to ensure that each source is represented primarily
by a single basis vector. The method is able to separate a two channel mixture of three
speech sources. When J ≥ I, this method is equivalent to the time-domain ICA algorithm
described in the previous section.

This is closely related to underdetermined BSS based on sparse coding. Such algorithms
use a predefined basis set for all source signals under which the source signals are known
to have a sparse distribution, e.g. STFT bases for speech which tends to be well localized in
time and frequency [127]. Intuitively, sparsity is a valuable attribute for source separation
because enforcing that the distribution over the bases for each source be sparse reduces
the likelihood that the distributions overlap. This ensures that the sources are uniquely
identified because any two sources are unlikely to be generated by the same bases, i.e. the
sources are associated with roughly disjoint subsets of the overall basis set. This has a
similar effect to constraining the source distributions to be statistically independent.

The assumption that source signals have a sparse distribution in the time-frequency domain
has been shown to hold quite well for speech signals [91, 125]. Given the short-time Fourier
transform magnitude of a mixture of two speech signals, it has been empirically observed
that over 80% of the time-frequency cells lie within 3 dB of the larger of the corresponding
cells of the two constituent clean signals [26]. This idea is demonstrated in figure 2.1. It
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Figure 2.1: Demonstration of the sparse nature of speech signals. The top
left panel shows the spectrogram of a monaural mixture of four speech
sources. The bottom left panel shows which source dominates each time-
frequency cell by segmenting the spectrogram into green, red, orange, and
blue regions corresponding to each of the underlying sources. The dark
blue regions contain negligible energy from all sources. The bottom right
panel shows the reconstruction of the green source found by retaining the
time-frequency cells dominated by that source. The corresponding clean
source signal is shown in the top right panel.

shows a dense mixture of four speech sources and illustrates which time-frequency regions
are dominated by each source. Even in such dense and underdetermined mixtures it is
possible to adequately recover the underlying source signals. The reconstruction of the
source based on the green mask retains 78% of the energy in the original source signal,
despite the fact that 90% of the time-frequency cells are discarded. When listening to these
signals the reconstruction remains quite intelligible and sounds quite close to the original.

Spectral masking and source localization

The assumption that source signals are sparsely distributed in the time-frequency domain
has inspired many related separation methods based on the STFT decomposition. For
example, Abrard et al. [2] describe an early method to leverage the sparse nature of speech
signals for underdetermined, multichannel BSS. They show that the mixing coefficients
from equation (2.1) can be exactly recovered from portions of the mixed signal that only
contain energy from one source. Such regions are identified by searching for peaks in the
distribution of the ratio of the STFT of the two observed channels, similar to the interaural
level difference cues used in human auditory perception [69].
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Yilmaz and Rickard [125] describe a similar method for underdetermined two channel
separation by clustering the same localization cues used by the human auditory system
to identify time frequency regions dominated by a single source. Unlike [2], the spectral
masks derived from this process are used directly to separate a particular source by simply
discarding the time-frequency cells of the mixed signal that are dominated by interfering
sources, as in the bottom right pane of figure 2.1. It does not attempt to estimate and invert
the mixing matrix. Because this spectral masking approach does not rely on knowledge of
the mixing process, it can be used to separate convolutive mixtures as well. The separation
algorithm of [125] and other similar approaches for underdetermined binaural separation
is discussed in detail in chapter 5.

2.1.3 Monaural mixtures

Perhaps the most difficult source separation problem occurs when only a single channel
observation is available. None of the underdetermined separation methods described in
the previous section have been shown to work on such mixtures. However, it is possible to
extend some of these approaches to work in such conditions. In this section we first review
monaural extensions to the underdetermined basis decomposition methods described in
the previous section. Although it is sometimes possible for these algorithms to operate
in blind manner without making any strong assumptions about the underlying source
signals other than their sparsity or mutual statistical independence, obtaining the best
performance typically requires the separation algorithm to incorporate additional prior
knowledge about the nature of the source signals. This is especially important on mixtures
composed from statistically similar source signals, e.g. mixtures of speech signals.

Independent subspace analysis

Casey and Westner [12] describe Independent Subspace Analysis (ISA), an approach similar
to the multidimensional ICA approach for separation of overcomplete convolutive mixtures.
ISA overcomes the usual ICA requirement that there be at least as many sensors as sources
by operating in the STFT domain. This simulates an observation with dimensionality
increased from 1 to N. Performing ICA on the transformed signal yields a set of N
independent bases which must then be grouped together into I subsets corresponding to
the sources present in the mixture. Davies and James [19] show that this approach is only
appropriate when the underlying sources have disjoint spectral support which guarantees
that the ICA bases will be linearly independent. If the sources have overlapping support
in frequency, as is generally the case for mixtures of speech signals, then the separation
algorithm must utilize strong prior information to obtain high quality separations.

Non-negative matrix factorization

A similar method for unsupervised monaural separation that has shown promise is non-
negative matrix factorization (NMF). In its simplest implementation, NMF decomposes a
non-negative matrix representation of a mixed signal, i.e. the magnitude or power STFT,
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into the product of two low rank, non-negative matrices: Y ≈ BS. The columns of B contain
a set of basis vectors that define the spectral structure of the spectrogram, corresponding to
spectral templates that appear repeatedly throughout Y. Similarly, the rows of S describe
the temporal structure of the mixture, defining the activations and scaling of the bases
in B. A variety of algorithms have been proposed for learning B and S from Y in an
unsupervised manner [60], potentially incorporating sparsity constraints similar to the
sparse coding method described above [97, 113] and temporal continuity constraints [113]
to improve separation quality. The only parameter that needs to be specified is the rank of
B and S, i.e. the number of basis vectors to use. Assuming that the underlying sources are
composed from disjoint subsets of the basis vectors, it is straightforward to recover the
source signals by partitioning B and S into parts that are unique to each source: Xi ≈ BiSi.

In the simplest case, each source can be represented by a single basis vector. However, this
makes it difficult to describe complex source signals such as speech that contain many
different sounds with significantly varying spectral support. Virtanen [111], Smaragdis
[100] describe an extension to the basic NMF approach to incorporate convolutive bases
that extend over multiple frames. This enables the basis set to accurately represent more
complex source signals. An alternative approach to modeling complex signals, similar
to that taken by ISA and sparse coding, is to use an overcomplete basis set, i.e. set the
rank of B to be larger than the number of sources and allow each source signal to be
composed from multiple basis vectors. This requires the use of an additional stage prior
to separation to group together the bases corresponding to each source. It is possible to
use clustering approach similar to that used in ISA to do such grouping [12]. However,
accurately performing this grouping is difficult to do in a completely unsupervised manner,
especially if the source signals are very similar. As a result, many NMF-based speech
separation systems operate in a supervised manner by learning the source specific bases
Bi using clean training data specific to the type of source (e.g. specific talker, musical
instrument, etc.) known to be in the mixture [97, 101].

2.2 Model-based source separation

All of the source separation methods approaches described in this chapter have been
based in some form on the idea of utilizing constraints on the source signals comprising
a mixture to disambiguate and separate them. In cases where there is redundancy in
the observed mixture, as in overdetermined mixtures, signal-blind constraints based on
mutual statistical independence or distinct spatial location can be used to effectively isolate
individual sources. On their own, such constraints are much less effective when the
problem is underdetermined. In the most challenging situation, where only a monaural
observation of the mixture is available, high quality separation generally requires the use
of constraints that are specific to particular sources. Such source-dependent constraints are
often combined with the more general assumptions about signal independence or sparsity,
as in the supervised NMF approach described in the previous section.

In this section we expand on the idea of model-based source separation, where constraints
based on a predefined model of the underlying source signals is used for separation. This
is in contrast to many of the other separation methods we have already described, where
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the relationship between source signals in a mixture is exploited, often without making
any strong prior assumptions about the sources themselves.

The approaches described in this section can be broadly characterized as being based
on explicit or implicit models of source characteristics [26]. Methods that fall into the
former category can be described as supervised algorithms which rely on the use of
training data to learn a prior model or distribution over the underlying sources signals.
This approach is attractive in that the source constraints are learned directly from the
data without making any prior assumptions. In contrast, the second category consists
of unsupervised approaches that are instead based on more loosely defined constraints
that are not specific to a particular source, e.g. based on consistent periodicity, or common
frequency modulation of harmonic series. This has the advantage of not being dependent
on the collection of training data, but comes at the cost of being more complex and difficult
to implement. Hybrid approaches that combine both of these ideas have also been explored.
A detailed review of model-based source separation can be found in Ellis [26].

Supervised ICA

Blind source separation under the most constrained conditions, i.e. when the observation
consists of a single-channel, remains quite difficult. Relaxing the blindness requirement
opens up wider possibilities for the design of separation algorithms. By incorporating
information about the source signals learned from a set of training data it is possible to
improve the performance of many of the unsupervised algorithms described above. Taking
a supervised approach allows algorithms such as time-domain ICA, which are unable to
separate monaural mixtures at all, to be extended to work in such situations. Jang and Lee
[46] propose such a method which separates sources using predefined, source-specific ICA
bases learned from training data. This is quite similar to the basis decomposition methods
for undetermined source separation described in section 2.1.2 except the bases are known
in advance. Given such predefined bases, separation can be thought of as simply finding
the projection of the mixed signal onto each basis set. If the subspaces spanned by the
different basis sets do not overlap, then the sources can be accurately recovered. In the
results reported in [46], this approach was shown to work well on mixtures of speech with
a music source, but performed significantly worse on mixtures of male and female speech
due to fact that the speech signal bases had significantly more overlap, despite the inherent
gender differences.

Computational auditory scene analysis

Another class of models for source separation that have been widely studied are based on
a computational model of the auditory scene analysis processes used in human audition
[11]. Research in this area dates back many decades [75, 115] and comprises some of the
oldest work on source separation. Computational auditory scene analysis (CASA) systems
work by using low level perceptual cues to segment a time-frequency representation of
a mixture into regions consistent with being generated by a single source. Such grouping
cues include: consistent pitch and harmonic structure as used in very early CASA systems
[75], synchronous changes of spectral energy as in common onset, offset, amplitude and
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frequency modulation, and spatial location cues when at least two channels are observed
[73]. Cooke and Ellis give a detailed review of CASA grouping cues in [15]. Time-frequency
cells with consistent cues are grouped together using a heuristic, rule-based approach
(e.g. [42]) to form spectral masks for each source which can then be used for separation.
More advanced machine learning methods have also been proposed for segmentation,
e.g. [6] which segments sources using spectral clustering of perceptual grouping cues.

Most of these perceptual cues are only applicable to harmonic signals such as voiced
speech and thus are limited in terms of the types of signals they can separate. Ellis [27]
describes a CASA separation system based on a broader set of parametric signal models
suitable to describe segments of more complex signals, e.g. noise bursts, transients, or
harmonic series. Similarly, for separation of mixtures of speech signals which contain both
voiced and unvoiced sounds, Wang and Hu [114] extend the traditional CASA approach to
use a classifier to identify contiguous unvoiced time-frequency regions to improve speech
separation performance. Unlike most CASA separation systems, which often operate in an
unsupervised manner, this approach requires the use of training data.

Separation as a classification problem

Given training data specific to a particular target source, one of the simplest approaches
to monaural source separation is to train a set of classifiers to predict whether or not a
particular time-frequency cell of a mixed signal spectrogram is dominated by the target
source. Seltzer et al. [98] describe such an approach to identifying speech-dominated
time-frequency regions in mixtures of speech and non-stationary noise. They use features
that are independent of the interfering signal including periodicity-based features to detect
voiced speech regions and more coarse energy-based features to detect unvoiced regions.
Although the work is targeted at noise robust automatic speech recognition, the ideas are
also applicable to simple separation tasks. Weiss and Ellis [116] describe a similar classifier
approach to mask estimation based directly on the observed mixture spectrogram without
any more involved feature extraction.

The primary disadvantage of this approach is that the classifier is only able to recognize a
specific type of target signal in mixtures similar to those on which it was trained. Separation
quality will be poor if the target or interfering sources are sufficiently different from the
training data, or the target signal is not sufficiently distinct from the interference. For
example, this approach would be unable to separate mixtures of two speech signals unless
it was trained on mixtures composed of utterances from the same set of speakers. While
such an approach could work if the identities of the sources present in a mixture are known
in advance and sufficient training data is available, these assumptions are quite unrealistic.
It might be possible to train classifiers specific to many possible source combinations, but
such an approach quickly becomes intractable as the number of possible source identities
increases. Because of these problems, this approach is generally only suitable for simpler
denoising tasks.
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Figure 2.2: Example VQ codebooks of the power spectra in decibels learned
from both male (top panel) and female (bottom panel) speakers.

Statistical model based separation

The idea of utilizing source-dependent information described above has merit, provided
that the constraints learned from the training data do not simultaneously depend on the
specific identity of all of the sources in the mixture. Roweis [92] describes the “refiltering”
approach to spectral mask estimation from a monaural mixture of two speakers based on
simple vector quantizer (VQ) [37] models of each of the underlying sources. The source
models are trained independently on clean training data from each speaker. They consist
of a codebook of exemplars that characterize the magnitude STFT of different sounds
produced by a specific speaker. The training process essentially involves “memorizing”
example STFT frames. An example of such VQ speech models for two different speakers
is shown in figure 2.2. Given a set of speaker specific VQ codebooks, separation can be
achieved by finding the best-matching codewords consistent with an observed mixture.
However, the resulting quantized representation, which only coarsely represents the true
source and lacks phase, is not directly invertible. Instead, estimated magnitudes from the
inference are used to derive a spectral mask which can then be used to recover an estimate
of the original target source.

More recently, this approach has been refined to use more sophisticated source models
and allow for more accurate signal reconstruction [54, 88, 81, 41]. These extensions will be
described in detail in chapters 3 and 4. The improved source reconstruction method of
Reddy and Raj [81] highlights one of the advantages of statistical model-based separation
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when compared to other spectral masking based methods. Source reconstruction based
on spectral masking simply discards time-frequency regions dominated by interfering
sources. However, given the model of the underlying source spectrum used to estimate the
mask, it is also possible to use the constraints from the model to estimate the source signal
even in regions where the mask is zero. In the experiments reported in [81], this gives an
improvement of 3 to 5 dB signal-to-noise ratio (SNR) over reconstruction based on simple
spectral masking.

Source model considerations

The VQ approach to model-based separation is quite similar to the supervised NMF
separation system described earlier. Both methods utilize source-specific constraints in
the time-frequency domain in the form of a set of spectral templates learned from clean
training data similar to those shown in figure 2.2 (although the model representation
should be in units that combine linearly for NMF as opposed to the log-power spectra
depicted in the figure). In fact, recent work by Rennie et al. [85] describes a separation
system that combines ideas from NMF and sparse coding with spectral model based
separation that has both approaches as special cases. The primary difference between the
two approaches is in the way the models are used to reconstruct the sources. In the NMF
case, linear combinations of source templates in the Bi matrix are used to reconstruct source
spectrograms in a process similar to time-domain basis decomposition whereas in the VQ
case the templates are used to define a probability distribution over the sources where each
time frame of the source signal can only be derived from only one of the codewords. This
distinction is further blurred if the NMF signal model incorporates sparsity constraints
which enforces that relatively few NMF bases are used to represent each frame.

Obtaining high quality separation using either method requires the use of high quality
source models that are specific to the different sources comprising the mixture and suffi-
ciently different from one another to disambiguate the sources. If identical source models
are used to represent each source, the resulting separations will be ambiguous, with some
parts corresponding to one source while other parts corresponding to others, essentially
source permutations. This makes e.g. separation of a mixture of multiple speech signals
using a speaker-independent source model a very difficult problem. Although this can be
overcome to some extent by enforcing additional temporal constraints through the use of
convolutive NMF [101] or Markovian dynamic constraints in the VQ case [91], separation
quality will almost certainly be improved if source-dependent models are used instead.

It is therefore important to use a representation in which the sources will be easy to
differentiate when constructing the source models. Because natural audio sources tend
to be sparsely distributed in time and frequency, it is therefore necessary to use an STFT
representation with a high frequency resolution. Selecting a representation that exploits
this property also allows for efficient inference because the full range of combinations of
source model states need not be considered when their overlap is minimal [92].

In the particular case of speech sources, which are the focus of this thesis, the use of
such a representation allows the source models to capture the wideband features such as
the high-frequency formant resonances characteristic of vowel sounds and noise bursts
characteristics of fricatives, and to fully resolve the narrowband features, highly source-
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Figure 2.3: VQ fidelity (as SNR of STFT magnitudes) on a held-out test
signal as a function of codebook size (horizontal axis) and training set size
(different traces). Source: Ellis and Weiss [29]

dependent details such as the harmonic series characteristic of pitched speech sounds. Such
details that serve to discriminate between sources are clearly visible in the different source
models shown in figure 2.2. The significantly higher fundamental and formant frequencies
in the female codebook which range around 200 Hz and up to 5 kHz respectively, are
easily distinguishable from those in the male codebook whose fundamentals are not as
well resolved as in the female model and are closer to 100 Hz, and whose formants only
extend up to about 4 kHz.

It is worth noting that the wideband and narrowband spectral features of speech are often
treated independently, e.g. in the source-filter model commonly used in applications such
as speech coding [20, Chapter 5]. If these features are truly independent then it should be
possible to model each of them independently using simpler models whose combination
should be equivalent to the corresponding monolithic VQ model. This idea was proposed
in [53, 33, 80]. Radfar et al. [80] describe a model-based separation system based on this
idea where simpler VQ codebooks are only used to model the wideband spectra. This
system works well when compared to VQ separation using identical speaker-independent
source models, but does not perform as well as VQ separation using source-dependent
models. This implies that it is important for the model to capture the relationship between
narrow- and wide-band features which is implicitly learned by the monolithic VQ model.

The final consideration to be taken into account when designing template-based source
models is the number of NMF bases or VQ codewords to use. Most interesting source
types are quite complex and generally require large models to adequately cover the space
of possible signals that can be generated by a particular source. Ellis and Weiss [29]
investigated the relationship between VQ codebook size and quantization error on speech
data from a single male speaker. The results are reproduced in figure 2.3. Based on this plot
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it is clear that even with very large models it is difficult to exactly model the source signal
with very high fidelity. Even with a 2000 entry codebook, the magnitude of the source
signal can only be represented with an SNR of 9 dB. However, the idea of representing the
source signal exactly using a VQ model is somewhat naive. In separation algorithms like
those described in the previous section, the source models are used in conjunction with
each other to estimate a binary mask which describes which source dominates each time-
frequency cell. The source signals are not reconstructed using the quantized representation
based on the VQ codebook, so it is not important that they be extremely detailed. The
codebooks serve to more loosely constrain the signal space. Separation is based on the
combined constraints obtained from the full set of source models used to describe the
mixture.

VQ and NMF source models containing a few hundred entries have been shown to work
well in practice. Radfar and Dansereau [79] report similar performance to those shown
in figure 2.3 using VQ speech models on a speech separation task where increasing the
size of the codebook from 16 to 512 entries improved the average source reconstruction
SNR by about 3 dB. The overall SNR using the largest models was about 7 dB. Schmidt
and Olsson [97] describe roughly comparable results on a similar task and data set using a
sparse NMF signal model.

Most statistical model or supervised NMF based systems in the literature use models based
on representations similar to the one depicted in figure 2.2. Although quite powerful,
these approaches have a significant disadvantage in their dependence on predefined,
source-dependent models. This requires that the identities of all sources be known in
advance and that sufficient data be available to train large models for each of them. One
of the main contributions of this thesis is an adaptable source model that relaxes these
assumptions. This will be described in detail in chapter 3. Although we will describe the
adaptation model in the context of statistical model based separation similar to the VQ
method described in this section, the underlying ideas are more universal and could be
derived to work in the context of NMF based separation systems as well.

2.3 Discussion

In this chapter we have surveyed a wide variety of methods for audio source separation.
In a broad sense, all approaches can be thought of as forms of constrained optimization
where source signals are estimated to be consistent with the observed mixture under
constraints such as mutual statistical independence. The underlying theme is that as the
number of observations decreases and the similarity of the underlying sources increases,
the more constrained the separation algorithm must be. In the extreme case of separation
of monaural mixtures of multiple speech signals (the cocktail party problem), the most
successful separation methods rely on access to source-specific training data to learn tight
constraints in the form of source models.

Recently there have been a number of efforts to systematically evaluate many of the
different separation methods described in this chapter. Evaluations of multichannel
separation include the 2007 Stereo Audio Source Separation Evaluation Campaign [109]
and the 2008 Signal Separation Evaluation Campaign [110] which evaluated a wider
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variety of separation tasks. The results of the most recent evaluation led the organizers to
conclude that many of the separation problems outlined in this chapter, namely separation
of overdetermined mixtures and two-channel, underdetermined instantaneous mixtures,
are essentially solved with many algorithms reconstructing source signals with source-to-
interference ratios (SIR) of about 15–20 dB. The separation of reverberant mixtures remains
a challenge, with the best performing systems obtaining an average SIR of around 6 dB.

The 2006 Speech Separation Challenge [16] similarly evaluated separation of instantaneous,
monaural mixtures. Source reconstruction results on this data set are similar to those
obtained on reverberant mixtures in [110], with reconstruction SNR of about 6 dB reported
[97, 79]. The best performing systems on this task utilized a statistical model based
approach. In general such systems tended to outperform those based on CASA. We review
the results of this challenge in more detail in section 4.3.

Based on these and other results discussed in this chapter, we can conclude that statistical
source models are an important tool in the arsenal of source separation algorithms, espe-
cially in extremely underdetermined situations. This approach is generally complementary
to other methods even in cases where unsupervised methods are known to work well.
For example, the addition of source models has been shown to improve performance of
separation systems based on spatial location [122, 120]. We will describe such a system in
detail in chapter 5. Similarly, source-dependent models have also been usefully used as
additional grouping cues in CASA systems to help group source segments over time [103].

Although the use of constrained source models has the seemingly onerous requirement
of access to source-specific training data, in many applications this is not debilitating. In
many computer audition tasks where model-based separation can often be of significant
benefit, such as automatic speech separation, input signals are often known in advance
to come from a constrained set of signals (e.g. speech). Furthermore, the availability of
training data is often a prerequisite for such a system, justifying the use of pre-trained
source models. Of course, it is generally not possible to have access to training data specific
to all possible sources which makes it difficult to leverage source-dependent constraints for
separation. In this thesis we propose the idea of using source adaptive models which can
be used to learn speaker specific constraints from a limited set of training data that can be
generalized to previously unseen test data. The design of such a model will be described
in detail in the next chapter.
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Chapter 3

Speaker Subspace Model

In this chapter we describe an extension to traditional hidden Markov speech models that
incorporates ideas from the basis decomposition methods described in the previous chapter
and can accurately capture the speaker-dependent characteristics of speech signals across
a broad set of speakers. It is based on subspace methods for dimensionality reduction
commonly used across a variety of pattern recognition applications, e.g. for face recognition
[107], gene expression analysis [5], and drum pattern visualization and classification [28].
Initially proposed as a method for rapid speaker adaptation in automatic speech recognition
given a small amount of adaptation data [32, 57], this type of model has also had much
success in the area of speaker verification [105, 65, 49, 50].

We begin by discussing the construction of a speech model suitable for model-based
source separation including considerations for feature representation and model topology.
We then discuss methods for modeling a set of speaker constraints. Finally, we discuss
the eigenvoice method for speaker adaptation and introduces some novel extensions for
adapting additional model parameters and compensating for channel mismatch between
train and test data.

3.1 Signal modeling for source separation

As described in the previous chapter, the success of statistical model based source sepa-
ration generally depends on the strength of the signal constraints enforced by the model.
Perhaps the best studied application of statistical speech modeling is automatic speech
recognition (ASR) in which a speech recording is automatically transcribed into a string
of words. The standard statistical approach combines top down constraints on allowed
word sequences using a language model, with bottom up signal constraints using an
acoustic model. A model similar to this should be appropriate for model-based source
separation, however there are significant differences in the type of acoustic features that
are appropriate for these different applications.
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3.1.1 Spectral constraints

Typically, ASR acoustic models are deliberately designed to ignore acoustic features that
are irrelevant to word identity. Removing uninformative and potentially confounding
features can improve modeling performance for a particular task. However, many of
these features are exactly those that are important for high quality separation. ASR
acoustic models use a feature representation such as Mel-frequency cepstral coefficients
(MFCC) which, while appropriate for capturing the linguistically relevant speech features
(i.e. formant frequencies), discard high resolution spectral details that distinguish different
speakers (e.g. pitch which only carries prosodic information in most Western languages).
In fact, significant lengths are usually taken to normalize features across different classes
of speakers using e.g. vocal tract length normalization [25]. Furthermore, ASR models
are often trained in a speaker-independent manner by averaging across a wide variety of
speakers, which further decreases the amount of spectral detail that is captured.

In contrast to ASR, spectral characteristics particular to individual speakers are key to
separating different voices in a mixture. These include details such as the fundamental
frequency range and characteristic formant resonances. As described in the previous
chapter, in order to effectively leverage the sparse nature of natural audio, and speech
in particular, this type of model generally requires the use of a representation with high
frequency resolution. This ensures that the harmonics of pitched speech sounds are
individually resolved, decreasing the likelihood that distinct sources will overlap when
mixed together. Again, this is very different to MFCC-like features which are by design
based on very broad frequency bands.

