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Audio source separation

Many real world signals contain contributions from multiple sources

E.g. cocktail party

Want to infer the original sources from the mixture

Robust speech recognition
Hearing aids
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Previous work

Instantaneous mixing systemy1(t)
...

yC (t)

 =

a11 . . . a1I
...

. . .
...

aC1 . . . aCI


x1(t)

...
xI (t)


Simplest case: more channels than sources (overdetermined)

Perfect separation possible

Use constraints on source signals to guide separation

Independence constraints (e.g. independent component analysis)
Spatial constraints (e.g. beamforming)
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Underdetermined source separation

More sources than channels, need stronger constraints

CASA: Use perceptual cues similar to human auditory system

Segment STFT into short glimpses of each source
By harmonicity, common onset, etc.
Sequential grouping heuristics
Create time-frequency mask for each source

Inference based on prior source models
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Time-frequency masking
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Natural sounds tend to be sparse in time and frequency

10% of spectrogram cells contain 78% of energy

And redundant

Still intelligible when 22% of source energy is masked
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Model-based separation

Use constraints from prior source models to guide separation
Leverage differences in spectral characteristics of different sources

Hidden Markov models, log spectral features
Factorial model inference
e.g. IBM Iroquois system [Kristjansson et al., 2006]

Speaker-dependent models
Acoustic dynamics and grammar constraints
Superhuman performance under some conditions
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Model-based separation – Limitations

Rely on speaker-dependent models to disambiguate sources

What if the task isn’t so well defined?

No prior knowledge of speaker identities or grammar

Use speaker-independent (SI) model for all sources

Need strong temporal constraints or sources will permute

“place white by t 4 now” mixed with “lay green with p 9 again”
Separated source: “place white by t p 9 again”

Solution: adapt speaker-independent model to compensate
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Model selection vs. adaptation

Model selection (e.g. [Kristjansson et al., 2006])

Given set of speaker-dependent (SD) models:
1 Identify sources in mixture
2 Use corresponding models for separation

How to generalize to speakers outside of training set?

Selection – choose closest model
Adaptation – interpolate

 

 
Speaker models
Mean voice
Speaker subspace bases
Quantization boundaries
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Model adaptation

Adjust model parameters to better match
observations

Caveats
1 Want to adapt to a single utterance, not

enough data for MLLR, MAP

Need adaptation framework with few
parameters

2 Observations are mixture of multiple sources

Iterative separation/adaptation algorithm

Feature 1

F
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 2

 

 

Original distribution
Observations
Adapted distribution
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Eigenvoice adaptation [Kuhn et al., 2000]

Train a set of SD models

Pack params into speaker supervector
Samples from space of speaker variation

Principal component analysis to find
orthonormal bases for speaker subspace

Model is linear combination of bases

 

 

Speaker models
Speaker subspace bases
Other models

Eigenvoice adaptation

µ = µ̄ + U w + B h
adapted mean eigenvoice weights channel channel

model voice bases bases weights

Ron Weiss Underdetermined Source Separation Using Speaker Subspace Models May 4, 2009 13 / 34



Outline Introduction Speaker subspace model Monaural speech separation Binaural separation Conclusions

Eigenvoice bases

Mean voice
= speaker-independent model

Eigenvoices shift formant
frequencies, add pitch

Independent bases to capture
channel variation
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Eigenvoice factorial HMM

Model mixture with combination of source HMMs

Need adaptation parameters wi to estimate source signals xi (t)
and vice versa
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Adaptation algorithm

Ron Weiss Underdetermined Source Separation Using Speaker Subspace Models May 4, 2009 17 / 34



Outline Introduction Speaker subspace model Monaural speech separation Binaural separation Conclusions

Adaptation example

Mixture: t32_swil2a_m18_sbar9n
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2006 Speech separation challenge [Cooke and Lee, 2006]

Single channel mixtures of utterances from 34 different speakers

Constrained grammar:
command(4) color(4) preposition(4) letter(25) digit(10) adverb(4)

Separation/recognition task
Determine letter and digit for source that said “white”
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Performance – Adapted vs. source-dependent models

−3 dB
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Experiments – Switchboard

Mixture
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What about previously unseen speakers?
Switchboard: corpus of conversational telephone speech

200+ hours, 500+ speakers
Task significantly more difficult than Speech Separation Challenge

Spontaneous speech
Large vocabulary
Significant channel variation across calls
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Switchboard – Results

Adaptation outperforms SD model selection

Model selection errors due to channel variation

SD performance drops off under mismatched conditions

SA performance improves as number of training speakers increases
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Binaural audition

y`(t) =
∑

i

xi (t − τ `
i ) ∗ h`

i (t)

yr (t) =
∑

i

xi (t − τ r
i ) ∗ hr

i (t)

Given stereo recording of multiple sound sources

Utilize spatial cues to aid separation

Interaural time difference (ITD)
Interaural level difference (ILD)

