E85.2607: Lecture 4 – Reverberation

E85.2607: Lecture 4 - Reverberation

< ∃ >

- Sound waves reflect off walls in an enclosed space
 - Different paths creates a series of echoes
- Sound scattered by different objects in the room
- Energy absorbed at walls
 - Depends on wall materials
 - Frequency dependent effects

- Simulate acoustics of a particular environment
- Causes "smearing" of signal energy

Aside: The Precedence Effect (again)

- But: Spatial impression based on 1st wavefront then 'switches off' for ${\sim}50~{\rm ms}$
 - ... even if 'reflections' are louder
 - ... leads to impression of room

Reverberation impulse response

- Room is just an LTI system
- Exponential decay of reflections:

- $\bullet\,$ greater absorption at high frequencies $\rightarrow\,$ faster decay
- Size-dependent
 - $\bullet~$ larger rooms $\rightarrow~$ longer delays $\rightarrow~$ slower decay
- Sabine's equation (reverb time):

$$RT_{60} = \frac{0.049V}{S\bar{\alpha}}$$

V= room volume, S= surface area, $ar{lpha}=$ absorption coefficient

• Time constant based on room size, absorption

Anatomy of a reverberation impulse response

- 'Early echos' in room impulse response
- Actual reflection may be $h_{reflect}(t)$, not $\delta(t)$
- Echo density increases with time
 - Eventually everything looks like exponentially decaying noise ('reverberant tail')

Anatomy of a reverberation impulse response - example

- Convolution reverb: characterize reverb by room impulse response
 - • * = •
 - If spatial cues are important, can record in stereo
 - IRs of ${\sim}1~\text{sec}$ \rightarrow very long convolution
 - Use block-based FFT convolution (fftfilt in Matlab)
- Can measure impulse response directly
 - Approximate impulse: clap, gunshot, ???
 - Example impulse responses: http://www.voxengo.com/impulses/
- Simulate sound propagation in software
 - Lots of software to do this online
 - Roomsim: http://media.paisley.ac.uk/~campbell/Roomsim/
 - rir.m: http://www.2pi.us/rir.html
- Make it up
 - Exponentially decaying noise...

Simulating reverb the old fashioned way

- Reproduce perceptually salient aspects
 - early echo pattern (\rightarrow room size impression)
 - overall decay tail (\rightarrow wall materials...)
 - interaural coherence (→ spaciousness)
- Nested allpass filters [Gardner, 1992]

Schroeder allpass section

- Use $g \sim 0.7$, mutually prime M > 50ms
- Don't allpass filters have flat frequency response?

Moorer Reverberator [Moorer, 79]

Reading DAFX, Section 6.5

Credits Some slides borrowed from the EE6280 lecture on spatial sound by Dan Ellis and Michael Mandel