These considerations motivate us to model source statistics using a standard time-frequency
representation based on a linear frequency short-time Fourier transform with a long
analysis window to capture frequency detail with high resolution. Throughout this thesis
our models use a log power spectral representation based on a STFT with a 40 ms Hamming
analysis window and 10 ms hop between adjacent frames. Each frequency band of this
representation has a bandwidth of 25 Hz.

Another important observation is that the space of possible speech signals, even if limited
to those generated by a single speaker, is quite complex. Thus the distribution over speech
spectra is inherently multimodal. For example, the spectra of vowel sounds are quite
different from those of unvoiced consonants. As discussed in the previous chapter, this
necessitates the use of a complex distribution. The standard approach to solving this
problem is to model the full space using a mixture of simpler probability distributions,
typically multivariate Gaussian distributions. The likelihood of a speech frame in the
representation described above, x(t), under the GMM distribution can be written as follows:

PGMM
(

x(t) | θ) =
C

∑
c=1

πc N
(
x(t); µc , Σc

)
(3.1)

The distribution is broken into C distinct components, corresponding to a distribution with
up to C modes. Each component consists of a single Gaussian distribution parametrized
by mean µc, covariance matrix Σc, and mixing weight πc that ensures that the distribution
integrates to one. We use θ = {µc, Σc, πc}c=1..C as shorthand for the set of model parame-
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ters. Given a sufficient number of mixture components, such a Gaussian mixture model
(GMM) is capable of approximating any continuous distribution.

This is a natural extension of the VQ dictionary model described in chapter 2. Each
component of the GMM essentially behaves as an exemplar with some variance around it.
Finally, we note that we use diagonal covariance matrices for all speech models described in
this thesis. This implies that given a particular mixture component, each frequency subband
of the observation is treated independently. Although this reduces each component’s ability
to tightly capture constraints on the signal, this can be mitigated by using a larger number
of Gaussian components. As we will see in chapter 4, this limitation allows for significant
speedups in the separation algorithm.

Because each time frame is treated independently under the GMM model, the likelihood
of the overall observed signal, x(1..T), can be written as:

PGMM
(

x(1..T) | θ) = ∏
t

PGMM
(
x(t) | θ) (3.2)

It is clear however that this independence assumption is a significant weakness. Speech
signals tend to evolve on time scales longer than a single frame. Therefore, adjacent
frames are typically highly correlated, so an accurate speech model would have to take
the relationship between adjacent frames into account. This is the subject of the following
section.

3.1.2 Temporal constraints

In some situations, e.g. in mixtures of multiple talkers of the same gender, the spectral
differences between sources are not always sufficient for effective separation. In such cases,
the addition of temporal constraints on the signal has proved to be quite effective. Such
constraints can operate over different time scales, from simply enforcing that adjacent
STFT frames do not differ too much (e.g within an individual phoneme), to enforcing that
certain phones do not follow others, or at the extreme, to enforcing that the signal adhere
to a particular grammar or predefined phone sequence as in ASR systems.

As shown in Kristjansson et al. [55], incorporating temporal dynamics into source models
can significantly improve separation performance. This is especially true when all sources
in a speech mixture are being fit using the same model. In this case, the only hope for
obtaining high quality separation is to enforce sequential constraints on the temporal
evolution of the signals to ensure that the recovered source signals are unique [26]. Given
such strong top down constraints, it is possible to so tightly constrain the space of possible
source signals that mixtures of different utterances by the same speaker can be well
separated. By leveraging a priori knowledge of the constrained grammar from which the
utterances where generated, Kristjansson et al. [55] were able to obtain performance on
par with human listeners on such mixtures mixed at 0 dB signal-to-noise ratio.

This motivates the use of a framework similar to that commonly used in automatic speech
recognition (ASR), which combines temporal constraints on a short time scale within
individual phones, and constraints on a longer time scale using a language model to define
allowable phone and word sequences [20, Chapter 13]. Unfortunately, the incorporation of
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Figure 3.1: Graphical model representation of a hidden Markov model.
Square nodes represent discrete variables and round nodes represent con-
tinuous variables. Shaded nodes correspond to observed variables. The
observation at time t, x(t), is generated by a particular model state s(t)
which corresponds to a particular emission distribution parametrized by θs.
N is the total number of states. Each state depends on the previous state,
enforcing constraints on temporal dynamics.

a typical large vocabulary ASR language model is infeasible to use in practice due to its
large cost in terms of computational complexity. While it is straightforward to incorporate
simpler language constraints from a limited grammar as in [55], the resulting speech model
is unable to capture utterances generated outside of that grammar.

3.2 Single speaker speech model

Based on the motivations outlined in the previous section, we model the speech signal
using a hidden Markov model (HMM). The HMM is a natural extension of the GMM
to incorporate temporal constraints by explaining different observations using different
GMMs which are selected using a time-varying prior distribution. The overall likelihood
of the signal under this model can be written as follows:

PHMM
(

x(1..T) | θ) = ∑
s(1..T)

∏
t

P
(
s(t) | s(t−1)

)
PGMM

(
x(t) | θs(t)

)
(3.3)

This resembles the GMM likelihood in equation (3.2), except the emission distribution
PGMM depends on a state variable s(t). This variable selects a particular GMM for each
observation which depends on the state used at the previous observation through the
transition distribution P

(
s(t) | s(t−1)

)
. Because of this dependence, a speech signal

under this model can be represented simply as a sequence of states. A graphical model
representation of this structure is shown in figure 3.1.

To simplify the notation in the remainder of this thesis we will assume that all HMM
emission distributions are single Gaussians (i.e. GMMs with a single mixture component).
Such a model can exactly represent a more complex GMM emission distribution with
multiple mixture components by separating each component into its own single Gaussian
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Figure 3.2: Finite state machine representation of the speech HMM topology.
Non-emitting states are shaded. Individual phonemes use the standard
3 state forward structure. Transitions between phones all have the same
probability.

state and utilizing identical transition probabilities for all Gaussians derived from a given
GMM.

In contrast to Kristjansson et al. [55], we are interested in creating a more generic speech
model that is not specific to a given grammar, so we only incorporate limited temporal
dynamic constraints that do not depend on any prior high level knowledge about signal
content. The resulting acoustic model therefore follows the ”phonetic vocoder” approach
for low bitrate speech coding [77], which models temporal dynamics only within each
phone. The transitions from each phone to all others have equal probability, which we have
found to work as well as more phonotactically-informed values. The resulting structure is
illustrated in figure 3.2. It allows us to incorporate some knowledge of speech dynamics
without being specific to any grammar. This is similar to the approach taken by Schmidt
and Olsson [97] who utilize phone models trained using non-negative matrix factorization.
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3.3 Generalizing across speakers

As described earlier, the key to good performance on source separation tasks is the use
of source models that are specific to a particular source. If a source model is too general
it is impossible to distinguish between the different sources for which it is a good fit. In
the simplest case, the sources present in the mixture are known in advance, and models
specific to each of those sources are available. This makes separation a matter of finding
the best combination of signals under each model that, if combined appropriately, would
match the observed mixture. In general, this is not a very realistic scenario because the
space of possible source identities in an arbitrary mixture is quite large, and it is unlikely
that sufficient training data will be available for all possible sources.

3.3.1 Model selection

A slightly more difficult variation on the separation problem is one in which the constituent
sources are known to come from a closed set for which models have already been trained.
This is the situation in the 2006 Speech Separation Challenge [16]. Model-based separation
in this case can be done in a number of ways. The brute force approach is to try all
possible model combinations and choose the best performing separation as measured
using e.g. model likelihood [7, 97]. This obviously scales quite poorly as the total number
of combinations to be evaluated grows exponentially with the number of source models in
the training database. A variation on this approach is to evaluate the entire set of models in
parallel (e.g. by building an HMM with the topology in figure 3.2 but with the phonemes
models replaced by full speaker models), and allow the separation algorithm to find the
model path with the highest likelihood [112].

The most scalable approach, however, is to break the problem down into two stages. First
the source identities must be determined by choosing the set of models from the pre-trained
database that best fit the mixture, then the signals can be separated using only the selected
models. This is the approach taken by Kristjansson et al. [55] and Barker et al. [8]. It can
be significantly more efficient than the previous approaches because the first stage can
utilize a simple algorithm that is insufficient for high quality separation but good enough
for model selection. Such an algorithm is described in detail in [83] and in section 4.2.1.

The most general setting however is when the precise source characteristics are not known a
priori, and in fact, there is no training data available for the sources in question. This is the
situation with the most general applicability, and the one we are interested in addressing.
Source-dependent speaker modeling then becomes a matter of utilizing whatever training
data is available to help construct a model that is a good fit to previously unseen sources.

One approach to this problem would be to simply ignore the potential mismatch between
the speakers in the training set and those in the mixture, and proceed with the model
selection approach outlined above. This will select the models from the training set that
best fit the speakers in the mixture. If the training set adequately covers the full space of
speakers, then this approach can be sufficient. It is analogous to quantizing the space of
speaker models based on available training data and then selecting the closest “quantization
level” at evaluation time. The downside to this approach is that the selected models could
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be a poor fit to the source in question, resulting in poor separation performance. This
might occur if the training speakers represent a sparse sample of the full space of possible
speaker models and the mixture speakers were far away from those used in training (e.g. if
only male speakers models are available to model female speakers).

3.3.2 Model adaptation

The model selection approach is not the only way mismatched training and test data can
be utilized. Ozerov et al. [74] address a similar situation in the setting of monaural singing
voice separation. They propose the idea of beginning with a source-independent (SI) model
and adapting it to the target source using maximum likelihood linear regression (MLLR)
[62]. This is analogous to acoustic model adaptation used to improve the performance
of automatic speech recognition in situations where a limited amount of adaptation data
is available for a particular speaker [123]. This approach can separate previously unseen
sources far better than one that uses unadapted models, but it requires a substantial
amount of adaptation data. In this work we consider adaptation when there is much less
data available, only a single utterance, requiring a more constrained model space.

The MLLR adaptation approach used in Ozerov et al. [74] defines a speaker-adapted (SA)
model as an affine transform of the parameters of the SI model, θ̄, which was trained over a
large corpus of speech from multiple talkers. This involves using a small set of adaptation
data from a single speaker to learn a set of warping and offset coefficients, W and b, by
which the SI model means, µ̄, will be rotated and offset, respectively, to more closely match
the adaptation data. In the simplest case, a global warping is applied across all states. The
MLLR-adapted likelihood of a frame of data under HMM state s can be written as follows:

PMLLR
(

x(t) | s, W , b, θ̄
)

= N (x(t); W µ̄s + b, Σ̄s
)

(3.4)

where s indexes the particular state against which x(t) is being matched.

While this approach has been extremely successful in improving ASR performance given
fairly limited amounts of training data, the amount of adaptation data needed to properly
learn the warping parameters is on the order of a few tens of utterances, too many for our
intended application. The amount of adaptation data needed to adequately learn a set of
parameters without over-fitting generally scales with the dimensionality of the parameters
being learned [10, Chapter 1]. The high dimensionality of our signal representation relative
to that typical of ASR features further exacerbates this problem.

One way to solve this problem would be to enforce tighter constraints on how the model can
be adapted. For example, we could do this by lowering the dimensionality of the adaptation
parameters by constraining the form of W to have a particular structure, e.g. block diagonal.
This has the detrimental effect of reducing the extent to which the model can adapt to the
speaker characteristics.

An alternative method for reducing the amount of adaptation data needed is to directly
embed additional knowledge into the adaptation framework. In MLLR adaptation the
only prior knowledge needed are the parameters for a pre-trained SI model. In many of
the scenarios outlined in the previous section a set of pre-trained speaker-dependent (SD)
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Figure 3.3: Graphical model representation of the eigenvoice adapted
speech model. The observed speech signal x(t) is generated by a fac-
tor analyzed hidden Markov model with adaptation parameters determined
by the value of w. Note that in contrast to figure 3.1, θs, the Gaussian
parameters for state s, are now random variables dependent on w.

models is available as well. Kuhn et al. [57] propose the idea of “eigenvoice” adaptation
for exactly this situation. The idea is to break down each SD model as a linear combination
of a “mean voice”, essentially corresponding to the SI model, and a set of basis vectors U.
The likelihood under such a model can be written as follows:

PEV
(

x(t) | s, w, θ̄
)

= N (x(t); µs(w), Σ̄s
)

(3.5)

µs(w) = µ̄s + ∑
k

wk µ̂s,k = µ̄s + Us w (3.6)

where µ̂s,k is the kth basis vector for state s, and Us = [µ̂s,1, µ̂s,2, . . . , µ̂s,K]. The graphical
model representation of the resulting adapted speech model is shown in figure 3.3. The
observations are generated by an HMM whose parameters are defined by a factor analysis
model [124].

Essentially, the very high dimensional model parameters for a particular speaker are repre-
sented as a function of w. In contrast to the MLLR adaptation approach in equation (3.4),
the only parameters to be learned here are the weights, w, which are generally of relatively
low dimension. Because the number of parameters needed to describe a particular speaker
is so small, this technique has the advantage of requiring very little adaptation data, making
it suitable for adapting models to a single utterance. The bulk of the knowledge of speakers
characteristics is embedded in the predefined speaker basis vectors U. Adaptation is just
a matter of learning the ideal combination of bases, essentially projecting the observed
signal onto the space spanned by U. As with MLLR, this can be done using an expectation
maximization algorithm such as the maximum likelihood eigen-decomposition (MLED)
algorithm [58] which will be described in detail in chapter 4.

It is worth noting that there are no restrictions placed on U. This adaptation framework
was independently developed with slight differences in Gales [32] and Kuhn et al. [57].
Gales [32] interprets the bases as a set of speaker clusters (e.g. two bases devoted to male
and female speakers) and describes a number of approaches to learning them directly
from the training corpus. Taken to the extreme, U could be composed of the pretrained
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SD model parameters in which case an adapted model is found by linear interpolation
across the SD models. Because the adaptation parameters are continuous, this approach
allows for smooth interpolation across the entire space, enabling it to capture a wider
variety of SD models than were used in training. Alternately, if constraints are applied to
w to make it behave more like an indicator variable (e.g. by enforcing sparsity constraints
through a sparse prior distribution over w), then the adaptation model essentially reduces
to speaker dependent modeling and is analogous to speaker selection methods described
in the previous section.

3.4 Eigenvoices

Kuhn et al. [57] take a different view of the basis set U. Their idea is to utilize a previously
trained set of speaker-dependent models to generalize to other speakers. Each of these
SD models can be thought of as a sample from a very high dimensional “model space” of
possible models of a certain parametrization. The entire space of such models is extremely
broad and covers far more than only valid speech models. If the space of valid speech
models is assumed to form a “speaker subspace” embedded in this high dimensional
model space, as illustrated in figure 3.4, then the properties of this subspace can be learned
from the samples.

From this perspective, equation (3.6) should not be thought of as interpolation between
arbitrary sets of parameters. Instead, an adapted speaker model is represented as a “mean
voice” µ̄, essentially corresponding to the SI model, plus a linear combination of the basis
vectors for the speaker subspace. The speaker subspace can be thought of as a space of
inter-speaker variation, i.e. the model characteristics that distinguish different speakers.

Furthermore, it is reasonable to assume that the latent dimensionality of the speaker
subspace will be relatively low, certainly considerably lower than that of the overall model
space. This is guaranteed to be true primarily because there are at most as many degrees
of freedom as there are SD samples. In any conceivable scenario there will be at most a
few hundred speaker models, far fewer than the thousands of dimensions needed to fully
specify the natural parametrization of a speech model, which must parameterize each of the
Gaussians used to describe the dozens of different phonemes. Still, it is usually desirable to
further reduce the dimensionality of w to minimize the amount of adaptation data needed.
Furthermore, it is intuitively attractive to assume that there is a relatively small number
(perhaps tens) of degrees of freedom in the space of possible speaker variation, related to
different physical proportions of the vocal tracts.

Kuhn et al. [57] propose learning the subspace bases U using principal component analysis
(PCA) [24, Chapter 3], a technique that naturally leads itself to dimensionality reduc-
tion. The eigenvalue corresponding to each “eigenvoice” basis vector found using PCA
corresponds to the variance of the speaker models across that basis. So, retaining the
K eigenvoice bases with the highest eigenvalues will result in a basis set that captures
the maximum variation possible with K basis vectors. As a secondary benefit to this
construction, the resulting bases are by definition orthogonal which has a side effect of
making the adaptation parameters w uncorrelated, a fact that will be taken advantage of
in section 4.2.2.1.
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Figure 3.4: Illustration of a speaker subspace with latent dimensionality of
two embedded in a three-dimensional model space. Valid speaker models
are denoted by blue circles. Black dots denote random points in the space
that do not correspond to valid speaker models. The principal axes of the
subspace are drawn in red. These correspond to a rotation of the natural
x, y, z bases centered on the mean of the SD model population. Any point
in the subspace can be represented as linear combination of these bases.

3.4.1 Training

As described in the previous section, each pre-trained SD model can be represented as a
single point in a very high dimensional model space. Each point is defined by concatenating
the set of Gaussian means for all states in the model for speaker i into parameter supervector
µi. The construction of the eigenvoice basis vectors requires the use of a speaker model
parametrization that is consistent across all speakers. Although the ordering of states in
the supervectors is arbitrary, care must be taken to ensure that the ordering is consistent
for all speakers. This ensures that there is a one-to-one correspondence of HMM states
across all speaker models. If GMM emissions are used, further complications are possible
if there is no correspondence between mixture components across the speaker models.
This will occur if the speaker models are trained independently using a process such as
mixture splitting [126].

A simple way to guarantee a consistent mapping is to use an identical initialization for
all speaker models. We begin by pooling all of the training data across all speakers and
using it to train a speaker independent model. This model is then used to bootstrap each
SD model to ensure that each state of the SD models corresponds directly to the same state
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in the SI model. We do this using MAP adaptation of the SI model [123] whereby the SI
model is treated as a prior and the SD parameters are re-estimated in proportion to the
amount of training data available. This ensures that the resulting SD models do not contain
any unused states with degenerate parameters (e.g. zero covariances) in instances when
there is insufficient training data to fully estimate the parameters. Such outliers would
skew the resulting eigenvoice bases and lead to sub-par adaptation.

Parameter supervectors are constructed for all M speaker models and used to construct
a parameter matrix P = [µ1, µ2, . . . , µM] that spans the space of speaker variation. The
mean voice µ̄ is found by taking the mean across columns of P. Performing the singular
value decomposition on P− µ̄ then yields orthonormal basis vectors for the eigenvoice
space, U.

Example eigenvoice parameters learned from the 34 speakers of the GRID training set
Cooke and Lee [16] are depicted in figure 3.5. The mean voice and the three eigenvoices
with the highest variance are depicted. The mean voice is very similar to the speaker-
independent model and very coarsely models the overall spectral shape characteristic of
different phones. Successive eigenvoices are used to add additional high resolution detail
to this model. They each reflect easily interpretable and linguistically relevant features of
speech spectra.

The eigenvoices with the highest associated variance reflect very broad differences in vocal
tract shape. Successive bases incorporate additional fine spectral detail corresponding
to characteristic pitch peaks. Eigenvoice 1, µ̂1, emphasizes formant resonances that are
characteristic of female speakers. In fact, as shown in figure 4.5, the corresponding
eigenvoice weight is perfectly correlated with gender; female speakers have positive w1 and
male speakers have negative w1. This implies that the dimension of the training set with
the most variation relates to gender. This is not surprising because the physical dimensions
of the vocal tracts of male and female speakers tend to be quite different. Eigenvoice
2 emphasizes different formants in consonant states and introduces some fundamental
frequency information and high frequency resonances into the vowel states. Finally, µ̂3
incorporates additional pitch trajectory detail into voiced phones.

3.4.2 Incorporating covariances

An important disadvantage of the speaker adaptation approaches described above is that
only the mean parameters are adapted to match a specific speaker. As shown in [118],
this significantly reduces the model’s ability to unambiguously capture the statistics of
a specific source. This is especially important when attempting to separate a mixture of
two talkers of the same gender because the model means of the two sources can be quite
similar, leaving the variance parameters to distinguish between the speakers.

Extending the eigenvoice model to incorporate covariance parameters introduces a few
complications. First, the basic idea behind the adaptation model is to represent the
adapted model parameters as a simple linear combination of some set of basis vectors.
The covariance analog to mean-only adaptation in equation (3.6) would be to represent
the adapted covariance as Σs(w) = Σ̄s + Ssw. But, unlike Gaussian means, covariances
must remain non-negative (since our covariance matrices are all diagonal, covariance terms
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Figure 3.5: Eigenvoice basis vectors learned from the GRID data set [16].
The top panel shows the mean voice µ̄ which closely resembles the speaker-
independent model. The remaining panel show the three eigenvoices with
the largest variance, µ̂1, µ̂2, and µ̂3 respectively. The black lines in all panels
indicate the borders between different phonemes.
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between different dimensions, which in general might be negative, are always zero and
thus not modeled). In the formulation outlined above, there is no way to guarantee that an
arbitrary weighted sum of basis vectors will satisfy these constraints.

One potential solution would be to represent U and w in such a way that they are both
non-negative using non-negative matrix factorization [60]. This would require extending
the MLED algorithm to ensure that w remain non-negative. An alternative solution, which
we adopt, is to represent the covariance parameters in the log domain. This ensures that
the adapted covariance matrices are always non-negative, regardless of the sign of w. The
adapted covariance matrix for state s can then be written as follows:

Σs(w) = exp
(

log(Ss)w + log Σ̄s
)

(3.7)

Training such a model now utilizes both the Gaussian means and the log-covariances.
The parameters for all states for speaker i are concatenated into a parameter supervector
pi = [µi ; log Σi], representing the speaker model in the very high dimensional model
space. The space spanned by all M training speakers can then be described by the matrix
P = [p1, p2, . . . , pM]. As in section 3.4.1, a set of orthonormal basis vectors for the speaker
subspace are constructed by applying PCA to P.

The final complication has to do with the learning algorithm for w. As described in [43, 119],
the straightforward extension to the MLED algorithm where both the Gaussian mean and
covariance parameters depend on w requires performing a non-convex optimization. A
potential solution is suggested in [58]. Assuming that the mean and covariance parameters
have some correlation (e.g. the correlation coefficient of the mean and covariance parameters
of the speaker models described in section 4.4 is 0.3), a reasonable approximation is to use
the MLED algorithm that optimizes for the mean statistics alone and rely on the correlation
between the different parameters implicit in the learned subspace to simultaneously adapt
the covariances. This turns out to work quite well as we will see in the next chapter.

3.4.3 Channel compensation

In many instances, there will be additional mismatch between an observed signal and the
corresponding SD or adapted model if the recording conditions do not match those of the
training data. This could be caused by the use of a different microphone or communication
channel used in recording the data, or in the mixture case, by different gains applied to
each source relative to the others.

Since our signal model is based on log spectral features, such filtering appears as an
additive offset to the observations. This is a natural fit to the subspace adaptation model.
Because the adaptation model described in equation (3.6) makes no assumptions about
the basis set combined to form the adapted model, it is straightforward to extend it to
compensate for such channel effects. We do this by extending the eigenvoice basis set to
include a rudimentary set of channel bases, B, tied across all model states. The resulting
speaker and channel adapted model is parametrized by the speaker-dependent eigenvoice
weights w and the channel weights h:

µs(w, h) = µ̄s + Us w + Bh (3.8)
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Figure 3.6: Graphical model representation of the full speaker subspace
model including the extensions described in sections 3.4.3 and 3.4.2. The
adapted model parameters for state s are a function of random variables
w and h corresponding to the eigenvoice and channel weights respectively,
and the predefined eigenvoice and channel basis parameters µ̄s, Us, Σ̄s, Ss
and B.

Because B is independent of the signal state, it can capture filtering that is constant across
the entire signal, provided that it has an effect that is consistent within each short-time
analysis window, i.e. that its impulse response is compact relative to that window. The
time varying portions of the observations, corresponding to the underlying speech source,
are still well modeled by the eigenvoice speech model.

The number and type of channel bases to use depends on the particular data set being
modeled. In general it is reasonable to assume that the channel filter has a short impulse
response and thus will be relatively smooth across frequency. Given this assumption, a
good choice of channel basis is a set of low-order discrete cosine transform (DCT) bases:

Bij =
2√
Ω

cos
( π

Ω

(
i + 1

2

)
j
)

i = 0..Ω− 1, j = 0..L− 1 (3.9)

where Ω is the dimensionality of the feature representation, which, depending on the
signal sampling rate, is generally on the order of a few hundred. L is the maximum DCT
frequency, generally on the order of 10.

This channel compensation with a single, flat (i.e. DC) basis is used to compensate for
unknown relative signal gains in section 4.3. A larger channel basis set is especially
important for the binaural separation system described in chapter 5.

The graphical model representation of the full adaptation model, including adapted
covariance parameters and channel compensation, is shown in figure 3.6. We note that
the channel basis B and parameters h can simply be subsumed into the overall speaker
subspace parameters:

U′s = [Us B], w′ =
[

w
h

]
(3.10)

This convention is used throughout the remainder of this thesis to keep the notation
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simple. In situations where w and h need to be addressed independently, we will explicitly
decouple them.