Ron Weiss Underdetermined Source Separation Using Speaker Subspace Models May 4, 2009 24 / 34



Outline Introduction Speaker subspace model Monaural speech separation Binaural separation Conclusions

MESSL: Interaural model [Mandel and Ellis, 2007]

Model-based EM Source Separation and Localization
Probabilistic model of interaural spectrogram

Independent of underlying source signals

Assume each time-frequency cell is dominated by a single source

EM algorithm to learn model parameters for each source

Derive probabilistic time-frequency masks for separation
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MESSL-SP: Source prior

Extend MESSL to include prior source model

Pre-trained GMM for speech signals in mixture

Channel model to compensate for HRTF and reverberation

Can incorporate eigenvoice adaptation (MESSL-EV)
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Parameter estimation and source separation
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Experiments
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SSC

TIMIT

Mixtures of 2 and 3 speech sources, anechoic and reverberant

Evaluated on TIMIT and SSC test data

Source models trained on SSC data (32 components)
Compare MESSL systems to:

DUET – Clustering using ILD/ITD histogram [Yilmaz and Rickard, 2004]

2S-FD-BSS – Frequency domain ICA [Sawada et al., 2007]
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Experiments – Performance as function of distractor angle
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Experiments – Matched vs. mismatched
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SSC – matched train/test speakers

MESSL-EV, MESSL-SP beat MESSL baseline by ∼ 3 dB in reverb
MESSL-EV beats MESSL-SP by ∼ 1 dB on anechoic mixtures

TIMIT – mismatched train/test speakers

Small difference between MESSL-EV and MESSL-SP
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Summary

Prior signal models for underdetermined source separation

Subspace model for source adaptation

Adapt Gaussian means and covariances using a single utterance
Natural extension to compensate for source-independent channel effects

Monaural separation

Speaker-dependent > speaker-adapted � speaker-independent
Adaptation helps generalize better to held out speakers
Improves as number of training speakers increases

Binaural separation

Extend MESSL framework to use source models (joint with M. Mandel)
Improved performance by incorporating simple SI model
Smaller improvement with adaptation
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Contributions

Model-based source separation making minimal assumptions
using subspace adaptation

Extend model-based approach to binaural separation

Ellis, D. P. W. and Weiss, R. J. (2006).

Model-based monaural source separation using a vector-quantized phase-vocoder representation.
In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages V–957–960.

Weiss, R. J. and Ellis, D. P. W. (2006).

Estimating single-channel source separation masks: Relevance vector machine classifiers vs. pitch-based masking.
In Proc. ISCA Tutorial and Research Workshop on Statistical and Perceptual Audition (SAPA), pages 31–36.

Weiss, R. J. and Ellis, D. P. W. (2007).

Monaural speech separation using source-adapted models.
In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 114–117.

Weiss, R. J. and Ellis, D. P. W. (2008).

Speech separation using speaker-adapted eigenvoice speech models.
Computer Speech and Language, In Press, Corrected Proof:–.

Weiss, R. J., Mandel, M. I., and Ellis, D. P. W. (2008).

Source separation based on binaural cues and source model constraints.
In Proc. Interspeech, pages 419–422.

Weiss, R. J. and Ellis, D. P. W. (2009).

A Variational EM Algorithm for Learning Eigenvoice Parameters in Mixed Signals.
In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
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Factorial HMM separation

Each source signal is
characterized by state
sequence through its HMM

Viterbi algorithm to find
maximum likelihood path
through combined factorial
HMM

Reconstruct source signals
using Viterbi path

Aggressively prune unlikely
paths to speed up separation
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Adaptation algorithm initialization
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Fast convergence needs good initialization

Want to differentiate source models to get best initial separation

Treat each eigenvoice dimension independently
Coarsely quantize weights
Find most likely combination in mixture
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Adaptation performance
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Adaptation clearly improves separation

Same talker case hard – source permutations
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Variational learning

Approximate EM algorithm to estimate adaptation parameters

Treat each source HMM independently

Introduce variational parameters to couple them
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Performance – Learning algorithm comparison

Adapting Gaussian covariances and means significantly improves
performance

Hierarchical algorithm outperforms variational EM

But variational algorithm is significantly (∼ 4x) faster

At same speed variational EM performs better
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Performance – Comparison to other participants
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MESSL-EV: Putting it all together

Big mixture of Gaussians

Interaural model

ITD: Gaussian for each source
and time delay
ILD: Single Gaussian for each source

Source model

Separate channel responses for each
source at each ear
Both channels share eigenvoice
adaptation parameters

Explain each point in spectrogram by a particular source, time delay, and
source model mixture component
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MESSL-EV example
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IPD informative in low frequencies, but not in high frequencies

ILD primarily adds information about high frequencies
Source model introduces correlations across frequency and emphasizes
reliable time-frequency regions

Helps resolve ambiguities in interaural parameters from reverberation and
spatial aliasing
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