3.5 Discussion

The proposed subspace model shares some similarities with the basis decomposition
models described in the previous chapter. One disadvantage of unadapted exemplar-based
source models such as HMMs is that each frame of the observation is explained by a single
fixed state. In contrast, basis decomposition models like NMF represent each frame with
a combination of rescaled basis vectors. The NMF model also decouples the model for
spectral shape from the scale of the observation. It therefore implicitly handles simple gain
compensation through the per-basis scaling applied in the factorization. This allows an
NMF model significantly more flexibility than simple HMM or VQ model of the same size.
This is because a similar HMM model would need more states to explicitly model all valid
combinations of NMF bases at different scales. The proposed subspace approach extends
some of these advantages to the HMM signal model.

Figure 3.7 contrasts the eigenvoice adaptation approach with the model selection method
described in section 3.3.1. The parameters of any model in the subspace can be represented
exactly by equation (3.6), while the selection approach is limited by the coarseness of the
training set. For example, points far from the mean voice are very poorly represented
by the nearest model in the dictionary, but given an appropriate basis the interpolation
method can still represent them accurately.

Of course the flexibility of the adaptation approach could potentially be a disadvantage
in some situations. For example, if the training data is not very well matched to the test
data, e.g. if presented with a mixture of speech and music the adaptation model should
not be not so general that it would be able to model portions of the music signal as speech.
This would lead to very poor separation performance. This could be solved to some extent
through the use of a prior distribution on w to limit the extent to which an adapted model
is allowed to stray from the training set. However, it is important to note that this is a
problem with model-based approaches to source separation in general. The goal of the
adaptation approach described in this chapter is to strike a balance between the flexibility
of the model and the potential for such over-production.

A further concern with the eigenvoice construction is that it is based on the assumption
that the space of SD models exists as a subspace of the full model space. There is no a priori
reason to think that this will be the case. In fact, it is quite possible that the SD models
actually live on a nonlinear manifold of even lower latent dimensionality. While this could
be reasonably approximated with the linear decomposition of PCA, it will generally require
the use of more basis vectors than are strictly necessary. Additionally, it runs a greater
risk of overproducing speech models, i.e. the basis vectors could be combined to create
models which do not represent any conceivable speaker. Tipping and Bishop [106] propose
an extension to PCA to mixtures of locally linear PCA models for capturing this sort of
non-linearity. If the linearity assumption is indeed a problem, the adaptation framework
described here could be easily extended to use this mixture PCA model.
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Speaker models
Mean voice
Speaker subspace bases
Quantization boundaries

Figure 3.7: Illustration of the model selection and subspace adaptation
approaches for representing arbitrary speaker models. The model selection
approach (section 3.3.1) represents a point in the speaker model space by
the closest of the speaker models in the training database (blue dots). The
boundaries between these quantization levels are drawn in black. Alter-
natively, the subspace adaptation approach can represent any point in the
space exactly as the sum of the mean voice µ̄ (red square) and a linear
combination of the basis vectors U (red arrows).

Finally, if dimensionality reduction is not a priority, we note that it is not necessary to
use PCA to find a good basis for the subspace. Other methods might provide useful
advantages. For example, if the training set can be clustered into different classes as
in [31] (e.g. by gender), learning the basis set using linear discriminant analysis (LDA)
[24, Chapter 3] would result in bases that make the classes linearly separable (as was
already the case for different genders when using PCA). This could make for more robust
initialization of the EM algorithm based on such clustering. This is especially important
for separation applications because initial separation of the sources has a significant effect
on the system’s performance (see section 4.2.2.1 for a detailed discussion). Bases based
on independent component analysis (ICA) [44], which attempts to find bases that are
statistically independent, could provide similar advantages. PCA retains the advantage
of enabling optimal dimensionality reduction of the speaker subspace over these other
methods. Furthermore, we note that PCA has worked quite well thus far, so an exploration
of alternate constructions of the basis set remains as future work.
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3.6 Summary

We have reviewed the necessary considerations for constructing high quality speech
statistical models appropriate for source separation. We introduced the notion of the space
of speaker models and describe various methods of accurately representing individual
models in this space. The simplest and most often used approach is to quantize the space
to a dictionary of pretrained speaker models. Instead we propose learning a linear basis
set for the model space and represent a specific speaker model as an interpolation between
these bases. The prior knowledge built into the subspace model allows it to rapidly adapt
to match the statistics of a particular speaker given a small amounts of adaptation data.
This approach is more flexible than simply quantizing the space and is better able to
represent previous unseen speakers. Finally, we presented an extension to the adaptation
model to compensate for any channel variation that was not present in the training data.
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Chapter 4

Monaural Speech Separation

In this chapter we describe how the speaker subspace model described in chapter 3 can
be applied to monaural speech separation. We model a monaural mixture of utterances
from two speakers using a factorial hidden Markov model composed from the speaker
HMMs. If, as is typically the case, the speaker-specific model parameters are not known a
priori, they must be estimated from the mixture. We derive two algorithms for learning the
adaptation parameters directly from the mixed signal and compare them to an algorithm
for model selection from a predefined set of speaker parameters. We then review some
experimental results comparing our adaptation based separation system to other state
of the art techniques in the context of the 2006 Speech Separation Challenge. Finally we
compare the performance of the proposed model adaptation algorithm and the model
selection algorithm on mixtures of utterances from speakers not present in the training set.

4.1 Mixed signal model

In the time-domain, a monaural mixture of I sources, y(t), is simply the sum of the
contributions of each source, xi(t). As described in section 3.4.3, we assume that each
source has been passed through an arbitrary channel with impulse response hi(t). We can
therefore express the mixed signal in the time-domain as follows:

y(t) =
I

∑
i=1

(xi ∗ hi)(t) (4.1)

Our source models operate in the log power spectral domain, which complicates the linear
mixing in equation (4.1). In fact, the non-linear nature of the log operation makes the
model of a particular frame of the log power spectrum quite complex:

y(t) = log
(

∑
i

exp
(

xi(t) + hi
))

(4.2)
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where y(t) denotes a frame of the short-time log power spectrum of the waveform y(t)
in decibels. Because our chosen representation of y uses high frequency resolution, the
interaction between the sources is quite often negligible. This motivates the common “max”
approximation [71] to describe the way two natural speech signals mix in this domain:

y(t) ≈max
i

(
xi(t) + hi

)
(4.3)

where max denotes the element-wise maximum. In the remainder of this section we
describe how to combine the source models described in the previous chapter using this
mixing model to form a probabilistic model of the monaural mixture.

Throughout the remainder of this chapter we assume that mixtures are composed of only
two sources. While the extension to more sources is straightforward to implement, it is in
general quite slow as many of the algorithms that we will describe have a run time that
grows exponentially with the number of sources.

4.1.1 Factorial hidden Markov model

As described in chapter 3, each clean source signal is modeled using a hidden Markov
model. We can therefore use the combination of these source HMMs to model the
mixed signal. This can be accomplished in a straightforward manner using a factorial
HMM (FHMM) [35] constructed from the individual source models. The graphical model
representation of our mixed signal model is shown in figure 4.1. Each source signal
xi(t) is generated by the factor-analyzed HMM described in the previous chapter. The
speaker-dependent characteristics of source i are compactly described by the parameters
wi which are used to generate the Gaussian means and covariance parameters of the HMM
emission distributions. Finally, the observed mixture y(t) is explained by the combination
of the two hidden source signals.

The overall likelihood of all of the random variables in the model given the adaptation
parameters w1 and w2 can be written as follows:

P
(
y(1..T), x1(1..T), s1(1..T), x2(1..T), s2(1..T) |w1 , w2

)
= ∏

t
P
(
y(t) | x1(t), x2(t)

)
∏

i
P
(
si(t) | si(t−1)

)
P
(
xi(t) | si(t), wi

)
(4.4)

where

P
(

xi | si , wi
)

= N (xi ; µsi (wi), Σsi (wi)
)

(4.5)

If covariance adaptation described in section 3.4.2 is not used then the covariance in
equation (4.5) is independent of w, i.e. Σs(w) = Σ̄s. Where convenient we will drop the
dependence on w in the notation for the model parameters and use µi,s = µs(wi) and
Σi,s = Σs(wi) to refer to the speaker model adapted to match speaker i. Finally, a prior on
wi can optionally be included as well:

P
(
wi
)

= N (wi ; ν, Ξ
)

(4.6)
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Figure 4.1: Graphical model representation of the proposed mixed signal
model. The mixture observations y(t) are explained as the combination of
two hidden source signals x1(t) and x2(t). Each source signal is modeled by
a separate speaker-adapted hidden Markov model, that is derived from the
speaker subspace model described in section 3.4. θi,s denotes the adapted
model parameters for state s in source i derived from the speaker parameters
wi and channel parameters hi.

The right hand terms of equation (4.4) very closely resemble the HMM likelihood given in
equation (3.3). So the overall likelihood can be thought of as the product of two HMMs
coupled by the observed mixed signal y(t). In fact, the model is equivalent to an HMM
whose state space is comprised of all possible combinations of s1 and s2. This is made clear
by marginalizing the latent source signals x1 and x2 out of the distribution:

P
(
y(1..T), s1(1..T), s2(1..T) |w1 , w2

)
= ∏

t
P
(
s1(t) | s1(t−1)

)
P
(
s2(t) | s2(t−1)

)
P
(
y(t) | s1(t), s2(t), w1 , w2

)
(4.7)

where

P
(
y | s1 , s2 , w1 , w2

)
=
∫

x1

∫
x2

P
(
x1 | s1 , w1

)
P
(
x2 | s2 , w2

)
P
(
y | x1 , x2

)
(4.8)

This is analogous to the HMM likelihood in equation (3.3) except the observations depend
on two state variables whose temporal dynamics are independent. Therefore, given
predefined source models, the only additional detail needed to model a monaural mixture
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is the interaction distribution of equation (4.8), P
(
y | x1 , x2

)
.

The construction of the emission distribution depends on the exact relationship between
the mixture y(t) and the underlying source signals xi(t). As shown in equation (4.2) the
exact relationship of signals in the log-spectral domain is highly nonlinear and complex to
model. Kristjansson [56] describes the Algonquin method for modeling this interaction
accurately, but it comes at significant computational cost. Instead we utilize the “max”
model [71, 108, 92] which relies on the sparsity of audio sources in the short-time Fourier
transform representation. The key assumption here that is not made by Algonquin is
that the sources will not overlap. So, in most cases, wherever there is significant energy
in one signal, the other will be close to zero. Since only one source makes a significant
contribution to any one point in time-frequency, the mixed signal will essentially be
equal to the dominant source at each point. This motivates the approximation given in
equation (4.3). The corresponding interaction likelihood between the two source signals
has all of its mass at a single point and can be written as follows:

P
(
y | x1 , x2

)
= δ

(
y−max

i
{xi}

)
(4.9)

where δ is a Dirac delta function. Using this approximation, the emission distribution can
be written as follows [108]:

P
(
y(t) | s1 , s2

)
= ∏

d
P
(
yd(t) | s1 , s2

)
(4.10)

P
(
yd(t) | s1 , s2

)
= N (yd(t); µd

1,s1
, Σdd

1,s1

) C(yd(t); µd
2,s2

, Σdd
2,s2

)
+N (yd(t); µd

2,s2
, Σdd

2,s2

) C(yd(t); µd
1,s1

, Σdd
1,s1

)
(4.11)

where C is the Gaussian cumulative distribution function (CDF), xd denotes the dth
dimension of x, and µd

i,s and Σdd
i,s denote the adapted mean and diagonal covariance,

respectively, for state s in model i.

Since one source is almost always significantly louder than the other, a further approx-

imation is possible. If (yd − µd
1)/σd

1 � (yd − µd
2)/σd

2 , where σd
i =

√
Σdd

i is the standard

deviation in subband d, then C(µd
2) � C(µd

1) and the first term of equation (4.11) will
dominate and vice versa. The CDF terms effectively behave like soft masks selecting which
model dominates. This is illustrated in figure 4.2. By assuming that these masks are
binary, the CDFs do not have to be evaluated, saving computation. We can then rewrite
equation (4.11) as a single Gaussian likelihood:

P
(
y(t) | s1 , s2

) ≈ N (y(t); M1 µ1,s1 + M2 µ2,s2 , M1Σ1,s1 + M2Σ2,s2

)
(4.12)

where Mi behaves as a binary mask that isolates frequency bands dominated by source i.
M1 is a diagonal matrix containing ones for dimensions where model 1 is larger than the
other model as described above and zeros elsewhere:

Mij
1 =

1, if i = j and
yj−µ

j
1,s1

σ
j
1,s1

>
yj−µ

j
2,s2

σ
j
2,s2

0, otherwise
(4.13)
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Figure 4.2: Illustration of the max model in equation (4.11). The CDF of
the Gaussian with the larger mean (green) effectively cancels the likelihood
under the other model (top pane). Similarly the CDF of the smaller Gaus-
sian (blue) passes the likelihood through (middle pane). The overall joint
likelihood is therefore determined by the Gaussian with the larger mean
(bottom pane).

Similarly, M2 = I−M1.

Because of the partitioning of the observation by the binary masks in equation (4.12), the
two sources decouple given the binary mask. Equation (4.12) can therefore be rewritten as
follows:

P
(
y(t) | s1 , s2

) ≈ PM1

(
y(t) | s1

)
PM2

(
y(t) | s2

)
(4.14)

where

PMi

(
y(t) | si

)
= ∏

d
Mdd

i N
(
yd(t); µd

i,si
, σd

i,si

)
(4.15)

4.1.2 Signal separation

Given the mixed signal and the speaker specific parameters w1 and w2, the model described
above can be used to separate the signals corresponding to each model. We will skip over
the task of learning these parameters for now and return to it in section 4.2, where we will
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describe a variety of such learning algorithms. In this section it is assumed that wi are
already known.

Reconstructing the signal for source i essentially amounts to finding the expected value of
xi(1..T) given the mixed signal and adaptation parameters: E

(
xi(1..T) | y(1..T), w1 , w2

)
.

Computing this expectation is not trivial because of the other hidden variables in the
model: the HMM state sequences s1(1..T) and s2(1..T) and the other underlying source
signal xj(1..T). Marginalizing over these hidden variables before taking the expectation
results in the minimum mean square error (MMSE) estimate for each frame of source i:

x̂iMMSE(t) = E
(

xi(t) | y(1..T)
)

= ∑
s1

∑
s2

γs1,s2(t) E
(
xi(t) | y(t), s1 , s2

)
(4.16)

where γs1,s2(t) = P
(
s1(t), s2(t) | y(1..T)

)
is the posterior probability of source 1 being in

state s1 and source 2 being in state s2 at time t given the entire observed sequence. This
can be computed using the forward-backward algorithm for factorial HMMs [78, 35].

Given a particular state combination, the expectation under the max model from equa-
tion (4.11) at time t can be written as follows [71, 41]:

E
(

xd
1 | yd , s1 , s2

)
= p yd + (1− p)

(
µd

1,s1
− σd

1,s1

N (yd ; µd
1,s1

, σd
1,s1

)
C(yd ; µd

1,s1
, σd

1,s1

) ) (4.17)

p =
N (yd ; µd

1,s1
, σd

1,s1

) C(yd ; µd
2,s2

, σd
2,s2

)
P
(
yd | s1 , s2

) (4.18)

and similarly for xd
2 . As noted earlier, the CDF computations needed above can be quite

expensive. Under the max model from equation (4.12) this can be simplified as follows:

E
(

xd
1 | yd , s1 , s2

) ≈
yd if

yd−µd
1,s1

σd
1,s1

>
yd−µd

2,s2
σd

2,s2

µd
1,s1

otherwise
(4.19)

Because the mixing model assumes that there is little overlap between the source signals,
equation (4.19) simply assigns the observed frequency bin to the dominant source and uses
the model mean wherever the source is masked.

As an alternative, the maximum a posteriori (MAP) reconstruction can be found using only
the most likely state path through the factorial HMM. This can be computed efficiently
using the FHMM Viterbi algorithm which is more efficient to compute than the full
posterior distribution needed by equation (4.16). This has the additional advantage of
identifying the path that best explains the observations and is not distracted by competing
hypotheses with lower likelihood, and is the reconstruction most commonly used in the
literature [91, 88, 83].

The MAP reconstruction can be written as follows:

x̂iMAP(t) = E
(
xi(t) | y(t), ŝ1(t), ŝ2(t)

)
(4.20)
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where ŝ1(t) and ŝ2(t) denote the state indices at time t on the Viterbi path for sources 1
and 2, respectively:

ŝ1(1..T), ŝ2(1..T) = argmax
s1(1..T), s2(1..T)

P
(
s1(1..T), s2(1..T) | y(1..T)

)
(4.21)

Computing the full distribution over all possible state sequences is typically intractable.
However, ŝi(1..T) can be computed using a simple dynamic programming recursion similar
to that used in the forward-backward algorithm:

PMAP
(
s1(t), s2(t) | y(1..t)

)
= max

s1(t−1)
P
(
s1(t)| s1(t−1)

)
max
s2(t−1)

P
(
s2(t)| s2(t−1)

)
P
(
s1(t−1), s2(t−1)| y(1..t−1)

)
(4.22)

This recursion defines the maximum likelihood path through the first t observations that
end in s1(t) and s2(t). By running this recurrence through to the final frame T and by
keeping track of the states that maximize equation (4.22) at each time step (“backtracking”)
it is possible to find the state sequence efficiently.

Despite this speed-up, computing PMAP
(
s1 , s2 | y(1..T)

)
exactly remains intractable if the

number of possible state combinations, N1 × N2, is too large. To speed it up we prune the
number of active state combinations at each frame to the 200 most likely. Because many
state combinations are discarded, the resulting state sequences are no longer guaranteed
to correspond to the exact MAP solution. Despite this, however, the separation quality
remains acceptable.

The speech models we use operate only on features derived from the STFT magnitudes
of the source signals, which do not characterize the full time-domain signals exactly. In
some applications, the magnitude estimates can be used directly without reverting to the
time-domain, e.g. when the target application is speech recognition, not signal recovery,
as in the 2006 Speech Separation Challenge. However, sometimes it is desirable to revert
to the time-domain. In order to revert the signal estimates x̂i(t) to the time-domain, we
generally combine the magnitude estimates with the phase of the mixed signal and use the
inverse STFT to estimate x̂i(t). This generally leads to errors due to the mismatch between
the mixture phase and the magnitude estimates which use the source model parameters to
“fill in the blanks” that were dominated by competing sources. These phase errors can be
minimized using the iterative phase estimation algorithm described in [38] (and extended
in [90]) which estimates phases based on consistency with the given magnitudes.

Figure 4.3 demonstrates the importance of using speaker specific models for the separation
algorithm described in this section. Separation performance is quite poor when using the
same speaker independent model for both sources in the mixture because, as described in
section 3.2, the speech model does not enforce strong temporal constraints. This is due
to ambiguity in the Viterbi path through a factorial HMM composed of identical models
[26]. The state sequences can permute between sources whenever the Viterbi path passes
through the same state in both models at the same time. Since our models only include
basic phonetic constraints, the resulting separated signals can permute between sources
whenever the two sources have (nearly) synchronous phone transitions. Such permutations
are evident in the middle row of figure 4.3. This permutation problem can be solved using
models matched to each source as shown in the bottom row of the figure. In the following
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Figure 4.3: Phone permutations found in the Viterbi path through a factorial
HMM that models the mixture of two sources. Each source is modeled with
the same speaker-independent (SI) models. Neither of the resulting source
reconstructions (middle row) is a good match for either of the sources found
by separation using speaker-dependent (SD) models (bottom row). Each
SI reconstruction contains short regions from both of the SD sources. For
example, the final phone in SI source 1 is quite close to that of SD source 1,
but the first half second of the signal is closer to SD source 2.

section we discuss methods for learning adaptation parameters for the sources comprising
a mixture.

4.2 Learning algorithms

We separate the sources composing a speech mixture in two stages using the model
described in the previous section. First, the subspace parameters are estimated for each
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source in the mixture, producing a set of speaker-adapted models capturing the speaker-
dependent statistics of the constituent talkers. Then, given the adapted models, the clean
source signals are reconstructed by finding the MAP reconstruction of the signals given
the model, as described in section 4.1.2.

The remaining detail to be described is the method for learning the speaker adaptation
parameters wi and channel responses hi from the mixed signal. In this section we describe
three different approaches to this problem. First, we describe the speaker identification
approach described in Rennie et al. [83] which utilizes a pre-defined set of speaker param-
eters and selects the subset that best match the observations. If the sources comprising the
mixture are known to correspond to entries in this database, this approach can approximate
the upper bound performance of using known models. However, in mismatched conditions
this does not work as well as finding the optimal point in the continuous eigenvoice space
that correspond exactly to the given speakers. We describe two alternate algorithms to
learn the adaptation parameters directly from the mixed signal in sections 4.2.2 and 4.2.3.

4.2.1 Model selection

As described in chapter 3, the simplest approach to “adapting” to a set of sources is to
simply select the model parameters from a closed set of predefined settings that best fit the
mixture, essentially finding the nearest neighbor in model space. Rennie et al. [83] describe
an efficient algorithm for doing exactly this as a part of their separation system. In this
section we extend their method to work with our channel model described in section 3.4.3.

The approach attempts to identify frames that are dominated by a single source and
use these frames to evaluate the set of speaker parameters and identify those that fit
best. Given a set of C speaker parameters {wc}c=1..C, we define the corresponding set
of model parameters for state s as in the previous section: µc,s = µs(wc) and optionally
Σc,s = Σs(wc). Note that in this section, wc only refers to the eigenvoice coefficients and
does not include the channel response h. This is because the channel is assumed to be
independent of speaker identity and is likely to vary between training and testing data.
We will describe estimation of h given w in section 4.2.1.1.

Because we are interested in selecting model parameters independent of the channel
response, it needs to be integrated out of the model. Rennie et al. [83] used a very
constrained channel model consisting of a simple fixed gain which was assumed to come
from a quantized set. However, as described in chapter 3, we use a more general model
of channel variation. Here, we utilize a simple Gaussian prior on the channel response
h: N (h; νh , Ξh

)
. The likelihood of observation y being in state s of source c can then be

written as follows:

P
(
y | c, s

)
=
∫

h
N (y; µc,s + Bh, Σc,s

)N (h; νh , Ξh
)

(4.23)

∝ N (y; µc,s , Σc,s
)N (0; νh , Ξh

)
N (0; d, D

) (4.24)
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where

D =
(

Ξ−1
h + BTΣ−1

c,s B
)−1

(4.25)

d = D
(

Ξ−1
h νh + BTΣ−1

c,s (y− µc,s)
)

(4.26)

Alternatively, if the channel is known to be very simple, e.g. the test data is simply offset
from the training data by a constant gain as is the case in the Speech Separation Challenge,
then a simpler multinomial prior on h can be used. This is described in detail in Rennie
et al. [83]. Similarly, if the channel distribution is known to be more complex than a single
Gaussian, it is straightforward to extend equation (4.24) to a mixture of Gaussians.

Since the only speaker-dependent parameters in our source models are the Gaussian
means and covariances, we ignore the temporal dynamics throughout the model selection
process. Instead we reduce the HMM transition matrix to the corresponding steady-
state distribution parametrized by πs and represent the model as a GMM where mixture
component s corresponds to the Gaussian in state s of the HMM with prior probability πs.
Once the model parameters have been estimated, we revert to the full HMM distribution
to separate the sources. The posterior probability of model c given a particular frame can
then be written as follows:

P
(
c | y(t)

)
=

∑s πs P
(
y(t) | c, s

)
∑c ∑s πs P

(
y(t) | c, s

) (4.27)

The final decision is made by pooling all frames dominated by a single source:

P
(
c | y(1..T)

)
=

∑t∈F P
(
c | y(t)

)
∑c ∑t∈F P

(
c | y(t)

) (4.28)

where F is the set of all frames for which a single source is more likely than the rest,
i.e. F = {t | maxc P

(
c | y(t)

)
> α} where α is some predefined threshold. Only utilizing

frames dominated by a single source minimizes the influence of frames that are good
matches to multiple source models (i.e. silence or frames containing significant energy
from multiple sources). Because of the natural short pauses often present in speech, this
approach gives reasonable glimpses of individual speakers in a mixture.

The I models with highest posterior probability as given by equation (4.28) are assumed
to correspond to the sources in the mixture. Because no state combinations need to be
evaluated, this algorithm is quite fast, essentially requiring the computation of posterior
probabilities for each of N states in each of C models for each of T observations. The
algorithm has been shown to perform extremely well, accurately identifying 98% of the
speakers in the SSC data set [83].

4.2.1.1 Channel adaptation

Given the speaker specific model parameters µi,s and Σi,s, the corresponding channel
response hi still needs to be determined. In [83], Rennie et al. follow the speaker iden-



4. Monaural Speech Separation 47

tification stage described above by a process to estimate the unknown gain applied to
the observed signal. They do this using a simple quantized representation of possible
gains consistent with the SNRs found in the 2006 Speech Separation Challenge dataset.
Once again, we generalize this approach to arbitrary channel filtering, characterized by the
channel parameter vector hi.

hi is estimated iteratively, first inferring the state sequences to separate the signals, then
updating hi to match the source reconstructions x̂i(t). To minimize necessary computation
we utilize the same GMM representation of the speaker model as in the model selection
stage. Because the models are generally sufficiently distinct from one another, the lack of
temporal constraints does not significantly decrease performance.

In order to efficiently separate the sources, we use the MAXVQ branch and bound inference
algorithm described in Roweis [92] to estimate the MAP state combination under the max
mixing model. The source reconstructions x̂i(t) are estimated as described in section 4.1.2.

Given each of the separated signals, the channel parameters are estimated using the
MLED expectation maximization (EM) algorithm [58] (which will be described in detail
in section 4.2.2.2), except only the channel parameters are updated. The E-step computes
γs(t), the posterior distribution of x̂i(t) under each model state using the current estimate
of the channel parameters. This posterior distribution is then used in the M-step to update
the channel parameters.

The expected complete log likelihood of the data under the model can be written as
follows:

L(hi) = −1
2 ∑

t
∑

s
γs(t)

((
µi,si + Bhi − x̂i(t)

)TΣ−1
i,s
(
µi,si + Bhi − x̂i(t)

)
+
(
hi − νh

)TΞ−1
h
(
hi − νh

))
(4.29)

Maximizing this objective for source i yields the following update for hi:

hi =

(
∑

t
∑

s
γs(t) BTΣ−1

i,s B + Ξ−1
h

)−1(
∑

t
∑

s
γs(t) BTΣ−1

i,s (x̂i(t)− µi,s1) + Ξ−1
h νh

)
(4.30)

The process is iterated until it converges. Figure 4.4 shows an example of the convergence
behavior of this algorithm on a mixture of utterances from a male and female speaker from
the Switchboard data set described in section 4.4 using a channel basis set composed of 10

DCT bases. The channel responses for both sources converge after about 10 iterations.

4.2.2 Hierarchical learning

In the previous section we assumed that a set of pre-trained speaker parameters was
available, in which case adaptation is simply a matter of selecting the parameters that best
fit the observations. Such a database is not generally available, but even if one is, there is
no guarantee that the optimal parameters for a particular source signal are contained in
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Figure 4.4: Example of the convergence behavior of the channel adaptation
algorithm.

that set. In this section we describe a method for learning adaptation parameters directly
from the mixture.

Kuhn et al. [58] describe an EM algorithm for learning eigenvoice parameters w given a
clean source signal. This algorithm cannot be directly applied to a mixture of multiple
sources. Instead, we use a hierarchical approach which iteratively separates the sources
and then uses the aforementioned EM algorithm to adapt each source to its reconstruction.
An outline of this approach is given below:

1. Obtain initial model estimates for each source
2. Separate signals as described in section 4.1.2
3. Update model parameters
4. Repeat 2 – 3 until convergence

The intuition behind the iterative approach is that each of the reconstructed source estimates
will resemble one source more closely than the other (i.e. more than half of it will match
one of the sources), even if the initial separation is quite poor. As a result, the model
parameters inferred from these estimates will also be a better match to one source than to
the other. This in turn should improve the separation in the next iteration.

Initially the dynamic constraints in the model partially make up for the lack of source-
dependent feature constraints. But the reconstructions are still quite prone to permutations
between sources. The permutations tend to get corrected as the algorithm iterates be-
cause the adaptation allows the models to better approximate the speaker characteristics.
Unfortunately the algorithm takes many iterations to converge.
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Figure 4.5: Quantization of eigenvoice coefficients w1 and w2 across all
GRID training speakers. In the first two panes, the regions labeled 1 and 2

denote the settings for the corresponding eigenvoice coefficient that best fit
the observations. The rightmost pane shows the best joint setting of w1 and
w2.

4.2.2.1 Initialization

As with many iterative algorithms, this method is vulnerable to becoming stuck in local
optima. Good initialization is crucial to finding good solutions quickly. One approach
would be to use the speaker identification algorithm described in section 4.2.1 to search
through a set of adaptation parameter vectors corresponding to the speakers in the training
set, and use them to initialize the learning algorithm with the best matching prototypes.

However this may not work well on sources that are not in the training set. We are
interested in producing a more general algorithm that does not require as much prior
knowledge. Toward that end we propose an alternative scheme for initialization. We begin
by projecting the mixed signal onto the eigenvoice bases to set the parameters for both
sources (see section 4.2.2.2). Obviously these parameters will not likely be a good match to
either isolated source and, as described earlier, using the same model for both sources will
lead to poor performance.

Further steps are taken to differentiate the two speakers using the speaker identification
algorithm. We note that by design the eigenvoice dimensions are decorrelated, which
allows us to treat each of them independently. The idea is to build an approximation of w
for each source from the bottom up, beginning from w1 and adding consecutive weights.

During training we learn prototype settings for each weight wj by coarsely quantizing
the corresponding weights of the training speakers to three quantization levels using the
Lloyd-Max algorithm [63]. This allows wj for any given speaker to be approximated by
one of the quantized values {ŵ1

j , ŵ2
j , ŵ3

j }. The first two panels of figure 4.5 show example
quantization levels for w1 and w2.
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Given the mixed signal, we can approximate the eigenvoice adaptation parameters for each
speaker, w1 and w2, using the following bottom up construction:

• Initialize w1 and w2 to zero, i.e. set µ(w1) and µ(w2) to µ̄.
• For each speaker i and eigenvoice dimension j:

– Use the quantized weights to construct prototype models {µk(wi)}1≤k≤3 where
µk(wi) = µ(wi) + ŵk

j µ̂j.
– Use the Iroquois speaker identification algorithm (see section 4.2.1) to select the

most likely prototype model given the mixed signal and update wi and µ(wi)
accordingly.

An example of this process is shown in figure 4.5. The first and second panels show the
quantization levels of eigenvoice dimensions 1 and 2 respectively. The shaded regions
show the prototypes chosen for speaker 1 (dark gray) and speaker 2 (light gray). Finally,
the rightmost panel shows the joint selection of w1 and w2 for both speakers.

This is only done for the 3 eigenvoice dimensions with the highest variance. The remaining
parameters are the same for both sources, set to match the mixture. This technique is not
very accurate, but in most cases it suffices to differentiate the two sources. It works best at
differentiating between male and female speakers because the eigenvoice dimension with
the most variance tends to be highly correlated with speaker gender. When the sources are
very similar this procedure does not guarantee that they will not have identical initialization.
In this case, the algorithm relies on the initial separation to break the symmetry.

4.2.2.2 Eigenvoice parameter estimation

Given source specific weights wi, the sources are separated using the factorial HMM Viterbi
algorithm as described in section 4.1.2. Then the speaker models are updated to better
match the source estimates x̂1(t) and x̂2(t). This amounts to projecting the reconstructed
source signal onto the eigenvoice (and channel) bases U. The model parameters wi are
estimated iteratively using an extension of the maximum likelihood eigen-decomposition
(MLED) EM algorithm described in Kuhn et al. [58] to incorporate a prior distribution over
the adaptation parameters. This was first described by Huang et al. [43]. As described in
section 3.4.3, for the purposes of deriving the learning algorithm, the channel parameters
for source i, hi, can be subsumed into wi.

The E-step of the algorithm involves computing γs(t) = P
(
s(t) | x̂(t)

)
, the posterior

probability of the source occupying state s at time t given the observations x̂i(1..t) using the
HMM forward-backward algorithm [78]. It should be emphasized that in contrast to the
algorithm described in section 4.2.3, the E-step here uses the source reconstructions, and
not the mixed signal, thus eliminating the need for taking all possible state combinations
into account. This task was offloaded to the separation algorithm.

Given these posteriors, the M-step maximizes the likelihood of the observed sequence
x̂i under the model. Once again, this is done by maximizing the expected complete log
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likelihood L(wi) = E
(

log P
(
y(t), wi | s

))
:

L(wi) = −1
2 ∑

t
∑

s
γs(t)

(
x̂i(t)− µs(wi)

)T Σ̄−1
s
(

x̂i(t)− µs(wi)
)

− 1
2
(
wi − ν

)TΞ−1(wi − ν
)

(4.31)

Maximizing this objective function yields the following update for wi:

wi =

(
∑
t,s

γs(t) UT
s Σ̄−1

s Us + Ξ−1

)−1(
∑
t,s

γs(t) UT
s Σ̄−1

s (x̂i(t)− µ̄s) + Ξ−1ν

)
(4.32)

This EM algorithm is applied in turn to each source estimate x̂i until convergence to infer
wi and hi. The updated source models are then used to re-estimate the source signals x̂i,
and the algorithm iterates.

Figure 4.6 shows an example of the convergence behavior of this algorithm on a mixture
of utterances from a male and female speaker. The algorithm has mostly converged after
about 15 iterations.

Figure 4.7 gives an example of the algorithm outlined in this section. The initial separation
does a reasonable job at isolating the target, but it make some errors. For example, the
phone at t = 1 s is initially mostly attributed to the masking source. The reconstruction
improves with subsequent iterations, getting quite close to the reconstruction based on SD
models (bottom panel) by the fifth iteration.

4.2.3 Variational learning

In the previous section, we described an ad-hoc learning algorithm for wi based on well
known algorithms for model-based separation and eigenvoice parameter estimation from
clean signals. In this section we derive a similar learning algorithm that is better motivated
theoretically. The standard approach for estimating the value of latent parameters in a
model such as that depicted in figure 4.1 is to use the expectation maximization (EM)
algorithm [21]. The parameters are estimated iteratively by alternately using the current
estimate of the parameters to infer the posterior distribution over the remaining latent
variables (E-step) and then using the new distribution to re-estimate the parameters in
question (M-step). In general, this approach can find the maximum likelihood estimates of
the latent parameters.

In the context of the model in figure 4.1, it is possible to derive an EM algorithm to estimate
wi and hi similar to the factorial HMM EM training algorithm described in [35], but the
exact computation of the posterior probabilities in the E-step is intractable due to the
combinatorial nature of the state space. I.e. if each of the I speaker models contains N
states, the statistics needed by the full EM algorithm must take into account all possible
state combinations from all speaker models, leading to an equivalent state space containing
N I states. Instead, we derive an approximate E-step with a significantly reduced complexity



52 4.2 Learning algorithms

Source 1 eigenvoice weights

E
ig

en
vo

ic
e 

di
m

en
si

on

10 20 30

10

20

30

Source 2 eigenvoice weights

 

 

10 20 30

10

20

30

−1000

−500

0

500

1000

0 10 20 30

−2

−1

0

1

Source 1 channel response

Iteration

dB

0 10 20 30

−2

−1

0

1

Source 2 channel response

Iteration

Figure 4.6: Example of the convergence behavior of the hierarchical adapta-
tion algorithm on a mixture from the Speech Separation Challenge data set
(see section 4.3). The top panes plot the adaptation parameters w1 and w2
at each iteration, and the bottom panes show the channel response Bh1 and
Bh2 at each iteration. Note that this example used a single channel basis
vector, corresponding to a constant gain across all frequency bands.

based on an approximation to the posterior distribution. This approach was described in
[119].

The full posterior distribution over all possible state combinations given the observations
can be written as follows:

P
(
s1(1..T), s2(1..T) | y(1..T)

)
∝ ∏

t
P
(
y(t) | s1(t), s2(t)

)
∏

i
P
(
si(t) | si(t−1)

)
(4.33)

This is based on equation (4.4) where the latent source signals xi have been marginalized
out.

Following the structured variational approximation described in [35], we lower bound the
joint distribution in equation (4.33) with an approximate distribution in which the HMM
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again”) from the adapted models after iterations 1, 3, and 5. The bottom
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chains for each speaker are assumed to be independent:

Q
(
s1(1..T), s2(1..T) | y(1..T)

)
∝ ∏

i
Qi
(
y(1..T), si(1..T)

)
(4.34)

This is in contrast to the true distribution in which the two models are explicitly coupled
by the likelihood term P

(
y(t) | s1 , s2

)
. Instead, a looser coupling is incorporated into Qi in



54 4.2 Learning algorithms

(a) Full distribution (b) Approximate distribution

Figure 4.8: Graphical model representation of the full distribution from
equation (4.33) (a) and variational approximation from equation (4.35) (b)
where the underlying source signals have been marginalized out. In (b)
the coupling between the two HMM chains by the observations y has been
removed.

the form of variational parameters ρi,si (t):

Qi
(
y(1..T), si(1..T)

)
= ∏

t
ρi,si (t) P

(
si(t) | si(t−1)

)
(4.35)

This closely resembles the HMM likelihood in equation (3.3) with the variational parameters
replacing the observation likelihood. A graphical model depiction comparing the exact
distribution to this approximation is shown in figure 4.8.

An outline of the overall variational learning algorithm is described below. Details are
given in the following sections.

• Initialize w1 and w2 as in the hierarchical algorithm.
• E-step: Iteratively infer the posterior distribution over state combinations of both

speaker models.

1. For each model: compute the state occupancy probabilities, γi,s(t), using the
HMM forward-backward algorithm with the observation likelihoods replaced
by the corresponding variational parameters.

2. Compute the variational parameters ρi,s(t) based on γi,s(t).
3. Iterate 1 – 2 until convergence.

• M-step: Update the model parameters using the posteriors computed in the E-step.

4.2.3.1 E-step

For each iteration of the inner loop in the E-step, new state occupancies γi,s(t) are calculated
by evaluating the HMM forward-backward algorithm [78], taking the current variational
parameters as the observation likelihoods as described in [35]. Then, the variational
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parameters are updated by minimizing the Kullback-Leibler divergence between the
approximation Q and the full distribution P. I.e. we seek to minimize:

KL(Q||P)

= ∑
t,s1,s2

γ1,s1(t) γ2,s2(t)
(

log P
(
y(t) | s1 , s2

)− log ρ1,s1(t)− log ρ2,s2(t)
)

+ c (4.36)

where c is a constant that is independent of the variational parameters. This implies the
following updates for the variational parameters:

log ρ1,s1(t) = ∑
s2

γ2,s2(t) log P
(
y(t) | s1 , s2

)
(4.37)

log ρ2,s2(t) = ∑
s1

γ1,s1(t) log P
(
y(t) | s1 , s2

)
(4.38)

The variational parameter for model i is found simply by marginalizing the joint likelihood
over the other models, essentially holding one chain constant while updating the other.
Using the likelihood from equation (4.12), equation (4.37) can be rewritten as follows:

log ρ1,s1(t) = ∑
d

(
logN (yd(t); µd

1,s1
, Σdd

1,s1

)
∑
s2

γ2,s2(t)Mdd
1

+ ∑
s2

γ2,s2(t)Mdd
2 logN (yd(t); µd

2,s2
, Σdd

2,s2

))
(4.39)

where Mi depends on both s1 and s2 as defined in equation (4.13). The equation for
ρ2,s2(t) can be derived analogously. The new values for ρi,s(t) are then used in the
forward-backward algorithm to calculate new γi,s(t) values, and this loop continues until
convergence.

Unfortunately, s1 and s2 do not fully decouple in equation (4.39), so the run time is not
guaranteed to be linear in the number of sources. However, because γi,s(t) is generally
quite sparse (i.e. very few states per frame have significant probability mass), it is still fast
to compute the variational parameters. In order to retain this performance advantage in the
first iteration, the initial γi,s(t) must be sparse. Initializing the posteriors to be uniformly
random results in the initial computation of equation (4.39) being extremely slow as all
possible state combinations need to be evaluated. In our experience, initializing γi,s(t) in
the first EM iteration based on a computation of equation (4.33) using aggressive pruning
of the forward-backward lattice has worked reasonably well. For all remaining iterations
the approximate E-step described above is used.

4.2.3.2 M-step

Given the posterior distribution over the hidden state sequences, the speaker subspace
parameters wi can be updated by maximizing the expected log likelihood of the model:

L(w1, w2) = ∑
t,s1,s2

γ1,s1(t) γ2,s2(t) log P
(
y(t), w1 , w2 | s1 , s2

)
+ k (4.40)
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where k is a constant that is independent of the parameters w1 and w2. As shown in
[43], this objective function is not convex when both the Gaussian means and covariances
depend on the subspace parameters being optimized. Instead, as described in section 3.4.2,
we derive an update based only on the mean statistics and rely on the correlation between
the mean and covariance parameters implicit in the subspace bases to adapt the model
covariances. The simplified objective can be written as follows:

L(w1, w2) = −1
2 ∑

t,s1,s2

γ1,s1(t) γ2,s2(t)
(
y(t)− µs1s2

)TΣ−1
s1s2

(
y(t)− µs1s2

)
− 1

2
(
w1 − ν

)TΞ−1(w1 − ν
) − 1

2
(
w2 − ν

)TΞ−1(w2 − ν
)

(4.41)

where
µs1s2 = M1 µs1(w1) + M2 µs2(w2) (4.42)
Σs1s2 = M1 Σ̄s1 + M2 Σ̄s2 (4.43)

and ν and Ξ denote the parameters of the prior distribution from equation (4.6).

Unfortunately, this objective function is non-differentiable due to the step function (i.e. the
binary masks Mi) inherent in the max approximation in equation (4.12). This makes it
difficult to maximize exactly. To find an approximate solution we hold Mi constant in
the optimization, i.e. we assume that the resulting update will not change which source
dominates the mixture at any time-frequency point. Because of this, the log likelihood is
not guaranteed to increase. However, in practice we have found that it works quite well.

The binary mask construction has the advantage of decoupling the two sources, allowing
them to be updated independently. The decoupled objective function for source i can be
written as follows:

L(wi) = −1
2 ∑

t,s
γi,s(t)

(
y(t)− µs(wi)

)T MiΣ̄−1
s
(
y(t)− µs(wi)

)
− 1

2
(
wi − ν

)TΞ−1(wi − ν
)

(4.44)

This is maximized by solving the following equation for w1 and w2:(
∑

t,s1,s2

γ1,s1(t) γ2,s2(t) UT
s Mi Σ̄−1

si
Us + Ξ−1

)
wi

= ∑
t,s1,s2

γ1,s1(t) γ2,s2(t) UT
s Mi Σ̄−1

si
(y(t)− µ̄si ) + Ξ−1ν (4.45)

The updates are quite similar to the clean signal eigenvoice updates derived in sec-
tion 4.2.2.2, except for the binary masks Mi which partition the observations into regions
dominated by a single talker, causing the algorithm to ignore interference-dominated
time-frequency regions when updating the parameters for a particular talker.

Figures 4.9 and 4.10 show an example of the convergence behavior of this algorithm on
the same mixture as figure 4.6. Figure 4.9 shows the log likelihood. after each iteration,
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Figure 4.9: Convergence of the log likelihood of the variational EM adapta-
tion algorithm for the same mixture as figure 4.6.
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Figure 4.10: Example of the convergence behavior of the hierarchical adap-
tation algorithm on the same mixture as figure 4.6. The top panes plot the
adaptation parameters w1 and w2 at each iteration, and the bottom panes
show the channel response Bh1 and Bh2 at each iteration.
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command color preposition letter digit adverb

bin
lay

place
set

blue
green
red

white

at
by
in

with

a-v
x-z

0-9
again
now

please
soon

Table 4.1: Grammar used to generate sentences in the GRID data set [18].
One element is chosen from each column to form a sentence, e.g. “place red
by c 6 now”.

and figure 4.10 shows the adaptation parameters. As with the hierarchical algorithm, the
variational EM algorithm takes about 15 iterations to converge on this mixture.

4.3 Experiments: 2006 Speech Separation Challenge

The learning algorithms described in the previous section were evaluated on the test data
from the 2006 Speech Separation Challenge (SSC) [16]. This data set is composed of 600

artificial speech mixtures composed of utterances from 34 different speakers, each mixed at
signal to interference ratios varying from -9 dB to 6 dB. Each utterance follows the pattern
command color preposition letter digit adverb as shown in table 4.1. The task is to determine
the letter and digit spoken by the source whose color is “white”.

About 15 minutes of training data was available for each speaker in the test set. We used
the HTK toolkit [126] to train models for each speaker. Prior to training, the data was
downsampled to 16 kHz and pre-emphasized using a simple first order high pass filter
with transfer function 1− 0.97z−1 to whiten the spectrum. Each of the 35 phones used in
the task grammar are modeled using a standard 3-state forward HMM topology. Each
state’s emissions are modeled by a GMM with 8 mixture components.

The training data for all 34 speakers was used to train a speaker-independent (SI) model.
We also constructed speaker-dependent models for each speaker and learned eigenvoice
bases as described in section 3.4.1. We learned two such sets of eigenvoice bases: one
based only on the mean parameters and one that included both the mean and covariance
parameters. Because the training and test data were matched in terms of channel response,
we use a single flat channel basis to estimate the frequency independent gain for each
source signal, corresponding to the scaling used to generate the mixtures at different SNRs.

Note that in the experiments described in this section we do not discard any low variance
eigenvoice dimensions (i.e. Us has 33 columns) so it is possible to exactly reconstruct the
original model for speaker i given the corresponding weights wi. However, in practice the
adapted models do not match the original speaker models perfectly because the adaptation
is based only on the relatively small set of model states used to generate a single utterance.

We evaluate the speaker parameter estimation algorithms described in the previous section
using these models. We compare the eigenvoice speaker adaptation algorithm (SA) to
separation based on model selection of speaker-dependent parameters (SD) as described
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in section 4.2.1. Because of the simple nature of the channel variation we use the discrete
channel prior for model selection. No prior distributions are used in the eigenvoice and
channel updates. In all cases, once the speaker parameters are known, we use them
to separate the signals as described in section 4.1.2. Then, we reconstruct the time-
domain sources xi(t) from the STFT magnitude estimates x̂i using the phase of the mixed
signal. The final stage is to select the target source from the reconstructed signal. The
two reconstructed signals are passed to a speech recognizer; assuming one transcription
contains “white”, it is taken as the target source.

We use the default HTK speech recognizer provided by the challenge organizers [16],
retrained on 16 kHz data. The acoustic model consists of whole-word HMMs based on
MFCC, delta, and acceleration features. We select the target by recognizing both signals
using two different grammars: one containing only “white” and one without it. The
combination of white and non-white with the highest combined likelihood are labeled
target and masker, respectively. Finally, given the target signal, performance is measured
using word accuracy of the letter and digit spoken by the target speaker. The learning
algorithms described in section 4.2 are compared using this common framework.

4.3.1 Comparison of subspace parameter estimation algorithms

We begin by comparing the performance of the three algorithms described in the previous
section on the 0 dB SNR subset of the SSC data set. This consists of 200 single-channel
mixtures of two talkers of different gender, and 179 mixtures of two talkers of the same
gender. All systems were evaluated using models where only the means were speaker-
dependent or adapted (Mean Only) as in [117, 118], as well as using models where both
the means and covariances were speaker-dependent or adapted (Full).

In order to explore the upper bound performance of source separation based on the
proposed model, we evaluate separation using oracle knowledge of the speaker identities
and relative gains to fix the settings of wi and hi (Oracle). We also attempt to isolate the
effects of subspace adaptation from the task of inferring the adaptation parameters from
a mixture by using oracle knowledge of the clean source signals for adaptation and then
performing separation using the pre-adapted models (Estimated Oracle). The adaptation
parameters for each source are estimated from the clean signals using the MLED adaptation
algorithm (initialized to zero) described in section 4.2.2.2.

The oracle systems are compared to the three adaptation algorithms: selection of SD
models using the algorithm described in section 4.2.1 (SD model selection), hierarchical
separation and adaptation (Hierarchical), and variational EM adaptation (VEM). Finally, a
lower bound on the performance of the separation algorithms is obtained by running the
speech recognizer over the mixture (Baseline).

Three variations of the hierarchical adaptation algorithm are compared. The first, la-
beled Hierarchical (SD init), is initialized using the SD model selection algorithm. The
second, labeled Hierarchical, uses the initialization scheme described in section 4.2.2.1.
Both Hierarchical (SD init) and Hierarchical are based on the separation algorithm and
state pruning described in section 4.1.2 which was found to give a reasonable trade-off
between computation time and performance. The third, labeled Hierarchical (fast), uses
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Mean Only Full
Algorithm Same Gender Diff Gender Same Gender Diff Gender

Oracle 75.42 (+0.0) 80.00 (+0.0) 81.56 (+0.0) 81.75 (+0.0)
Estimated Oracle 73.46 (+1.4) 77.00 (+0.5) 74.02 (+0.6) 80.75 (+0.0)
SD model selection 72.07 (+2.1) 76.00 (+2.0) 83.52 (+0.5) 80.00 (+1.2)
Hierarchical (SD init) 75.42 (+0.8) 77.50 (+0.3) 80.17 (+0.8) 82.25 (+1.0)
Hierarchical 56.15 (+0.6) 66.75 (+3.5) 62.29 (+0.2) 79.25 (+0.2)
Hierarchical (fast) 46.63 (+7.3) 57.25 (+4.8) 50.28 (+4.2) 66.25 (+1.5)
Variational EM 47.49 (+0.8) 61.75 (+2.5) 58.10 (+0.2) 69.75 (+5.0)
Baseline 36.03 34.75 36.03 34.75

Table 4.2: Digit-letter recognition accuracy (in percent) on the 0 dB SNR two-
talker subset of the 2006 Speech Separation Challenge data set. Numbers
in parenthesis correspond to the absolute improvement in accuracy using
corrected target speaker selection based on distance from ground-truth
target signal instead of output of the speech recognizer.

more aggressive pruning in the separation stage where only the 40 most likely state combi-
nations are retained at each frame (versus 200 in the previous case). This speeds up the
hierarchical algorithm to be about as fast as the variational algorithm, allowing for a more
fair comparison between them.

The recognition results are summarized in table 4.2. All of the evaluated separation
systems show very large improvements over the baseline. The addition of speaker specific
covariance parameters gives a significant performance improvement of between 5% and
10% absolute to all systems under all conditions, with the exception of the oracle systems
whose improvements are sometimes smaller. Separation using models adapted to the clean
signals (Estimated Oracle) performs almost as well as Oracle, indicating that the subspace
adaptation approach is able to accurately adapt to a single clean utterance. Any reduction
in performance in the Hierarchical and VEM algorithms is therefore the result of poor
adaptation when only the mixture is observed.

After the oracle systems, the system based on SD model selection and Hierarchical (SD
init) perform best overall, with accuracy on par with Oracle. Hierarchical (SD init), which
combines quantization of the speaker model space with continuous adaptation of the
model parameters, tends to slightly outperform SD model selection alone. Comparing the
remaining adaptation algorithms, the full hierarchical algorithm outperforms variational
EM which further outperforms Hierarchical (fast).

The large performance gap between Hierarchical (SD init) and the remaining adaptation
algorithms demonstrates their sensitivity to initialization. The likelihood surface of the
mixed signal model is inherently multimodal because it contains a large number of
unknown parameters, including the HMM state sequences for each source signal and the
corresponding adaptation parameters. As a result, if the initialization does not adequately
differentiate the sources, the adaptation algorithms are prone to getting stuck in local
maxima that correspond to suboptimal separation. When an appropriate set of SD models
is available, using SD model selection to initialize the adaptation parameters eliminates
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Mean Only Full
Algorithm Same Gender Diff Gender Same Gender Diff Gender

Oracle 6.83 (+0.00) 7.68 (+0.00) 7.76 (+0.00) 8.51 (+0.00)
Estimated Oracle 6.19 (+0.18) 7.40 (+0.02) 6.63 (+0.01) 7.38 (+0.07)
SD model selection 6.83 (+0.04) 7.26 (+0.07) 7.64 (+0.03) 8.08 (+0.12)
Hierarchical (SD init) 6.77 (+0.16) 7.83 (+0.06) 7.30 (+0.05) 8.13 (+0.03)
Hierarchical 4.16 (+0.34) 6.25 (+0.26) 5.14 (+0.37) 7.47 (+0.12)
Hierarchical (fast) 3.67 (+0.39) 4.64 (+0.62) 4.11 (+0.32) 5.85 (+0.15)
Variational EM 3.29 (+0.50) 5.34 (+0.33) 4.40 (+0.28) 6.30 (+0.40)

Table 4.3: Magnitude SNR (in dB) of target reconstruction on the 0 dB
SNR two-talker subset of the 2006 Speech Separation Challenge data set.
Numbers in parenthesis correspond to the absolute improvement in ac-
curacy using corrected target speaker selection based on distance from
ground-truth target signal instead of output of the speech recognizer.

this problem.

Comparing SD model selection to Hierarchical (SD init), it is clear that adapting the
models to better match the mixture improves performance over the SD initialization. The
exception is on same gender mixtures using full models. This is a result of the fact that the
covariance parameters are not optimized directly, so the optimization of equations (4.31)
and (4.41) can sometimes lead to estimates of the model covariances that are worse than the
initialization. The effect of this problem is more apparent in same gender mixtures because
they are more sensitive to the settings of the model covariances than different gender
mixtures. When compared to the Oracle system, the Estimated Oracle system exhibits
similar behavior under these conditions. However, despite this problem, the performance
of a given separation system using full models in these experiments always improves over
the corresponding mean only variant.

The SD system significantly outperforms the best performing adaptation systems that use
the default initialization on same gender mixtures. The advantage on different gender
mixtures is not as pronounced. This is because same gender sources have more overlap,
which makes it more difficult to segregate them, which in turn makes it difficult for
the adaptation algorithm to isolate regions unique to a single source. Therefore, the
adaptation algorithms sometimes converge on solutions which are partial matches for
both speakers, leading to source reconstructions which contain phone permutations across
sources as described earlier. This hypothesis is confirmed by the target reconstruction SNR
performance shown in table 4.3. The metric is based on the SNR of the magnitude of the
target reconstruction, ignoring phase:

SNRmag = 10 log10
‖ xmag(1..T)‖2

‖ xmag(1..T)− x̂mag(1..T)‖2 (4.46)

where xmag(t) = 10
x(t)
20 , x(t) is the ground truth target signal, x̂(t) is the source recon-

struction, and ‖ · ‖ is the Frobenius norm operator. As with the recognition results, the
performance on same gender mixtures is significantly reduced (by about 3 dB) on the
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Mean Only Full
Algorithm Same Gender Diff Gender Same Gender Diff Gender

Oracle 100.00 100.00 100.00 100.00

Estimated Oracle 94.97 99.50 97.21 98.00

SD model selection 97.77 97.00 98.88 98.00

Hierarchical (SD init) 96.09 99.00 98.88 99.00

Hierarchical 83.24 92.00 87.71 98.00

Hierarchical (fast) 80.34 82.50 85.47 93.50

Variational EM 74.86 88.00 83.24 90.50

Table 4.4: Target speaker selection accuracy (in percent) on the 0 dB SNR
two-talker subset of the 2006 Speech Separation Challenge data set.

adaptation based systems. This indicates that the performance reduction is due to source
reconstruction errors (e.g. source permutations), not only recognition errors.

These source permutation problems could be improved through the use of a different
initialization scheme which is better able to segregate same gender mixtures. This is
demonstrated by the small difference in performance between different gender and same
gender mixtures in the Hierarchical (SD init) system. The initialization scheme described
in section 4.2.2.1 does not always suffice to differentiate between sources in same gender
mixtures, leading to the same (or very similar) initializations for both sources. This occurs
because the eigenvoice dimensions with high variance, which are the ones that are used
to differentiate the sources, are well correlated with gender. When the initialization is
symmetric across all sources, they can only be segregated using the model’s temporal
constraints. By design, the temporal constraints in our model are somewhat weak, so
nearly symmetric initialization on same gender mixtures leads to source permutations.

The variational EM algorithm performs almost as well as the full hierarchical algorithm,
particularly on same gender mixtures when both means and covariances are adapted.
Unfortunately, its recognition accuracy is reduced by as much as 9% absolute under the
other conditions. This is at least partially a result of recognition errors as the decrease in
SNR is not as dramatic. In fact, the significantly reduced performance of the variational
EM algorithm on different gender mixtures when using full model adaptation is a result
of errors made during target speaker selection, i.e. the process of deciding which voice
has spoken the target color (see table 4.4). When these errors are corrected, the difference
in performance between the two systems is reduced by more than half. As before, this
indicates that the variational EM algorithm is more prone to source permutations or the
addition of artifacts than the hierarchical algorithm. The sped up hierarchical algorithm
suffers from similar problems, making even more errors due to target speaker selection
than the variational algorithm.

Qualitatively, the main difference between the two algorithms is that the EM approach
considers all possible paths through the joint state space of the speech models whereas
the hierarchical algorithm focuses only on the most likely path. This results in differing
convergence behavior of the two algorithms. This is made worse by the fact that our
implementation of the variational EM algorithm does not evaluate all possible state
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paths. As described in section 4.2.3.1, the algorithm is initialized using an approximate
computation of the posterior distribution using aggressive pruning of state combinations
with low likelihood. Unfortunately, such pruning can result in the state combinations
with high posteriors being discarded altogether. This problem is exacerbated because
the observation likelihoods tend to vary over a wide dynamic range (a side effect of the
high dimensional spectral representation), making it likely that a particular path will be
overlooked if it is a poor match for a very short segment, even if it is a good fit for another.
If this initialization procedure discards the optimal state combinations, they will never be
recovered, ultimately leading to poor separation. While the resulting lattice is generally
reasonably accurate, this problem does happen. Increasing the beam pruning threshold
would alleviate the problem, at the cost of significantly increasing the computation time,
which goes against the very motivation behind this algorithm in the first place.

A second, more minor, difference between these two approaches lies in the way the
eigenvoice parameters are updated in each iteration. In the hierarchical algorithm the
parameters are learned to match the source reconstructions. In dimensions dominated
by the masking signal the reconstructions contain the mean settings corresponding to
the previous parameter setting. In contrast, the variational EM algorithm is designed
to simply ignore the masker-dominated regions. Because the source masks are held
constant, the updates are approximate by nature. This means that it is possible for the
parameters to be updated in a way that flips the mask around in some regions. As a result,
over the course of multiple iterations, the masks, and thus the parameters, can oscillate
around the correct settings. On the other hand, the reconstruction used in the hierarchical
updates have a regularizing effect on the parameter updates, encouraging the parameters
to remain consistent with the previous settings and therefore the previous mask, avoiding
this problem.

The reduced performance of the variational algorithm is a result of the combination
of these effects. However, the advantage to this algorithm is that the nature of the
approximation allows it to run significantly faster than the hierarchical algorithm, which
runs the Viterbi algorithm over the factorial HMM state space for every iteration. Our
Matlab implementation of the variational E-step runs about 3-5 times faster than our
previous optimized, pruned, C-coded Viterbi search. Based on the significant difference
in performance between the variational algorithm and the sped up hierarchical algorithm
it is clear that the variational approach is superior when speed is the primary concern.
However, despite this speed advantage, the cost in terms of accuracy was significant, so we
only use the hierarchical learning algorithm in the remaining experiments.

Recently, Rennie et al. [86] described an extremely efficient method for FHMM separation
based on loopy belief propagation that scales linearly in the number of sources. Using
this algorithm instead of the Viterbi search would significantly increase the speed of the
hierarchical algorithm, eliminating the speed advantages of the variational approach. It is
also possible to use this method of inference to develop an efficient EM algorithm similar to
the variational approach that does not suffer from the variational parameter initialization
problems described in section 4.2.3.1.
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Figure 4.11: Separation performance using speaker-dependent (SD),
speaker-adapted (SA), and speaker-independent (SI) models. Also shown is
performance of separation using oracle knowledge of speaker identities and
relative gains (Oracle) and baseline performance of the recognizer on the
mixed signal (Baseline). For oracle, SD, and SA, darker colors correspond
to performance using mean only models and lighter colors correspond to
performance using full models.

4.3.2 SSC results

In this section we evaluate the proposed adaptation method on the full 2006 Speech
Separation Challenge test set. Figure 4.11 compares the performance of the speaker
adaptation (SA) system to two comparison systems based on SD and SI models respectively.
As before, for both SA and SD systems we used two different sets of models: one using
speaker-dependent (or adapted) means only and one using adapted means and covariance.
We also compare this to performance when using oracle knowledge of the speaker identities
and gains. Finally, we include baseline performance of the recognizer generating a single
transcript for the original mixed signal. The overall performance of the SA systems are also
listed in tables 4.5 and 4.6 for the mean only and full cases respectively. SD performance is
listed in tables 4.7 and 4.8.



4. Monaural Speech Separation 65

SNR Same Talker Same Gender Diff Gender Avg.

6 dB 41.44 66.20 75.50 60.15

3 dB 33.56 60.34 73.50 54.83

0 dB 29.73 56.15 66.75 49.92

3 dB 23.42 45.25 58.00 41.43

-6 dB 20.50 35.20 46.50 33.53

-9 dB 15.32 24.86 32.00 23.71

Table 4.5: Recognition accuracy (in percent) on the 2006 Speech Separation
Challenge data test set using our source-adapted separation system with
mean only models.

SNR Same Talker Same Gender Diff Gender Avg.

6 dB 44.59 69.83 85.25 65.64

3 dB 38.06 68.44 82.25 61.81

0 dB 31.76 62.29 79.25 56.66

-3 dB 27.70 55.59 68.25 49.50

-6 dB 22.30 40.78 59.75 40.27

-9 dB 16.22 31.56 43.00 29.70

Table 4.6: Recognition accuracy (in percent) on the 2006 Speech Separation
Challenge data test set using our source-adapted separation system with
full models.

Looking at general trends, we see that the SD models perform similarly whether using
oracle or Iroquois-style speaker identification. Both of these often perform significantly
better than the SA system, which performs better than the SI system and baseline. As
before, using fully adapted models further improves performance over the mean only
models.

The reduced performance of the SA system in this task is mainly due to its vulnerability
to permutations between sources, which reflects the sensitivity of the initial separation to
initialization. The adaptation process is able to compensate for limited permutations, as
demonstrated in figure 4.7. However when the initialization does not sufficiently separate
the sources, the system can get stuck in poor local optima where each of the estimated
sources is only a partial match to the ground truth. In contrast, it performs significantly
better on the different gender condition because the initial separation tends to be better. In
fact, when using full models the SA system’s performance is quite close to that of the SD
system on different gender mixtures. The errors get worse as SNR decreases because the
stage of initialization that adapts to the mixed signal favors the louder source. Fortunately
the algorithm is generally able to compensate for poor initialization as it iterates, however,
as shown in figure 4.12, this process takes many iterations.

The performance of the SI system is not sensitive to the different speaker conditions
because the same model is used for both sources. The other separation systems work
best on mixtures of different genders because of the prominent differences between male
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SNR Same Talker Same Gender Diff Gender Avg.

6 dB 38.29 78.49 74.25 62.23

3 dB 37.84 74.58 77.75 62.06

0 dB 28.60 72.07 76.00 57.32

-3 dB 22.75 62.29 66.00 48.92

-6 dB 15.32 46.93 51.25 36.69

-9 dB 9.01 27.93 27.50 20.80

Table 4.7: Recognition accuracy (in percent) on the 2006 Speech Separation
Challenge data test set using mean-only speaker dependent models and
Iroquois speaker identification.

SNR Same Talker Same Gender Diff Gender Avg.

6 dB 47.30 86.87 89.50 73.13

3 dB 34.01 85.75 86.50 66.89

0 dB 22.30 83.52 80.00 59.73

-3 dB 19.37 72.63 76.50 54.24

-6 dB 16.44 60.34 65.00 45.67

-9 dB 13.96 41.06 49.25 33.78

Table 4.8: Recognition accuracy (in percent) on the 2006 Speech Separation
Challenge data test set using full speaker dependent models and Iroquois
speaker identification.

and female vocal characteristics, which means that such sources tend to have less overlap.
Conversely, the performance on the same talker task is quite poor. This is because the
models used for each source are identical (or close to it in the SA case) except for the gain
term, and the models enforce only limited dynamic constraints. The performance of the SI
system is quite poor in all conditions for the same reason. The marked difference between
the SA and SI systems demonstrates that adapting the source models to match the source
characteristics can do a lot to make up for the limited modeling of temporal dynamics.

The source permutation errors on the same talker task are reminiscent of human listening
test results reported by Cherry [13]. In these experiments, monaural mixtures were
generated from utterances consisting of connected strings of short “cliche” phrases spoken
by the same talker. Test subjects were unable to reliably transcribe either of the sources
in their entirety. Instead, the transcriptions consisted of a grammatically correct string of
cliches composed of equal numbers of phrases spoken by each of the underlying sources.
The top down constraints from the listeners’ knowledge of the rules of English grammar
allowed them to reliably identify individual sources over the short term. However, in the
absence of other source-specific information these constraints were ambiguous over the
long term, making accurate separation impossible. The phone permutations in the results
obtained by our separation systems are consistent with this behavior, albeit at a shorter
time scale, due to the lack of a strong language model.

The significance of the adaptation process is demonstrated in figure 4.12 which shows how
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Figure 4.12: Separation performance improvement of the SA system using
full models averaged over all SNRs as the source adaptation/separation
algorithm iterates.

the recognition accuracy of the SA system improves after each iteration averaged across
all SNRs. It is quite clear from this figure that the iterative algorithm helps significantly,
increasing the average accuracy by over 20% in both the same gender and different gender
conditions after 15 iterations. The performance improvement for the same talker condition
is more modest. While the models are able to adapt somewhat to match the specific sounds
(i.e. model states) present in each source signal, they still remain very similar. Because of
this and the limited temporal dynamics built into the models, the same talker separations
suffer from source permutations.

Table 4.9 compares the average performance over all SNRs of all participants in the
evaluation to the systems proposed in this chapter. A breakdown of performance as a
function of SNR is shown in figure 4.13. Broadly speaking, in mixtures of different talkers
our SD systems have performance roughly on par with the other model-based systems.
Like Kristjansson et al. [55], the SD (Full) system even outperforms human listeners under
some conditions. Despite the fact that they do not rely on precise knowledge of the exact
talkers present in the mixture, the SA systems are still able to perform quite well.

As described above, the primary weakness of all of our systems when compared to the top
performers lies in its performance on same talker mixtures. This is a direct result of our
deliberate attempt to be as general as possible and not use any grammar-specific knowledge
in our temporal models. This is in direct contrast to Kristjansson et al. [55] who explicitly
use grammar knowledge for separation and Virtanen [112] whose separation system is
integrated with the recognizer. Such integration is also present in the CASA-based systems
[7, 103]. Another trend in figure 4.13 is that the performance of the proposed systems
drops off faster than the top performers at very low SNRs. This is because unlike e.g. [55, 8]
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System Description ST SG DG

Human [17] N/A 66 81 88

Kristjansson [55] Source models, FHMM 56 87 87

Virtanen [112] Source models, FHMM 48 77 75

Ming [70] Source models 51 60 65

Barker [7] CASA, Speech fragment decoder 48 62 64

Schmidt [97] Source models, NMF 42 47 62

Srinivasan [103] CASA 28 52 61

Deshmukh [22] Phase Opponency 30 33 32

Every [30] Pitch tracking 19 23 28

Runquiang [93] CASA 19 22 24

SA (mean only) Eigenvoice models, FHMM 27 48 59

SA (full) Eigenvoice models, FHMM 30 55 70

SD (mean only) Source models, FHMM 25 60 62

SD (full) Source models, FHMM 26 72 74

Table 4.9: Performance of all participants in the 2006 Speech Separation
Challenge averaged over all SNRs compared to the proposed separation
systems.

we do not take advantage of the fact that the mixtures were generated from a limited set
of SNRs. Instead we initialize the channel response to zero for all sources in all systems.
Once again, this demonstrates how performance suffers when minimal assumptions are
made about the mixtures.

The final weakness of our system relative to the top performers is the speech recognizer.
Like many of the entrants [97, 22, 30], we utilize the default recognizer provided by
the organizers. It is clear that using more advanced ASR methods, such as the speaker-
dependent acoustic models used in [55, 112, 7] and incorporating knowledge of the
background signal into the recognizer as in [112, 7] would improve recognition performance.
Many of the errors made by the proposed systems are caused by common phonetic
confusions between letters (e.g. “e” and “v” are confused 15% of the time in SD (Full)
separation ). However, some of these errors are the result of phone permutations. These are
particularly harmful to this task because it requires the accurate identification of isolated
phones, i.e. single letters in the grammar, which are sometimes permuted. Finally, we
note that the target speaker selection algorithm also depends on the performance of this
recognizer, so any errors it makes in this stage are passed through to the final performance
metric.

4.3.3 Held out speakers

As described previously, source separation systems based on speaker-dependent models
are potentially at a disadvantage when presented with mixtures containing sources that are
not represented in the SD model set. We expect that the SA system should be better suited
to handling such cases. To evaluate this hypothesis we separated the SSC training data into
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Figure 4.13: Performance of all participants in the 2006 Speech Separation
Challenge compared to the proposed separation systems.

random subsets of 10, 20, and 30 speakers and trained new eigenvoice models from each
subset. All eigenvoice dimensions were retained for these models, e.g. the model trained
from 10 speaker subset used 9 eigenvoice dimensions for adaptation, etc. A new test set
was generated from utterances from the four speakers held out of all training subsets. The
held out speakers were evenly split by gender. The test set consists of 400 mixtures at 0 dB
SNR, broken up into 200 same gender mixtures and 200 different gender mixtures. These
experiments only utilize mean only models.

Figure 4.14 compares the performance of the SD system and SA system on this data set.
The SD models used were limited to the same speakers as were used to train the new
eigenvoice models. Performance using smaller subsets of training speakers is compared to
a baseline containing all 34 speakers from the training set. It is important to note that the
mixtures in the test set were generated from portions of the clean data used to train the
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Figure 4.14: Performance on mixtures of utterances from held out speakers
using only subsets of 10, 20, and 30 speakers for training compared to
models trained on all 34 speakers.

baseline 34 speaker SD and SA models. The performance would likely have been worse
had there been enough clean data to properly generate a separate test set, so the accuracy
shown for the 34 speaker set should be viewed as an upper bound.

Performance of both the SD and SA systems suffers on held out speakers, but the per-
formance decrease relative to the use of models trained on all 34 speakers shown in the
bottom row of figure 4.14 is much greater for the SD models. In fact, the SA system slightly
outperforms the SD system in absolute accuracy in most of the held out speaker cases. It
is clear that separation using eigenvoice speech models generalizes better to unseen data
than separation based on model selection from a set of SD models.

Despite this, the performance drop on held out speakers for both systems is quite significant.
We expect that this is because a relatively small set of speakers were used to train the
systems. As the number of eigenvoice training examples increases we expect the model to
better capture the characteristics of the general speaker space and thus be able to generalize
better to unseen speakers. At the same time, as the number of training speakers grows it
becomes increasingly likely that one of the models in the set will be a good match for a
previously unseen speaker. Still, we expect that the performance of the SD system will not
improve as quickly as the SA system as the size of the training set grows. This can be seen
to some extent in the fact that the SD system has a flatter slope than the SA system as the
number of models decreases in figure 4.14, especially in the different gender case.
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Based solely on these experiments it is unclear how a system based on eigenvoice adaptation
would compare to a system based on model selection from a large set of speaker-dependent
models. The results in [58] indicate that on the order of 100 speaker models are needed to
learn eigenvoice models that generalize well. The SSC data set contains training data for
relatively few speakers, and based on the results in this section, it is clear that more are
needed to learn adequate speaker subspace bases. In the following section we describe a set
of experiments that better evaluate the ability of these systems to generalize to previously
unseen speakers using training data from hundreds of speakers.

4.4 Experiments: Switchboard

In this section we evaluate the proposed separation systems on a data set similar to the
Speech Separation Challenge set used in the previous section but created from a larger set
of speakers. We use the Switchboard corpus of conversational telephone speech [36] which
contains a significant amount of data from over 500 speakers. The use of such a large data
set should allow the estimation of more accurate eigenvoice bases, which would improve
adaptation performance. Despite containing data from a large number of speakers, this
data set presents a number of challenges that were not present in the previous experiments.
It consists of conversational speech recorded under a wide variety of recording conditions,
making for a more realistic separation task than the highly constrained setting of the
Speech Separation Challenge.

We divided the set of speakers into training and testing sets containing 253 and 290

speakers respectively. All speakers for whom there was more than 30 minutes of data
available were assigned to the training set, the remaining speakers were used solely for
testing. The training speakers were further subdivided into smaller sets of 250, 128, 64,
and 32 speakers to evaluate performance as a function of number of training speakers. The
data from each training set was used to a train a set of eigenvoice models as described in
chapter 3. In all cases the models used speaker-dependent means and covariances and
only retained the 30 eigenvoices with highest variance.

All data from the 32 speaker training subset left over after removing 30 minutes for training
was used to create a set of 100 test mixtures, 50 mixtures of speakers of the same gender and
50 different gender. The mixtures were generated by taking randomly selected 5 second
clips based on the segmentation from [104]. All test signals were mixed at 0 dB SNR. This
“In Train 32” test set was used to evaluate the performance of the different separation
systems on matched training and testing speakers. We also created an analogous test
meant to evaluate the ability of the different methods to generalize to previously unseen
speakers. This “Not In Train” test set based only on data from speakers not used at all for
training.

It is important to note that the nature of the Switchboard data makes the task significantly
more difficult than the Speech Separation Challenge. First, it has half the bandwidth of the
16kHz data we used in our SSC system, which makes identification of phones dominated
by high frequency energy such as fricatives more difficult.

A more significant difference lies in the nature of the speech. The GRID data consists
of speech read from a prompt that is generated from a very constrained grammar. In
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divergence between GMMs described in Hershey and Olsen [40].

contrast, the Switchboard utterances come from a completely unconstrained vocabulary
and are spontaneous in nature, containing a lot of irregularities such as laughter and
various disfluencies common in natural speech. As in ASR applications, an acoustic
model appropriate for such data is generally composed of context-dependent phone
models containing thousands of HMM states. Despite this, we are forced to use a context
independent phone configuration for our speech models composed of only 556 states
because of the unfavorable scaling in terms of computational complexity inherent in the
FHMM signal model. As a result the Switchboard phone models tend to have higher
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variances than the GRID models because they are averaged over many different contexts
all containing more variation than is present in the more constrained GRID data. This
is demonstrated in figure 4.15. A direct consequence of these simplifications is that the
Switchboard speaker models must necessarily be more loose and thus less distinguishable
from each other than the GRID models. This is demonstrated in figure 4.16 which plots the
pairwise distance between the GRID and Switchboard speaker models. The distance metric
is the negative logarithm of the normalized Jensen approximation to the Bhattacharyya
divergence between GMMs described in Hershey and Olsen [40], an approximation to the
Bayes error between GMMs which measures the amount of overlap of the distributions.
This metric was originally proposed as a measure of word confusability between ASR
acoustic models. The average distance between Switchboard models (3.5) is significantly
lower than that between GRID models (5.4), implying that Switchboard speakers will likely
be more difficult to isolate than the GRID speakers.

The final difficulty in modeling Switchboard speech is that each conversation was recorded
over a potentially unique telephone channel. Therefore, although all mixtures are at 0

dB SNR, there is still no guarantee that a signal from an arbitrary conversation will be a
good match to the corresponding speaker model. This makes the channel compensation
technique described in section 3.4.3 particularly important for this data set. Similar methods
have also proved to be quite important in speaker verification performed on Switchboard
data (e.g. [48]). Therefore, we use a channel basis set composed of 10 low order DCT
bases (see figure 4.4 for an example). This also complicates training. In order to obtain
speaker models with the channel response factored out, the channel adaptation algorithm
of section 4.2.1.1 is used to estimate the channel of all training utterances (pooling all
utterances belonging to a particular conversation together because they all use the same
channel). The channel estimates are then subtracted out of the data before using it to
train speaker models. The channel prior distribution N (h; νh , Ξh

)
is learned from the

estimated channels as well. Note that this channel model is somewhat weak. A better
matched channel basis set can be learned directly from the training data, as described in
[48], but this requires a more complex training algorithm to factor the signal into portions
that depend on the speaker and portions that depend only on the channel.

The eigenvoice adaptation and model selection (SD) systems were evaluated using all
different training sets on the two test sets described above. The adaptation system was
based on the hierarchical learning algorithm using two initialization schemes: the method
described in section 4.2.2.1 (SA) and initialization based on the model selection algorithm
(SA (SD init)). Also plotted is separation using the oracle knowledge of the speaker
identities and channel responses (Oracle) and separation using models adapted to the clean
source signals (Estimated Oracle). Performance is measured using the magnitude signal-
to-noise ratio (SNR) of the final source reconstruction: The results are shown in figure 4.17.
As predicted above, the results are somewhat worse than on GRID (see table 4.3). This
reflects the difficulty of the unconstrained monaural source separation problem when little
is known in advance about the source identities and unknown channel differences between
training and test data need to be taken into account.

In the matched training and testing set (In Train 32), all adaptation systems perform roughly
comparably. As before, performance on different gender mixtures is better than on same
gender mixtures. Also as predicted, SD performs best when the training and test speakers
match exactly. As the number of training speakers increases, SD performance decreases.
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Figure 4.17: Average separation signal-to-noise ratio on the Switchboard
data set.

This is because the chance of selecting the wrong model increases. Finally, the SA systems
both outperform the SD system in the matched conditions. This is perhaps not surprising
for SA (SD init) because it begins from essentially the same point as the SD system but is
able to find a closer fit to the particular utterance due to the additional degrees of freedom
provided by the eigenvoice model. The fact that this improves performance over the SD
system implies that either the channel model alone is insufficient to fit the true channel
and the learned eigenvoice bases are able to compensate for this deficiency, or that the
model selection algorithm incorrectly identifies the speakers, yet still serves as a superior
initialization to the adaptation algorithm. In fact, the model selection algorithm is only
correct 49% of the time on the exactly matched conditions (32 training speakers) due to
confusion caused by the differences in channel. Still it is likely that the former explanation
is true to some extent as well. This reasoning also explains the fact that SA with the
default initialization outperforms SD and that Estimated Oracle outperforms Oracle under
matched training and testing conditions.

The key result of these experiments is on the mismatched train/test set (Not In Train). The
performance of the SD system drops off by an average of more than 1 dB SNR, while the
SA systems remain more stable, decreasing by only a small fraction of a decibel. The SA
(SD init) system no longer outperforms SA on this data set, however their performance is
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quite similar. As the number of training speakers increases, performance of the SA systems
increase slightly, while SD performance decreases slightly.

Under all conditions, the performance of all SD and SA systems is quite poor relative
to the oracle systems. The performance of Estimated Oracle shows similar trends to the
SA systems: it performs slightly worse on held out speakers, however it improves as the
number of training speakers increases. Once again, the decrease in performance when
moving to mismatched training and test speakers is quite modest. This indicates that
the subspace adaptation approach is able to accurately capture the speaker-dependent
characteristics of held out speakers. The poor performance of the SA systems relative to
Estimated Oracle is a result of the difficulty of performing model adaptation when only a
mixture is observed, not a shortcoming of the subspace adaptation approach itself.

In conclusion, it is clear from these experiments that the use of the more flexible subspace
model has a significant advantage over the model selection approach on more realistic
data. The additional confusion caused by the significant channel variation between the
training and testing data puts the model selection approach at a disadvantage in these
experiments. This could be minimized by using a set of channel bases that is better matched
to the data and a better channel prior distribution to improve performance of the selection
algorithm. However, even with such improvements it is likely that the SA systems would
still perform better under mismatched conditions. In situations where an iterative learning
algorithm needs to be applied to the SD system anyway (i.e. when channel compensation
is necessary), there is no advantage to not using eigenvoice adaptation as well because
the computational costs are approximately equal. Additionally, the SA systems have the
advantage of being more compact than the SD systems because only 30 eigenvoice bases
are retained, compared to anywhere between 32 to 250 full speaker models in the SD case.

4.5 Summary

In this chapter we described an approach to source model-based monaural source sepa-
ration based on the speaker subspace model described in chapter 3. We developed two
algorithms for estimating the subspace parameters from a mixture and described how
the resulting adapted models can be used to reconstruct the sources. These algorithms
were compared to an alternate method for source model estimation based on selection
from a predefined database of source models in the context of the 2006 Speech Separation
Challenge. Although the best performance requires the use of models that capture speaker
specific characteristics exactly, we have shown that good results are still possible using
minimal prior knowledge about the signal content using speaker adaptation. Finally, we
show that although the model selection approach yields superior results when training
data is available for the speakers comprising a mixed signal, the approach based on speaker
subspace adaptation is better able to generalize to previously unseen speakers, especially
if the number of training speakers is sufficiently large. Also, under some conditions using
the model selection method to initialize the subspace parameter estimation algorithm can
further improve performance.

The greatest weakness of the proposed system is its tendency to permute between sources
due to limited modeling of temporal dynamics. This is often alleviated through the iterative
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eigenvoice re-estimation, however the tendency to fall into local maxima is aggravated
by the use of the approximate “max” mixing model. This results in a model with a
discontinuous likelihood surface which is difficult to optimize, and necessitates a number
of approximations in developing the adaptation algorithms. The use of a continuous
mixing model, such as Algonquin [56], which more accurately models the non-linear
mixing of equation (4.2) would make these approximations unnecessary and improve the
adaptation performance, albeit at increased computational cost. This would also reduce the
sensitivity of the adaptation algorithm to initialization. The development of this extension
remains future work.

The results of the Switchboard experiments reflect the difficulty of the task of single channel
speech separation in general. Although we demonstrated that subspace adaptation can
generalize better than simple model selection on this task because it naturally compensates
for the effects of speaker and channel variation, the performance of the best adaptation
system was still significantly worse than on the Speech Separation Challenge data. Ob-
taining high quality separation of monaural mixtures of spontaneous speech with varying
channel effects requires the use of more complex models that incorporate more detailed
knowledge of these sources of variation. However, in situations when more than one
channel is observed, good separation is possible using very simple source models. This is
the subject of the next chapter.
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Chapter 5

Binaural Separation Using Explicit
Source Models

In this chapter, we describe a system for separating multiple sources from an underdeter-
mined, reverberant, two-channel recording using the proposed speaker subspace model.
The system is based on the model-based expectation maximization source separation and
localization (MESSL) system of Mandel et al. [66, 67, 68] which uses a probabilistic model
of the interaural spectrogram to localize and separate sources. We extend this model to
incorporate the speaker subspace model of source statistics described in chapter 3 and
derive an EM algorithm for finding the maximum likelihood parameters of the joint model1.
We conclude with a series of experiments comparing the performance of different variants
of MESSL with other state of the art multichannel separation systems under a variety of
conditions.

5.1 Introduction

Signal model based approaches to source separation are common when only a single
channel observation is available. However, as seen in previous chapters, such algorithms
generally require relatively large, speaker-dependent models to obtain high quality sepa-
ration. The separation problem becomes considerably easier when multiple channels are
observed, as demonstrated by the ability of the binaural system of human listeners to focus
on a particular sound source in an environment containing distracting sources. In fact,
by leveraging the localization cues present in binaural signals it is possible to separate
sources without prior knowledge of their content [125, 67]. However, it is to be expected
that incorporating such prior knowledge would be further able to improve separation
performance. In this chapter we describe a system for source separation that combines
inference of localization parameters with model-based separation methods and show that

1The MESSL model described in this chapter was originally developed by Mandel and Ellis [67]. This chapter
describes an extension to the MESSL model originally described in Weiss, Mandel, and Ellis [120]
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the additional constraints derived from the source model help to improve separation
performance.

The MESSL system of Mandel et al. [68] combines a cross-correlation approach to source
localization with spectral masking for source separation. The approach utilizes the same
localization cues used by the human auditory system. It is based on a model of the
interaural phase and level differences derived from the observed binaural spectrograms.
This is similar to the DUET algorithm for separating underdetermined mixtures [125]
and other similar approaches to source localization [72] which are based on clustering
localization cues across time and frequency. Such systems work in an unsupervised manner
by searching for peaks in the two dimensional histogram of interaural level difference (ILD)
and interaural time, or phase, difference (ITD or IPD) to localize sources. In the case of
DUET, this stage is followed up by assigning each time-frequency point of the spectrogram
to a particular spatial location to create source specific spectral masks. Harding et al. [39]
and Roman et al. [89] take a similar but supervised approach, where training data is used
to learn a classifier to differentiate between sources at different spatial locations based on
features derived from the interaural cues. Unlike the unsupervised approach of Yilmaz
and Rickard [125] and Nix and Hohmann [72], this has the disadvantage of requiring a
significant amount of training data. MESSL is most similar to the unsupervised separation
algorithms. It is able to jointly localize and separate spatially distinct sources using a
parametric model of the interaural parameters estimated from a particular mixture.

A problem with all of these methods is the fact that, as we will describe in the next section,
the localization cues are often ambiguous in some frequency bands. Such regions can
easily be ignored if the intended application is solely localization, but the uncertainty leads
to reduced separation quality when using spectral masking. In this chapter we describe
an extension to MESSL which incorporates a prior model of the underlying source signal
which does not have the same underlying ambiguities as the interaural observations and
therefore is able to better resolve the individual sources in these regions. This approach
has the disadvantage of requiring training data to learn the source prior model, but as we
will show in section 5.4, such a prior can significantly improve performance even if it is
not well matched to the test data.

The idea of combining localization with source models for separation has been studied
previously in [122, 82, 87, 3]. Given prior knowledge of the source locations, Wilson
[122] describes a complementary method for binaural separation based on a model of
the magnitude spectrum of the source signals. This approach combines factorial model
separation described in chapter 4 with a model of the IPD based on known source locations.
A source-independent (SI) GMM is trained on clean speech and used to model both sources.
As described in previous chapters, such a model generally results in very poor separation
due to the lack of temporal constraints and lack of source-specific information available
to disambiguate the sources. In this case, however, the localization model is able to make
up for these shortcomings. Per-source binary masks are derived from the joint IPD and
source model. This is shown to improve performance over separation systems based on
localization cues alone.

Rennie et al. [82] take a similar approach to combining source models with known spatial
locations for separation using microphone arrays. Instead of treating the localization and
source models independently, they derive a model of the complex speech spectrum based
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on a prior on the speech magnitude spectrum that takes into account the effect of phase
rotation consistent with a source signal arriving at the microphone array from a particular
direction. Like the other systems described above, [82] is able to separate more sources
than there are microphones.

These systems have some disadvantages when compared to the extensions to MESSL
described in this chapter. The primary difference is that they depend on prior knowledge
of the source locations whereas MESSL and its extensions are able to jointly localize and
separate sources. Rennie et al. [84] describe an extension to [82] that is able to estimate the
source locations as well, bringing it closer to our approach. A second difference is that these
systems use a factorial model to model the interaction between different sources. In [122]
this leads to inference that scales exponentially with the number of underlying sources.
Although the signal model in [82, 84] is similar, they are able to manage this complexity
using an approximate variational learning algorithm. In contrast, exact inference in MESSL-
SP is linear in the number of sources. This is because each time-frequency cell is assumed
to be conditionally independent given the latent variables. Because each frequency band is
independent given a particular source and mixture component, the sources decouple and
all combinations need not be considered.

In the next section, we describe two closely related extensions to the baseline MESSL
algorithm to incorporate a prior distribution over the source signal statistics: MESSL-SP
(Source Prior) which uses the same SI model for all sources as in [120], and MESSL-
EV (Eigenvoice) which uses eigenvoice adaptation to learn source-specific parameters to
more accurately model the source signals. In both cases, the information extracted from
the interaural cues and source model serve to reinforce each other. We show that it is
possible to obtain significant improvement in separation performance of speech signals
in reverberation over a baseline system employing only interaural cues. As in [122, 82],
the improvement is significant even when the source models used are quite weak, only
loosely capturing the spectral shapes characteristic of different speech sounds. The use
of speaker-adapted models in MESSL-EV is able to improve performance even more, a
further advantage over the source-independent approach used in [122, 82].

5.2 Binaural mixed signal model

We model the mixture of I spatially distinct source signals {xi(t)}i=1..I based on the
binaural observations y`(t) and yr(t), corresponding to the signals arriving at the left and
right ears respectively. For a sufficiently narrowband source in an anechoic environment,
the observations will be related to a given source signal primarily by the gain and delay that
characterize the direct path from the source location. However, in reverberant environments
this assumption is confused by the addition of convolutive noise arising from the room
impulse response. In general the observations can be modeled as follows:

y`(t) = ∑
i

xi(t− τ`i ) ∗ h`i (t) (5.1)

yr(t) = ∑
i

xi(t− τr
i ) ∗ hr

i (t) (5.2)
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where τ`,ri are the delay characteristic of the direct path for source i and h`,ri (t) are the
corresponding “channel” impulse responses for the left and right channels respectively that
approximate the room impulse response and additional filtering due to the head related
transfer function (HRTF), excluding the primary delay.

5.2.1 Interaural model

We model the binaural observations in the short-time spectral domain using the interaural
spectrogram XIS(ω, t):

XIS(ω, t) ,
Y`(ω, t)
Yr(ω, t)

= 10α(ω,t)/20ejφ(ω,t) (5.3)

where Y`(ω, t) and Yr(ω, t) are the short-time Fourier transforms of y`(t) and yr(t),
respectively. For a given time-frequency cell, the interaural level difference (ILD) in
decibels between the two channels is α(ω, t), and the corresponding interaural phase
difference (IPD) is φ(ω, t).

A key assumption in the MESSL signal model is that each time-frequency point is domi-
nated by a single source. This implies the following approximations for the observed ILD
and IPD:

α(ω, t) ≈ 20 log10
|H`

i (ω)|
|Hr

i (ω)| (5.4)

φ(ω, t) ≈ ω(τ`i − τr
i ) (5.5)

where i is the index of the particular source dominant at that cell, and thus depends
on ω and t. These quantities have the advantage of being independent of the source
signal, which is why the baseline MESSL model does not require any knowledge of the
distribution of xi(t).

A necessary condition for the accurate modeling of the observation is that the interaural
time difference (ITD) τ`i − τr

i be much smaller than the window function used to calculate
XIS(ω, t). In the experiments described in section 5.4, we use a window length of 64 ms
and a maximum ITD of about 0.75 ms. Similarly, h`,ri (t) must be shorter than the window.
This assumption does not generally hold in reverberation because a typical room impulse
response has a duration of at least a few hundred milliseconds. However, we ignore this for
the purposes of our model and note that effect of violating this assumption is to increase
the variance in the ILD model. We model the ILD for source i as a Gaussian distribution
whose mean and variance will be learned from the mixed signal:

P
(
α(ω, t) | i , θ

)
= N (α(ω, t); υi(ω), η2

i (ω)
)

(5.6)

where θ stands for the otherwise unspecified model parameters.

The model for the IPD requires some additional considerations. It is difficult to learn the
IPD for a given source directly from the mixed signal because φ(ω, t) is only observed
modulo 2π. This is a consequence of spatial aliasing that results at high frequencies if
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Figure 5.1: Illustration of spatial aliasing in our model of the interaural
phase difference (IPD). The left pane shows the predicted IPD distribution
for two distinct sources centered on their respective values of ω, t. The right
pane demonstrates the observed IPDs for the two sources (dotted lines) with
the distributions overlaid. The IPDs are observed modulo 2π due to the
periodicity of the complex sinusoid in equation (5.3). For small interaural
time difference (blue) this is not a problem. However, if the ITD is large
(red), the IPD wraps around from −π to π. This is especially problematic
in mixtures because the wrapping results in additional ambiguity when the
IPDs for the different sources intersect.

the ITD is large enough that |ω(τ` − τr)| > π [125]. Because of this the observed IPD
cannot always be mapped directly to a unique time difference. However, a particular
ITD will correspond unambiguously to a single phase difference. This is illustrated in
figure 5.1. This motivates a top down approach where the observed IPD will be tested
against the predictions of a set of predefined time differences. The difference between the
IPD predicted by an ITD of τ samples and the observed IPD is measured by the phase
residual:

φ̃τ(ω, t) = arg
(

ejφ(ω,t) e−jωτ
)

(5.7)

which is always in the interval (−π, π]. Given a predefined set of τs, the IPD distribution
for a given source has the form of a Gaussian mixture model (GMM) with one mixture
component for each time difference:

P
(
φ(ω, t) | i , τ , θ

)
= N (φ̃τ(ω, t); 0, ς2

i
)

(5.8)

P
(
φ(ω, t), i | θ) = ∑

τ

ψiτ P
(
φ̃τ(ω, t) | i , τ , θ

)
(5.9)

where ψiτ = P
(
i , τ
)

are the mixing weights for source i and delay τ.

An example of the ILD and IPD observations used by the interaural model is shown in
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Figure 5.2: Observed variables in the MESSL-EV model derived from a
mixture of two sources in reverberation separated by 60 degrees. The left
column shows example ILD (top) and IPD (bottom) observations. The right
column shows the left (top) and right (bottom) spectrograms modeled using
the source model.

figure 5.2. The contributions of the two sources are clearly visible in both the ILD and
IPD observations. The target source, which is located at an angle of 0◦ relative to the
microphones, has an ILD close to zero at all frequencies while the ILD of the other source
becomes increasingly negative at higher frequencies. This trend is typical of a source off to
one side, since the level difference, which results from the “shadowing” effect of the head
or baffle between the microphones, increases when the wavelength of the sound is small
relative to the size of the baffle. Similarly, the IPD for the target source has an IPD close to
zero at all frequencies while the IPD for the other source varies with frequency, with phase
wrapping clearly visible at about 1, 3, and 5 kHz.

5.2.2 Source model

We extend the baseline MESSL model described above to incorporate prior knowledge of
the source statistics. This makes it possible to capture the source-dependent portions of
the observations that are divided out of the interaural spectrogram. We model the binaural
observations directly:

y`(ω, t) ≈ xi(ω, t) + h`i (ω) (5.10)
yr(ω, t) ≈ xi(ω, t) + hr

i (ω) (5.11)



5. Binaural Separation Using Explicit Source Models 83

where xi(ω, t) , 20 log10 |Xi(ω, t)|, and y`(ω, t), yr(ω, t), and hi(ω) are defined analo-
gously. An example of these observations derived from a mixture of two sources in
reverberation is shown in the right column of figure 5.2.

Because the number of signal points observed is generally very small compared to the
amount of data needed to reliably train a prior signal model describing the distribution of
xi(t), we take the subspace model approach and only learn the low dimensional adaptation
parameters from the mixture. For simplicity we model this distribution using a Gaussian
mixture model with diagonal covariances. The likelihood of a frame of the source signal
xi(t) can therefore be written as follows:

P
(

xi(t)
)

= ∑
c

πic N
(

xi(t); µc(wi), Σc(wi)
)

(5.12)

where c indexes the different source mixture components (states), and πic = P
(
c | i) are

the mixing weights for source i and component c. As in previous chapters, we assume
that the channel responses h`,ri are constant across the entire mixture, i.e. the sources and
the sensors remain stationary, and that they ares relatively smooth across frequency. The
channel response is parametrized in the DCT domain, giving h`i = Bh`i where B is a matrix
of DCT basis vectors. This allows h`,ri to be modeled using many fewer DCT coefficients
than the number of frequency bands Ω. Note that in this chapter we do not assume that the
channel response parameters h`,ri are subsumed into the subspace parameters w. Because
the channel responses at each ear are different we model them explicitly.

Combining this model of the channel response with the source model gives the following
likelihoods for the left and right channel spectrograms:

P
(
y`(ω, t) | i , c, θ

)
= N (y`(ω, t); µic(ω) + B(ω, :)h`i , σ2

ic(ω)
)

(5.13)

P
(
yr(ω, t) | i , c, θ

)
= N (yr(ω, t); µic(ω) + B(ω, :)hr

i , σ2
ic(ω)

)
(5.14)

where B(ω, :) is the row of B corresponding to frequency ω, µic = µc(wi), and σ2
ic = σ2

c (wi)
as defined in section 3.4.3.

Combining the model of the interaural signals with the source model gives the complete
likelihood of the model including the hidden variables:

P
(
φ(ω, t), α(ω, t), y`(ω, t), yr(ω, t), i , τ , c | θ)

= P
(
i , τ
)

P
(
φ(ω, t) | i , τ , θ

)
P
(
α(ω, t) | i , θ

)
P
(
c | i) P

(
y`(ω, t) | i , c, θ

)
P
(
yr(ω, t) | i , c, θ

)
(5.15)

This equation explains each time-frequency point of the mixed signal as being generated by
a single source i at a given delay τ using a particular component c in the source model. The
graphical model corresponding to this factorization is shown in figure 5.3. This figure only
includes the observations and those parameters that are estimated to match a particular
mixture. We describe the estimation of the model parameters in the following section.
For simplicity, parameters that remain fixed, including πc and Σc, are omitted. It is also
important to note that the figure depicts the full MESSL-EV model. If eigenvoice adaptation
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Figure 5.3: MESSL-EV graphical model. Each time-frequency point is
explained by a source i, a delay τ, and a source model component c.

is not used then wi is clamped to zero, and the model reduces to the original MESSL-SP
model described in Weiss et al. [120].

Note that all time-frequency points are conditionally independent given the model param-
eters. The total likelihood of the observations can therefore be written as follows:

P
(
φ, α, y` , yr | θ) = ∏

ωt
∑
iτc

P
(
φ(ω, t), α(ω, t), y`(ω, t), yr(ω, t), i , τ , c | θ) (5.16)

The combined model is essentially the product of three independent mixtures of Gaussians,
corresponding to the IPD, ILD, and source models. For conciseness we will drop the (ω, t)
where convenient throughout the remainder of this chapter.

5.3 Parameter estimation and source separation

The model described in the previous section can be used to separate sources because it
naturally partitions the spectrogram into regions dominated by different sources. Given
estimates of the source-specific model parameters θ = {ψiτ , ς2

i , υi, η2
i , wi, h`i , hr

i }, the
responsibilities at each time-frequency point can be easily computed. Similarly, given
knowledge of the responsibilities, it is straightforward to estimate the model parameters.
However, because neither of these quantities are generally known in advance, neither can
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be computed directly. We derive an expectation-maximization algorithm to iteratively learn
both the parameters and responsibilities of time-frequency points for each source.

The E-step consists of evaluating the posterior responsibilities for each time-frequency
point given θj, the estimated parameters for iteration j. We introduce a hidden variable
representing the posterior of i, τ and c in a particular time-frequency cell:

ziτc(ω, t) =
P
(
φ, α, y` , yr , i , τ , c | θj

)
∑iτc P

(
φ, α, y` , yr , i , τ , c | θj

) (5.17)

This is easily computed using the factorization in equation (5.15).

The M-step consists of maximizing the expectation of the total log-likelihood given the
current parameters θj:

L(θ | θj
)

= k + ∑
ωt

∑
iτc

ziτc(ω, t) log P
(
φ, α, y` , yr , i , τ , c | θ) (5.18)

where k is a constant that is independent of θ.

The maximum likelihood model parameters are weighted means of sufficient statistics of
the data. First, we define the operator

〈x〉t,τ ,
∑t,τ ziτc(ω, t)x
∑t,τ ziτc(ω, t)

(5.19)

as the weighted mean over the specified variables, t and τ in this case, weighted by
ziτc(ω, t). The updates for the interaural parameters can then be written as follows:

ς2
i =

〈
φ̃2

τ(ω, t)
〉

ω,t,τ,c
(5.20)

υi(ω) = 〈α(ω, t)〉t,τ,c (5.21)

η2
i (ω) =

〈
(α(ω, t)− υi(ω))2

〉
t,τ,c

(5.22)

ψiτ =
1

ΩT ∑
ωtc

ziτc(ω, t) (5.23)

Unlike the interaural parameters, the source model parameters are tied across frequency to
ensure that each time frame is explained by a single component in the source prior. The
updated parameters can be found by solving the following set of simultaneous equations
for wi, h`i , and hr

i :

∑
tc

UT
c Mict Σ̄−1

c
(
2 (µ̄c + Uc wi) + B (hr

i + h`i )
)

= ∑
tc

UT
c Mict Σ̄−1

c
(
y`(t) + yr(t)

)
(5.24)

∑
tc

BT Mict Σ̄−1
c
(
µ̄c + Uc wi + Bh`i

)
= ∑

tc
BT Mict Σ̄−1

c y`(t) (5.25)

∑
tc

BT Mict Σ̄−1
c
(
µ̄c + Uc wi + Bhr

i
)

= ∑
tc

BT Mict Σ̄−1
c yr(t) (5.26)
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where Mict is a diagonal matrix whose diagonal entries correspond to a soft mask which
encodes the posterior probability of component c from source i dominating the mixture at
frame t:

Mict , diag

(
∑
τ

ziτc(:, t)

)
(5.27)

The updates of equations (5.24) to (5.26) closely resemble the eigenvoice updates derived
in section 4.2.3.2. The main differences here are that the posterior depends on frequency,
hence the need for the mask term Mict, and that wi is tied across two observations, each of
which have unique channel responses. The full derivation for all of the parameter updates
can be found in section A.3.

This EM algorithm is guaranteed to converge to a local maximum of the likelihood surface,
but because the total likelihood in equation (5.16) is not convex, the quality of the solution
is sensitive to initialization. We initialize ψiτ from a cross-correlation based method
while leaving all the other parameters in a symmetric, non-informative state. From those
parameters, we compute the first E step mask. Using estimates of τ for each source from
PHAT-histogram [1], ψiτ is initialized to be centered at each cross-correlation peak and
to fall off away from that. Specifically, P

(
τ | i

)
, which is proportional to ψiτ , is set to

be approximately Gaussian, with its mean at each cross correlation peak and a standard
deviation of one sample. The remaining IPD, ILD, and source model parameters are
estimated from the data in the M-step following the initial E-step.

It should be noted that initializing models with a large number of parameters requires
some care to avoid source permutation errors and other local maxima. This is most
important with regards to the ILD parameters υi and ηi which are a function of frequency.
To address this problem, we use a bootstrapping approach where initial EM iterations
are performed with a frequency-independent ILD model, and frequency-dependence is
gradually introduced. Specifically, for the first half of the total number of iterations, we tie
all of the parameters across frequency. For the next iteration, we tie the parameters across
two groups, the low and high frequencies, independently of one another. For the next
iteration, we tie the parameters across more groups, and we increase the number of groups
for subsequent iterations until in the final iteration, there is no tying across frequency and
all parameters are independent of one another.

Figure 5.4 shows the interaural parameters estimated from the observations in figure 5.2
using the EM algorithm described in this section. The algorithm does a good job localizing
the sources, as shown in the plot of ψiτ . The ILD distribution (bottom left) accurately
characterizes the true distribution as well. As described earlier, the ILD of the source facing
the microphones head on (source 1), is basically flat across the entire frequency range
while that of source 2 becomes more negative with frequency. Similarly, the per-source IPD
distributions shown in the right hand column closely match the predictions made earlier.
These distributions consist of a mixture of Gaussians calculated by marginalizing over all
possible settings of τ as in equation (5.9). Since ψiτ contains non-zero probability mass for
multiple τ settings near the correct location for each source, there is some uncertainty as
to the exact source locations. The mixture components are spaced further apart at high
frequencies because of their proportionality to ω. This is why the distributions are quite
tight at low frequencies, but get gradually broader with increasing frequency.
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Figure 5.4: Interaural model parameters estimated by the EM algorithm
given the observations shown in figure 5.2.

The estimated source model parameters are shown in figure 5.5. As with the ILD and
IPD parameters, the source model parameters are initialized to an uninformative state.
However, as the binaural cues begin to disambiguate the sources, the learned channel
responses and source adaptation parameters help to differentiate the source models. By the
time the algorithm has converged, the source models have become quite different, with wi
learning the characteristics unique to each source under the predefined eigenvoice model
that are common to both left and right observations, e.g. the increased energy near 6 kHz
in many components for source 2. Similarly, h`,ri learns the magnitude responses of the
filters applied to each channel. Note that the overall shapes of Bh`,ri reflect the effects of
the HRTFs applied to the source in creating the mixture. These are unique to the particular
mixture and were not present in the training data used to learn µ̄ and U. The difference
between the channel response at each ear, Bh`i − Bhr

i , reflects the same interaural level
differences as the ILD parameters, υi in figure 5.4.

Although the parameters learned by the MESSL model are interesting in their own right,
they cannot separate the sources directly. After the EM algorithm converges, we derive a
time-frequency mask from the posterior probability of the hidden variables for each source:

Mi(ω, t) = ∑
τc

ziτc(ω, t) (5.28)

Estimates of clean source i are then obtained by multiplying the short-time Fourier trans-
form of each channel of the mixed signal by the mask for the corresponding source. This
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Figure 5.5: Source model parameters estimated by the EM algorithm given
the observations shown in figure 5.2. The overall model for source i is the
sum of the speaker-independent means, µ̄, the source-adapted term Uwi
based on the eigenvoice model of inter-speaker variability, and the channel
response at each ear, Bh`,ri .

assumes that the mask is identical for both channels.

X̂`i (ω, t) = Mi(ω, t) Y`(ω, t) (5.29)

X̂r
i (ω, t) = Mi(ω, t) Yr(ω, t) (5.30)

Figure 5.6 shows an example mask derived from the proposed algorithm. To demonstrate
the contributions of the different types of observations in the signal model to the overall
mask, we also plot masks isolating the IPD, ILD, and source models. These masks are
found by leaving unrelated terms out of the factored likelihood and computing “marginal”
posteriors. The full model is used to learn the parameters, but in the final EM iteration the
contributions of each underlying model to the complete likelihood in equation (5.15) are
normalized independently to compute three different posterior distributions.

The IPD and ILD masks make qualitatively different contributions to the final mask, so
they serve as a good complement to one another. The IPD mask is most informative in low
frequencies, and has characteristic subbands of uncertainty caused by the spatial aliasing
described earlier. The ILD mask primarily adds information in frequencies above 2 kHz
and so it is able to fill in many of the regions where the IPD mask is ambiguous. This
poor definition in low frequencies is because the per-source ILD distributions shown in
figure 5.4 have significant overlap below 2 kHz. These observations are consistent with the
use of the ITD and ILD cues for sound localization in human audition [121].
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Figure 5.6: Contribution of the IPD, ILD, and source model to the final mask
learned using the full MESSL-EV algorithm on the mixtures from figure 5.2.
The SNR improvements for each mask computed using equation (5.31) are
shown in parenthesis.

Finally, the source model mask is qualitatively quite similar to the ILD mask, with some ad-
ditional detail below 2 kHz. This is not surprising because both the ILD and source models
capture related features of the mixed signal. We expect that the additional constraints from
the prior knowledge built into the source model should allow for more accurate estimation
than the ILD model alone, however this is not clear from this figure because the ILD and
SP masks are estimated jointly.

To better illustrate the contribution of the source model, figure 5.7 shows the mask estimated
from the same data using the baseline MESSL algorithm of [67] which is based only on
the interaural model. The MESSL mask is considerably less confident (i.e. less binary)
than that of the MESSL-EV mask in figure 5.6. The contribution of the IPD mask is quite
similar in both cases. The difference in quality between the two systems is a result of
the marked difference in the ILD contributions. The improvement in the MESSL-EV case
can be attributed to the addition of the source model, which, although not as informative
on its own, is able to indirectly improve the estimation of the ILD parameters. This is
because the source model introduces correlations across frequency that are only loosely
captured by the ILD model during initial iterations. This is especially true in the higher
frequencies which are highly correlated in speech signals. By modeling each frame with
GMM components with a different spectral shape, the source model is able to decide which
time-frequency regions are a good fit to each source based on how well the observations in
each frame match the source prior distribution. It is able to isolate the sources based on
how speech-like they are, using prior knowledge such as the high-pass shape characteristic
of fricatives and characteristic resonance structure of vowels, etc. In contrast, the ILD
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Figure 5.7: Contribution of the IPD and ILD to the final mask learned using
the baseline MESSL separation algorithm using only the interaural signal
model on the mixtures from figure 5.2. The SNR improvement computed
using equation (5.31) is shown in parenthesis.

model treats each frequency band independently and is prone to source permutations if
poorly initialized. Although the bootstrapping process described earlier alleviates these
problems to some extent, the source model’s ability to emphasize time-frequency regions
consistent with the underlying speech model further reduces this problem and significantly
improves the quality of the interaural parameters and thus the overall separation.

5.4 Experiments

In this section we describe a set of experiments designed to evaluate the performance of
the proposed algorithm under a variety of different conditions and compare it to two other
well known binaural separation algorithms. We assembled a data set consisting of mixtures
of two and three speech signals in simulated anechoic and reverberant conditions. The
mixtures were formed by convolving anechoic speech utterances with a variety of different
binaural impulse responses. We formed two such data sets, one from utterances from the
GRID corpus [16] for which training data was available for the source model, and another
using the TIMIT corpus [34] to evaluate the performance on held out speakers using the
GRID source models. Although the TIMIT data set contains speech from hundreds of
different speakers, it does not contain enough data to adequately train models for each of
these speakers. This makes it a good choice for evaluation of the eigenvoice adaptation
technique. In both cases, we used a randomly selected subset of 15 utterances to create each
test set. Prior to mixing, the utterances were passed through a first order pre-emphasis
filter to whiten their spectra to avoid overemphasizing the low frequencies in our SNR
performance metric.

The anechoic binaural impulse responses came from [4], a large effort to record head-
related transfer functions for many different individuals. We used the measurements for
a KEMAR dummy head with small ears, taken at 25 different azimuths at 0◦ elevation.



5. Binaural Separation Using Explicit Source Models 91

The reverberant binaural impulse responses were recorded by Shinn-Cunningham et al.
[99] in a real classroom with a reverberation time of around 565 ms. These measurements
were also made with a KEMAR dummy head, although a different unit was used. The
measurements we used were taken in the center of the classroom, with the source 1 m
from the head at 7 different azimuths, each repeated 3 times.

In the synthesized mixtures, the target speaker was located directly in front of the listener,
with distractor speakers located off to the sides. The angle between the target and
distractors was systematically varied and the results combined for each direction. In the
anechoic setting, there were 12 different angles at which we placed the distractors. In
the reverberant setting, there were 6 different angles, but 3 different impulse response
pairs for each angle, for a total of 18 conditions. Each setup was tested with 5 different
randomly chosen sets of speakers and with one and two distractors, for a total of 300

different mixtures. We measure the performance of separation with signal-to-noise ratio
improvement, defined for source i as follows:

SNRIi = 10 log10
‖MiXi‖2

‖Xi −Mi ∑j Xj‖2 − 10 log10
‖Xi‖2

‖∑j 6=i Xj‖2 (5.31)

where Xi is the clean spectrogram for source i, Mi is the corresponding mask estimated
from the mixture, and ‖ · ‖ is the Frobenius norm operator. This measure penalizes both
noise that is passed through the mask and signal that is rejected by the mask.

We also evaluate the speech quality of the separations using the Perceptual Evaluation of
Speech Quality (PESQ) [64, Sec. 10.5.3.3]. This measure is highly correlated with the Mean
Opinion Score (MOS) of human listeners asked to evaluate the quality of speech examples.
MOS ranges from -0.5 to 4.5, with 4.5 representing the best possible quality. Although
it was initially designed for use in evaluating speech codecs, PESQ can also be used to
evaluate speech enhancement systems.

We compare the proposed separation algorithms to the two-stage frequency-domain blind
source separation system from [96] (2S-FD-BSS), the Degenerate Unmixing Estimation
Technique from [47, 125] (DUET), and the performance using ground truth binary masks
derived from oracle knowledge of the clean source signals. We also compare three variants
of our system: the full MESSL-EV algorithm described in this chapter, the MESSL-SP
algorithm from [120] that uses a speaker-independent source prior distribution (identical
to MESSL-EV but with wi fixed at zero), and the baseline MESSL algorithm from [67]
that does not utilize source constraints at all. The MESSL-SP system uses a 32 mixture
component speaker-independent model trained over data from all 34 speakers in the GRID
data set. Similarly, the MESSL-EV system uses a 32 component eigenvoice speech model
source GMMs trained over all 34 speakers using the procedure described in chapter 3. All
33 eigenvoice bases were retained. Figure 5.8 shows example masks derived from these
systems.

DUET creates a two-dimensional histogram of the interaural level and time differences
observed over an entire spectrogram. It then smooths the histogram and finds the I largest
peaks, which should correspond to the I sources. DUET assumes that the interaural level
and time difference are constant at all frequencies and that there is no spatial aliasing,
conditions which can be met to a large degree with free-standing microphones close to
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Figure 5.8: Example binary masks found using the different separation
algorithms evaluated in section 5.4. The mixed signal is composed of two
GRID utterances in reverberation separated by 60 degrees.

one another. With dummy head recordings, however, the interaural level difference varies
with frequency and the microphones are spaced far enough apart that there is spatial
aliasing above about 1 kHz. Frequency-varying ILD scatters observations of the same
source throughout the histogram as does spatial aliasing, making the sources more difficult
to isolate. As shown in figure 5.8, this manifests itself as poor estimation in frequencies
above 4 kHz which the algorithm overwhelmingly assigns to a single source, and errors
due to spatial aliasing in subbands around 2 and 4 kHz.

The 2S-FD-BSS system uses a combination of ideas from model-based separation and
independent component analysis (ICA) that can separate underdetermined mixtures.
In the first stage, blind source separation is performed on each frequency band of a
spectrogram separately using a probabilistic model of mixing coefficients. In the second
stage, the sources in different bands are associated with the corresponding signals from
other bands using k-means clustering on the posterior probabilities of each source and
then further refined by matching sources in each band to those in nearby and harmonically
related bands. The first stage encounters problems when a source is not present in every
frequency and the second encounters problems if sources’ activities are not similar enough
across frequency. Permutation errors are visible in the 2S-FD-BSS mask shown in figure 5.8
in subbands around 2 and 4 kHz, regions that are ambiguous due to spatial aliasing. In
general, such errors tend to happen at low frequencies, where adjacent bands are less
well-correlated. In contrast, the failure mode of the MESSL variants is to pass both sources
equally when it is unable to sufficiently distinguish between them. This is clearly visible in
the regions of the MESSL mask in figure 5.8 that have posteriors close to 0.5. As a result
2S-FD-BSS is more prone to source permutation errors where significant target energy can
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System A2 R2 A3 R3 Avg

Ground truth 11.83 11.58 12.60 12.26 12.07

MESSL-EV 8.79 7.85 8.20 7.54 8.09
MESSL-SP 6.30 7.39 7.08 7.18 6.99

MESSL 7.21 4.37 6.17 3.56 5.33

2S-FD-BSS 8.91 6.36 7.94 5.99 7.30

DUET 2.81 0.59 2.40 0.86 1.67

Table 5.1: Average SNR improvement (in dB) across all distractor angles
on mixtures created from the GRID data set. The test cases are described
by the number of simultaneous sources (2 or 3) and whether the impulse
responses were anechoic or reverberant (A or R).

System A2 R2 A3 R3 Avg

Ground truth 3.41 3.38 3.10 3.04 3.24

MESSL-EV 3.00 2.65 2.32 2.24 2.55
MESSL-SP 2.71 2.62 2.22 2.22 2.44

MESSL 2.81 2.39 2.15 1.96 2.33

2S-FD-BSS 2.96 2.50 2.28 2.04 2.44

DUET 2.56 2.03 1.85 1.53 1.99

Mixture 2.04 2.04 1.60 1.67 1.84

Table 5.2: Average PESQ score (mean opinion score) across all distractor
angles on mixtures created from the GRID data set.

be rejected by the mask.

5.4.1 GRID performance

The average performance of the evaluated algorithms on the GRID data set is summarized
in tables 5.1 and 5.2 using the SNR improvement and PESQ metrics, respectively. Under
both metrics all algorithms perform better in anechoic conditions than in reverberation and
on mixtures of two sources than on mixtures of three sources. In most cases MESSL-EV
performs best, followed by MESSL-SP and 2S-FD-BSS. 2S-FD-BSS outperforms MESSL-SP
in anechoic conditions, however, in reverberation, this trend is reversed and 2S-FD-BSS
performs worse. Both of the MESSL variants perform significantly better than the MESSL
baseline for the reasons described in the previous section. The addition of speaker
adaptation in MESSL-EV gives an overall improvement of about 1.1 dB over MESSL-SP and
2.8 dB over MESSL in SNR improvement on average. 2S-FD-BSS generally performs better
than MESSL, but not as well as MESSL-SP and MESSL-EV. The exception is on mixtures
of two sources in anechoic conditions where 2S-FD-BSS performs best overall in terms of
SNR improvement. Finally, DUET performs worst, especially in reverberation where the
IPD/ILD histograms are more diffuse, making it difficult to accurately localize the sources.
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We note that unlike the initial results reported in [120] MESSL-SP does not perform worse
than MESSL on anechoic mixtures. The problems in [120] were caused by the channel
parameters h`,ri over-fitting which led to source permutations. To fix this problem in the
results reported here, we used a single, flat channel basis for the channel parameters in
anechoic mixtures. In reverberant mixtures 30 DCT bases were used.

The poor performance of some of the MESSL systems in table 5.1 on anechoic mixtures
is a result of poor initialization at small distractor angles. An example of this effect
can be seen in the left column of figure 5.9 where the MESSL systems have very poor
performance compares to 2S-FD-BSS when the sources are separated by 5 degrees. However,
as the sources get further apart, the performance of all of the MESSL systems improves
dramatically. The very poor performance at very small angles heavily skews the averages
in table 5.1. This problem did not affect MESSL’s performance on reverberant mixtures
because the minimum separation between sources on that data was 15 degrees and
the initial localization used to initialize MESSL was adequate. Finally, 2S-FD-BSS was
unaffected by this problem at small distractor angles because, unlike the other systems we
evaluated, it does not directly utilize the spatial locations for separation.

MESSL, 2S-FD-BSS, and DUET all perform significantly better on anechoic mixtures that
on reverberant mixtures because the lack of noise from reverberant echoes makes anechoic
sources much easier to localize. As described in the previous section, the additional
constraints from the source models in MESSL-EV and MESSL-SP help to resolve the
ambiguities in the interaural parameters in reverberation so the performance of these
systems does not degrade nearly as much. In reverberation MESSL-EV and MESSL-SP
both improve over the MESSL baseline by over 3 dB. The added benefit from the speaker
adaptation in MESSL-EV is limited in reverberation, but is significant in anechoic mixtures.
This is likely a result of the fact that the EV model has more degrees of freedom to adapt
to the observation. The MESSL-SP system can only adapt a single parameter per source in
anechoic conditions due the limited model of channel variation described above. Finally,
we note that the addition of the source model in MESSL-EV and MESSL-SP is especially
useful in underdetermined conditions (i.e. A3 and R3) because of the source model’s
ability to emphasize time-frequency regions consistent with the underlying speech model
which would otherwise be ambiguous. In two source mixtures this effect is less significant
because the additional clean glimpses of each source allow for more robust estimation of
the interaural parameters.

5.4.2 TIMIT performance

Tables 5.3 and 5.4 show the performance of the different separation algorithms on the
data set derived from TIMIT utterances. The trends are very similar to those seen in
the GRID data set, however performance in general tends to be a bit better in terms of
SNR improvement. This is probably because the TIMIT utterances are longer than the
GRID utterances, and the additional observations lead to more robust localization which
in turn leads to better separation. The main point to note from the results in table 5.3
is that the performance improvement of MESSL-EV over the other MESSL variants is
significantly reduced when compared to the GRID experiments. This is because of the
mismatch between the mixtures and the data used to train the models. However, despite
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System A2 R2 A3 R3 Avg

Ground truth 12.09 11.86 12.03 11.84 11.95

MESSL-EV 10.08 8.36 8.21 7.22 8.47
MESSL-SP 10.00 8.10 7.97 6.96 8.26

MESSL 9.66 5.83 7.12 4.32 6.73

2S-FD-BSS 10.29 7.09 6.17 4.86 7.10

DUET 3.87 0.59 3.63 0.62 2.18

Table 5.3: Average SNR improvement (in dB) across all distractor angles
on mixtures created from the TIMIT data set. The test cases are described
by the number of simultaneous sources (2 or 3) and whether the impulse
responses were anechoic or reverberant (A or R).

System A2 R2 A3 R3 Avg

Ground truth 3.35 3.33 3.06 3.02 3.19

MESSL-EV 2.99 2.52 2.30 2.11 2.48
MESSL-SP 2.98 2.50 2.28 2.10 2.47

MESSL 2.92 2.33 2.24 1.96 2.36

2S-FD-BSS 3.07 2.36 1.91 1.76 2.28

DUET 2.59 1.85 2.01 1.48 1.98

Mixture 1.96 1.92 1.53 1.62 1.76

Table 5.4: Average PESQ score (mean opinion score) across all distractor
angles on mixtures created from the TIMIT data set.

this mismatch, the performance improvement of the MESSL variants that incorporate a
prior source model still show a significant improvement over MESSL.

The performance of MESSL-EV relative to the other MESSL variants on both data sets is
compared in table 5.5. On the matched data set, MESSL-EV outperforms MESSL by an
average of about 2.8 dB. It also outperforms MESSL-SP by an average of 1.1 dB. However,
on the mismatched data set the improvement of MESSL-EV is significantly reduced. In
fact, the improvement of MESSL-EV over MESSL-SP on this data set is only 0.2 dB on
average. This implies that the eigenvoice model of speaker variation is significantly less
informative when applied to speakers that are very different from those in the train set.
The bulk of MESSL-EV’s improvement is therefore due to the speaker-independent portion
of the model which is still a good enough model for speech signals in general to improve
performance over MESSL, even on mismatched data.

The small improvement in the performance of MESSL-EV when the training and test data
are severely mismatched is the result of a number of factors. The primary problem is that a
relatively small set of speakers was used to train the GRID eigenvoice bases. As described
in chapter 4, in order to adequately capture the full subspace of speaker variation and
generalize well to held-out speakers, data from a large number of training speakers, on the
order of a few hundred, is typically required. In these experiments, training data was only
available for 34 different speakers.
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Data set System 1 – System 2 A2 R2 A3 R3 Avg

GRID MESSL-EV – MESSL 1.58 3.46 2.03 3.98 2.76

MESSL-EV – MESSL-SP 2.49 0.48 1.12 0.36 1.10

TIMIT MESSL-EV – MESSL 0.42 2.53 1.09 2.89 1.74

MESSL-EV – MESSL-SP 0.08 0.26 0.24 0.26 0.21

Table 5.5: Comparison of the relative performance in terms of dB SNR
improvement of MESSL-EV to MESSL-SP and the MESSL baseline on both
the GRID data set where the source models are matched to the test data,
and on the TIMIT data set where the source models are mismatched to the
test data.

This lack of diversity in the training data is especially relevant because of the significant
differences between the GRID and TIMIT speakers. The speakers in the GRID data set
were all speaking British English while TIMIT consists of a collection of American speakers.
There are significant pronunciation differences between the two dialects, e.g. British English
is generally non-rhotic, which lead to signification differences in the acoustic realizations
of common speech sounds and therefore differences between the corresponding speech
models. These differences make it impossible to fully capture the nuances of the both
dialects without including some speakers of both dialects in the training set. Finally, the
likelihood that the eigenvoice model will generalize well to capture speaker-dependent
characteristics across both data sets is further decreased because the models themselves
were quite small, consisting of only 32 mixture components.

5.4.3 Performance at different distractor angles

Finally, the results on the TIMIT set are shown as a function of distractor angle in figure 5.9.
Performance of all algorithms generally improves when the sources are better separated in
space. In anechoic mixtures of two sources the MESSL variants all perform essentially as
well as ground truth masks when the sources are separated by more than 40◦. None of
the systems are able to approach ideal performance under the other conditions. As noted
earlier, 2S-FD-BSS performs best on 2 source anechoic mixtures in tables 5.1 and 5.3. As
seen in figure 5.9 this is mainly an effect of very poor performance of the MESSL systems
on mixtures with small distractor angles. All MESSL variants outperform 2S-FD-BSS when
they are separated by more than about 20◦. The poor performance of MESSL when the
sources are separated by 5◦ is a result of poor initialization due to the fact that localization
is difficult because the parameters for all sources are very similar. This is easily solved by
using better initialization. In fact, it is possible to effectively combine the strengths of both
of the ICA and localization systems by using the mask estimated by 2S-FD-BSS to initialize
MESSL. This would require starting the separation algorithm with the M-step instead of
the E-step as described in section 5.3, but the flexibility of MESSL’s EM approach allows
this. We leave the investigation of the combination of these techniques as future work.

This dependence on spatial localization for adequate source separation highlights a dis-
advantage of the MESSL family of algorithms, especially as compared to model-based
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Figure 5.9: Separation performance on the TIMIT data set as a function of
distractor angle.

binaural separation algorithms that use factorial model combination [82, 122]. As seen in
the examples of figures 5.6 and 5.7, in MESSL-SP and MESSL-EV the source model is used
to help disambiguate uncertainties in the interaural localization model. It does not add
any new information about the interaction between the two sources and can only offer
incremental improvements over the MESSL baseline. Therefore the addition of the source
model does not improve performance when the sources are located very close to each other
in space.

In contrast, in Rennie et al. [82] and Wilson [122], the factorial source model is used to model
the interaction between the sources directly. In these algorithms, the localization cues are
used to disambiguate the source model, which, on its own is inherently ambiguous because
identical speaker-independent models are used for all sources. This makes it impossible
for the models to identify portions of the signal that are dominated by each source without
utilizing the fact that they arrive from distinct spatial locations. These algorithms would
therefore suffer from similar problems to MESSL at very small distractor angles where
the localization cues are similar for all sources. However, this could be overcome by
incorporating additional knowledge about the differences between the distributions of
each source signal through the use of speaker-dependent models, or model adaptation
as described in this thesis. When the sources are close together, the binaural separation
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problem reduces to that of monaural separation, where factorial model based techniques
using source-dependent or -adapted models have been very successful [118]. MESSL-EV,
however, still suffers at small distractor angles despite utilizing source-specific models.

The advantage of MESSL-EV over the factorial model approach to combining source models
with localization cues is that it enables efficient inference because it is not necessary to
evaluate all possible model combinations. This becomes especially important for dense
mixtures of many sources. As the number of sources grows, the factorial approach scales
exponentially in terms of the number of Gaussian evaluations required [92]. In contrast,
the computational complexity of the algorithms described in this paper scale linearly in
the number of sources.

5.5 Summary

We have presented a system for source separation based on a probabilistic model of
binaural observations. We combine a model of the interaural spectrogram with a prior
model of the source spectrogram. This model is able to obtain a significant performance
improvement over the algorithm that does not rely on a prior source model and over
another state of the art source separation algorithm based on frequency domain ICA. The
improvement is substantial even when the prior on the source statistics is quite limited,
consisting of a small speaker-independent model. The addition of source adaptation based
on a speech subspace model is shown to further improve performance. As seen in the
experimental results in previous chapters, the performance improvements when using
source adaptation are largest when the test data comes from the same sources as were
used to train the model. However, even when the training and test data are mismatched,
the addition of source adaptation is able to boost performance by a small amount.
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Chapter 6

Conclusion

6.1 Thesis summary

We have presented a novel speaker-adaptive speech signal model and demonstrated its
utility in a number of underdetermined source separation applications. The model is based
on the idea of eigenvoices, bases for GMM or HMM parameters learned using PCA, first
proposed for speaker adaptation in automatic speech recognition. Under this model the
set of model parameters specific to a given speaker can be accurately represented as a
weighted linear combination of the eigenvoice bases. Therefore, adapting the model to
a given source is simply a matter of using the observed signal to estimate these weights.
The resulting speaker subspace model is quite extensible, allowing both Gaussian mean
and covariance parameters to be adapted to match a particular source as well as naturally
allowing for the use of additional bases to compensate for any unknown channel effects
that are independent of the speakers present in the mixed signal.

We developed a set of algorithms for joint speaker adaptation and source separation given
a monaural speech mixture that are extended to the popular model-based approach to
source separation described in chapters 2 and 4. In general the use of the proposed
adaptation model allows for a significant improvement in separation performance when
compared to separation using unadapted, source-independent models. However, the
proposed system does not always perform as well as a system that uses predefined
speaker-dependent models, largely because it is prone to permutations between sources.
Despite these shortcomings, we show that proposed model can also generalize well to
previously unseen speakers. This removes the unrealistic requirement that training data
for all possible speakers be available in advance and therefore makes the model-based
approach to monaural source separation more useful in practice. Furthermore, it is possible
to combine the proposed model adaptation approach with the model selection method
described in section 4.2.1 to obtain good performance in both matched and mismatched
conditions by using the latter method to initialize the former.

Finally, we presented a system that extends the use of statistical source models to two-
channel underdetermined source separation. The system is based on a probabilistic model
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of binaural observations that combines a model of the interaural spectrogram with a prior
model of the source spectrogram. By learning the frequency response of the combined room
impulse response and head-related transfer function, i.e. the channel response, applied
to each source signal it is possible to obtain a significant performance improvement over
the algorithm that does not utilize a prior source model. The improvement is significant
even when the prior on the source statistics is quite limited, consisting of a small speaker-
independent model. The addition of source adaptation based on the proposed speaker
subspace model further improves performance, although the improvement is not as large
as it is in the monaural case. Also, as in the monaural case, the use of the speaker subspace
model generalizes well to mixtures composed from speakers not present in the training set.
However, the improvement over the speaker-independent model is not as large under such
conditions due to the mismatch with the training data.

6.2 Future work

The experimental results described in this thesis establish the use of model adaptation as a
powerful extension to the popular methods for statistical model-based source separation.
The applications of supervised source separation remain somewhat limited due to the
requirement that the identities of the sources comprising the mixture be known in advance
and that training data be available for them. The adaptation model described in this
thesis partially alleviates these requirements, but it still requires that the class of signal
(e.g. speech or music) be known and that training data be available for a subset of such
sources, even if they do not exactly match the sources in the mixture.

One approach to alleviating this requirement and making the model-based approach
still more general would be to use an extension of the model selection idea described in
section 3.3.1 to select models of source classes. This could be done by training a set of signal
subspace models similar to the speaker subspace model utilized in this thesis on a variety
of different source types (e.g. speech, tonal musical instruments, percussive instruments,
etc.) and then selecting the models that best match the observations from this set prior to
separation. This would essentially discretize the space of all possible source signals (i.e. not
only speech) into distinct subspaces of related sources that are naturally represented using
similar model topologies. For example, it would be difficult to create a single subspace
model that accurately captures both speech and music due to the significant differences in
their structure (e.g. speech signals, even when produced by different talkers, share many
similarities in the form of common phoneme structures that have no analogies in most
music signals). By coarsely discretizing a broader space of audio signals into different
classes, yet still allowing continuous variation within each subspace it should be possible
to extend the ideas described in this thesis to work on a broader class of sources.

The performance of such a general model-based separation system still depends on the
quality of its constituent signal models. Based on the results reported in section 4.4, it is
clear that even the more constrained problem of monaural speech separation is not yet
solved in general. While our results on this data set could be improved through the use of
a more sophisticated channel model and larger speech models to more accurately cover
the full space of signals found in the data set, it is still not clear how far the statistical
model-based separation paradigm can realistically be taken. As the source signals become
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more complex, the supervised approach becomes more impractical because of the increased
amount of training data needed to train large models. Even given enough data to train
large source-dependent models, at some point the models themselves become large enough
that inference becomes infeasible. The experiments reported in this thesis have already
approached this threshold using the factorial inference algorithms described in chapter 4.
Very recently, Rennie et al. [86] proposed a factorial HMM inference algorithm significantly
faster than that described in chapter 4. This could enable separation based on significantly
larger source models, potentially on the scale of thousands of states, which would make
monaural separation of spontaneous speech possible using the algorithms described in
chapter 4.

One approach that has been proposed to limit the complexity of such speech models is
to model the high frequency resolution pitch structure (corresponding to the excitation
of the vocal folds) independently of the more coarse envelope structure (corresponding
to the formant resonances of the vocal tract) [53]. Such a factored model could use fewer
states than the equivalent monolithic model. A similar model might also be appropriate
for music signals where instrument timbre and pitch can be treated independently. The
speaker subspace model used in this work does implicitly decouple the pitch and envelope
structure of speech to some extent. This can be seen in figure 3.5 where the first two
eigenvoice bases primarily contain information about the course structure, whereas the
third contains significant pitch information. However, it does not treat the pitch and
envelope as being completely independent and thus does not use the relationship to reduce
the number of states in the model. An extension of the subspace model to explicitly take
advantage of this structure remains to be explored.

Another direction worth investigating is the extension of the subspace adaptation approach
to other types of source models. For example, the supervised NMF approach to monaural
source separation [97] suffers from the same problems as the standard VQ/HMM approach
in terms of requiring that the source identities and their corresponding NMF bases be
known in advance. This requirement can be loosened in a similar manner to that described
in this thesis for HMM source models. As described in chapter 2, in supervised NMF
source separation, the observed mixture Y is represented as the product of a set of source
bases, Bi, and a matrix representing their temporal structure, S:

Y =
[
B1 B2 . . . BI

]
S (6.1)

If Bi is known to be contained in a predefined subspace then it can be represented as a
linear combination of the subspace bases in the same way that we have constrained HMM
parameters, i.e. basis c for speaker i can be written as Bic = Uc wi as in equation (3.8).
Separation under such a subspace NMF model would require estimating the per-source
adaptation parameters wi and the temporal structure matrix S. The only predefined
portion of the model is the set of subspaces bases which is not specific to any source. An
advantage of the NMF approach over the factorial HMM model from chapter 4 is that
factorization of equation (6.1) can be found with an algorithm that scales linearly with the
number of basis vectors [59].

The NMF approach to source separation has another advantage over the models described
in this thesis in that it uses a continuous model of the mixing process. The assumption
that sources rarely overlap in time and frequency (see figure 2.1), which is the basis of the
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models described in this thesis, does not always hold. For example, sources in a typical
polyphonic music mixture are, by design, synchronized in time and frequency. This leads
to significant overlap in frequency of harmonics of notes with related pitch, and in time
due to the underlying rhythmic structure. The use of a continuous mixing model such as
NMF or Algonquin [56] would enable more accurate separation of such mixtures.

It is also worth noting that all of the models described in this thesis assume that the number
of source models I is known in advance. These systems can be extended to simultaneously
estimate I as well as the underlying source signals by hypothesizing multiple settings of
I and using the Bayesian information criterion [10, Chapter 4] to select the best setting.
An similar assumption made throughout this thesis is that the sources remain stationary,
implying that the channel responses are constant for the duration of the signal. This
is especially relevant to binaural separation based on source localization described in
chapter 5. Extending the proposed models to compensate for time-varying channel effects
through the use of dynamic Bayesian networks remains future work.

Finally, it might be possible to derive alternate subspace bases or adaptation algorithms
with the explicit goal of making it easier to distinguish between sources. Jang and Lee
[46] describe the idea of improving the performance of their supervised ICA separation
algorithm on speech mixtures by learning the predefined source bases in a discriminative
manner. This idea is worth exploring in the context of our adaptation model as well. For
example, it might be possible to more easily estimate the subspace parameters for each
source when using speaker subspace bases that were learned in a way that inherently
separates them, e.g. using a method like LDA. Similarly, it might be possible to derive
alternate adaptation algorithms to those described in section 4.2 that better separates
sources. This might involve estimating the subspace parameters using a constrained
optimization of an objective function that incorporates a metric of the confusibility of the
different source models (e.g. the Kullback-Leibler divergence) into the model log likelihood
from equation (4.41).

In conclusion we note that while many of the extensions we have described in this section
would be quite useful for monaural separation, the same concerns are not necessarily as
important for the multichannel problem. When more channels are available there are many
constraints that can be used to separate sources without requiring any prior knowledge. As
we showed in chapter 5, such source-independent constraints can be effectively combined
with those derived from pretrained source models to improve performance. Of course, the
most generally useful source separation algorithm will leverage as much information as
it can to improve separation quality. The ideas presented in this thesis make the use of
source-specific models to help constrain possible source reconstructions more generally
applicable, and represent a step in the direction of enabling source separation systems
to utilize similar top-down constraints to those used in human audition in the form of
familiarity with a particular speaker.
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Appendix A

Appendix

A.1 Notation

This section reviews the notational conventions used throughout this thesis.

Signals

xi(t)
Time domain signal produced by source i.

Xi(ω, t)
Point in time-frequency of the short-time Fourier transform (STFT) of xi(t).

xi(t)
Frame of the log power spectrum, corresponding to the logarithm of a column of the
STFT Xi.

x̂(t), X̂(ω, t), x̂(t)
Signals corresponding to the reconstruction of xi.

y(t), Y(ω, t), y(t)
Signals corresponding to the monaural mixture of multiple sources. In the case
of binaural mixtures, superscripts of ` and r indicate the left and right channels,
respectively.

h(t), H(ω)
Channel response time domain waveform and Fourier spectrum, respectively. Note
that throughout the thesis we assume that the duration of h(t) is shorter than an
STFT frame so the spectrum, H, does not have a time index.
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φ(ω, t)
The interaural phase difference (IPD) between the left and right channels of a binaural
signal.

α(ω, t)
The interaural level difference (ILD) between the left and right channels of a binaural
signal.

Distributions and parameters

P
(
a, b | θ), E

(
a, b | θ)

Probability and expectation, respectively, of a and b given θ.

N (x ; µ, σ2), C(x ; µ, σ2)
Shorthand for the probability of x under a Gaussian probability distribution and
cumulative distribution, respectively, parametrized by mean µ and variance σ2.

µ̄, Σ̄

Multivariate Gaussian mean vector and covariance matrix of a speaker-independent
speech model.

ν, Ξ

Mean and covariance of the prior distribution over adaptation parameters.

w

Subspace adaptation parameters for the eigenvoice model.

h

Adaptation parameters corresponding to the speaker-independent channel response.

µ(w), Σ(w)
Speaker-adapted mean and covariance parametrized by adaptation parameter w.

U, B
Set of eigenvoice and channel basis vectors, respectively.

i, c, s
Indices corresponding to a particular source, Gaussian mixture model component,
and hidden Markov model state, respectively.

N
Number of states in an HMM.

γs(t)
Posterior probability of HMM state s at time t.
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τ

Iteraural time difference time delay.

Ψiτ

Mixing weights of the IPD distribution corresponding to the probability of source i
arriving from the direction corresponding to delay τ.

ς2

Variance of the IPD distribution.

υ, η2

Gaussian mean and diagonal covariance of the ILD distibution.

ziτc(ω, t)
Posterior probability of source i, delay τ, and GMM component c, at the given
time-frequency point.

A.2 Derivation of MAP eigenvoice updates

In this section we derive the M-step of the adaptation algorithm used in section 4.2.2.2,
which uses an estimate of the signal from a given source, x̂i(t), to learn the adaptation
parameters for that source. The extension to the M-step of the variational learning algorithm
described in section 4.2.3 is straightforward.

We begin by deriving the updates under the assumption that the channel parameters hi
are subsumed into the subspace adaptation parameters wi as described in section 3.4.3.
The updates are found by maximizing the expected complete log likelihood from equa-
tion (4.31):

L(wi) = E
(

log P
(
y(t), wi | s

))
(A.1)

= E
(

log P
(
y(t) |wi , s

)
P
(
wi
))

(A.2)

= E
(

logN (y(t); µs(wi), ΣS(wi)
)
+ logN (wi ; ν, Ξ

))
(A.3)

= k− 1
2 ∑

t
∑

s
γs(t)

(
x̂i(t)−Uswi − µ̄s

)T Σ̄−1
s
(

x̂i(t)−Uswi − µ̄s
)

− 1
2
(
wi − ν

)TΞ−1(wi − ν
)

(A.4)

Because this auxiliary function is convex, it can be maximized by setting its derivative to
zero. The derivative of the Mahalanobis distance in this form can be written as follows:

∂

∂w
(
y−Uw

)TΣ−1(y−Uw
)

= −2UTΣ−1(y−Uw
)

(A.5)
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By differentiating using equation (A.5), we get:

∂

∂wi
L(wi) = ∑

t
∑

s
γs(t) Us Σ̄−1

s
(
x̂(t)−Uswi − µ̄s

)− Ξ−1(wi − ν
)

= 0 (A.6)

which implies the following update for wi:(
∑

t
∑

s
γs(t) UT

s Σ̄−1
s Us + Ξ−1

)
wi = ∑

t
∑

s
γs(t) UT

s Σ̄−1
s (x̂i(t)− µ̄s) + Ξ−1ν (A.7)

When implementing this algorithm it is convenient to explicitly differentiate between wi
and hi. The solution can then be written as a matrix inversion as follows:[

wi
hi

]
=
[

Aww Awh
AT

wh Ahh

]−1 [bw
bh

]
(A.8)

where

Aww = ∑
t

∑
s

γs(t) UT
s Σ̄−1

s Us + Ξ−1
w (A.9)

Awh = ∑
t

∑
s

γs(t) UT
s Σ̄−1

s B (A.10)

Ahh = ∑
t

∑
s

γs(t) BT Σ̄−1
s B + Ξ−1

h (A.11)

bw = ∑
t

∑
s

γs(t) UT
s Σ̄−1

s (x̂i(t)− µ̄s) + Ξ−1
w νw (A.12)

bh = ∑
t

∑
s

γs(t) BT Σ̄−1
s (x̂i(t)− µ̄s) + Ξ−1

h νh (A.13)

Note that we assume that the priors on wi and hi are independent.

The derivation of the M-step updates of the variational EM algorithm follows the same
procedure, except the auxiliary function utilizes the mixed signal observations y(t) and
includes the binary masks Mi as described in section 4.2.3.2. The derivation is nearly
identical because the source signals decouple given the source masks (see equation (4.44)).

A.3 Derivation of MESSL updates

The parameter updates are found by maximizing the expected complete log likelihood
from equation (5.18):

L(θ | θj
)

= E
(

log P
(
φ, α, y` , yr , i , τ , c | θ))

= ∑
ωt

E
(

log P
(
φ(ω, t), α(ω, t), y`(ω, t), yr(ω, t), i , τ , c | θ))

= ∑
ωt

∑
iτc

ziτc(ω, t) log P
(
φ(ω, t), α(ω, t), y`(ω, t), yr(ω, t) | i , τ , c, θ

)
(A.14)
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Because the total likelihood of equation (5.16) consists of the product of a set of conditionally
independent factors, the objective function becomes the sum of independent terms allowing
the parameters of each term to be optimized independently:

L(θ | θj
)

= k + L(ψiτ | θj
)
+ L(ς2

i | θj
)
+ L(υi , η2

i | θj
)
+ L(wi , h`i , hr

i | θj
)

(A.15)

Each of the factored terms is concave in θ so they can each be maximized by differentiating
with respect to θ and setting equal to zero.

We will optimize each of these terms in turn to derive the updates given in section 5.3.

A.3.1 Update for ψiτ

L(ψiτ | θj
)

= ∑
ωt

∑
iτc

ziτc(ω, t) log P
(
i , τ
)

= ∑
ωt

∑
iτc

ziτc(ω, t) log ψiτ + λ
(

1−∑
iτ

ψiτ

)
(A.16)

where we have introduced a Lagrange multiplier λ to ensure that φiτ sums to one. Differ-
entiating and setting to zero yields the following update:

∂

∂ψiτ
L(ψiτ | θj

)
= ∑

ωt
∑

c
ziτc(ω, t)

1
ψiτ
− λ = 0

ψiτ =
1
λ ∑

ωt
∑

c
ziτc(ω, t) (A.17)

where λ is found using the constraint in equation (A.16):

1 = ∑
iτ

ψiτ = ∑
iτ

1
λ ∑

ωt
∑

c
ziτc(ω, t)

λ = ∑
ωt

∑
iτc

ziτc(ω, t) = ΩT (A.18)

where the last equality holds because each time-frequency point must be explained by
a single source, delay, and source model mixture component. Combining this with
equation (A.17) yields the update for ψiτ :

ψiτ =
1

ΩT ∑
ωt

∑
c

ziτc(ω, t) (A.19)
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A.3.2 Update for IPD parameter ς2
i

L(ς2
i | θj

)
= ∑

ωt
∑
iτc

ziτc(ω, t) log P
(
φ(ω, t) | i , τ , θ

)
= ∑

ωt
∑
iτc

ziτc(ω, t) logN (φ̃τ(ω, t); 0, ς2
i
)

= k− 1
2 ∑

ωt
∑
iτc

ziτc(ω, t)

(
φ̃τ(ω, t)2

ς2
i

+ log ς2
i

)
(A.20)

Differentiating and setting to zero yields the following update:

∂

∂ς2
i
L(ς2

i | θj
)

= −1
2 ∑

ωt
∑

c
ziτc(ω, t)

(
− φ̃τ(ω, t)2

ς2
i

1
ς2

i
+

1
ς2

i

)
= 0

ς2
i = ∑ωt ∑c ziτc(ω, t) φ̃τ(ω, t)2

∑ωt ∑c ziτc(ω, t)
(A.21)

A.3.3 Update for ILD parameters υi, η2
i

L(υi , η2
i | θj

)
= ∑

ωt
∑
iτc

ziτc(ω, t) log P
(
α(ω, t) | i , θ

)
= ∑

ωt
∑
iτc

ziτc(ω, t) logN (α(ω, t); υi(ω), η2
i (ω)

)
= k− 1

2 ∑
ωt

∑
iτc

ziτc(ω, t)

((
α(ω, t)− υi(ω)

)2

η2
i (ω)

− log η2
i (ω)

)
(A.22)

Differentiating with respect to the mean υi(ω) and setting to zero yields the following
update:

∂

∂υi(ω)
L(υi , η2

i | θj
)

= ∑
t

∑
τc

ziτc(ω, t)
α(ω, t)− υi(ω)

η2
i (ω)

= 0

υi(ω) = ∑t ∑τc ziτc(ω, t) α(ω, t)
∑t ∑τc ziτc(ω, t)

(A.23)

Similarly, differentiating with respect to the variance η2
i (ω) and setting to zero yields the

following update:

∂

∂η2
i (ω)

L(υi , η2
i | θj

)
= −1

2 ∑
t

∑
τc

ziτc(ω, t)

(
−
(
α(ω, t)− υi(ω)

)2

η2
i (ω)

1
η2

i (ω)
+

1
η2

i (ω)

)
= 0

η2
i (ω) =

∑t ∑τc ziτc(ω, t)
(
α(ω, t)− υi(ω)

)2

∑t ∑τc ziτc(ω, t)
(A.24)
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A.3.4 Update for source and channel parameters wi, hr
i , h`i

L(wi , h`i , hr
i | θj

)
= ∑

ωt
∑
iτc

ziτc(ω, t) log P
(
y`(ω, t) | i , c, θ

)
P
(
yr(ω, t) | i , c, θ

)
= ∑

t
∑
iτc

(
log N (y`(t); µc(wi, h`i ), MictΣ̄c

)
+ log N (yr(t); µc(wi, hr

i ), MictΣ̄c
))

= k− 1
2 ∑

t
∑
ic

((
y`(t)−Ucwi − µ̄c − Bh`i

)T Mict Σ̄−1
c
(
y`(t)−Ucwi − µ̄c − Bh`i

)
+
(
y`(t)−Ucwi − µ̄c − Bhr

i
)T Mict Σ̄−1

c
(
y`(t)−Ucwi − µ̄c − Bhr

i
))

(A.25)

where Mict is a soft mask encoding the posterior probability of component c from source i
dominating the mixture at frame t:

Mict , diag

(
∑
τ

ziτc(:, t)

)
(A.26)

Unlike the similar objective function in equation (A.4), the posterior varies with frequency
due to the assumption that each time-frequency cell is dominated by a particular source,
hence the need to incorporate them into a soft mask.

Differentiating and setting to zero yields the following set of simultaneous equations:

∑
tc

UT
c Mict Σ̄−1

c
(
2 (µ̄c + Uc wi) + B (hr

i + h`i )
)

= ∑
tc

UT
c Mict Σ̄−1

c
(
y`(t) + yr(t)

)
(A.27)

∑
tc

BT Mict Σ̄−1
c
(
µ̄c + Uc wi + Bh`i

)
= ∑

tc
BT Mict Σ̄−1

c y`(t) (A.28)

∑
tc

BT Mict Σ̄−1
c
(
µ̄c + Uc wi + Bhr

i
)

= ∑
tc

BT Mict Σ̄−1
c yr(t) (A.29)

The updates for wi, h`i , and hr
i can be written as a matrix inversion as follows:wi

h`i
hr

i

 =

Aww Awh Awh

AT
wh Ahh Awh

AT
wh AT

wh Ahh


−1 bw

bh`

bhr

 (A.30)
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where

Aww = ∑
tc

2 UT
c Mict Σ̄−1

c Uc (A.31)

Awh = ∑
tc

UT
c Mict Σ̄−1

c B (A.32)

Ahh = ∑
tc

BT Mict Σ̄−1
c B (A.33)

bw = ∑
tc

UT
c Mict Σ̄−1

c
(
y`(t) + yr(t)− 2 µ̄c

)
(A.34)

bh` = ∑
tc

BT Mict Σ̄−1
c
(
y`(t)− µ̄c

)
(A.35)

bhr = ∑
tc

BT Mict Σ̄−1
c
(
yr(t)− µ̄c

)
(A.36)

Note the resemblance to the eigenvoice updates derived in section A.2. The main differences
here are that the posterior depends on frequency (hence the need for the mask term Mict)
and wi is tied across two observations, each of which have separate channel responses.
Also, we did not include a prior distribution on w and h, but its addition is straightforward.
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