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The physics of music

Synthesize realistic notes by modeling the mechanical and acoustic
behavior of a musical instrument

Sound produced by waves traveling through some medium

Common math for different physical phenomena: gas, solids, EM

Waves transfer energy without permanent displacement of matter
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1.  Acoustics & Sound
• Acoustics is the study of physical waves

• Waves transfer energy without permanent 
displacement of matter

• Common math for different media
gas, liquid, solid, EM

• Intuition:  Pulse going down a rope

2
e.g. guitar string, cymbal
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http://www.youtube.com/watch?v=eFXFkgqYkck
http://www.youtube.com/watch?v=1oLtzrAsIgU


Some scary math: The wave equation

Lossless string in a 1-D medium with displacement y(x , t):
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The Wave Equation
• For 1-D medium with displacement             :

simple to derive from freshman physics...

3

c2 ∂2y

∂x2
=

∂2y

∂t2

y(x, t)

curvature acceleration

x

y

y(0,t) = m(t)

y+(x,t) y(L,t) = 0

c =
√

K
ε (wave speed), K = string tension, ε = density
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Solving the wave equation

d’Alembert’s solution (1747):

y(x , t) = y+(x − ct) + y−(x + ct)

Sum of left-moving (y+) and right-moving (y−) traveling waves

Shape doesn’t change (set by initial conditions)
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The Wave Equation

• Solution:

sum of leftward-moving       and rightward-moving
traveling waves
shape does not change (set by initial conditions)   

4

c2 ∂2y

∂x2
=

∂2y

∂t2

y(x, t) = y+(x− ct) + y−(x + ct)
y+ y−

y

x

y+

y-

y(x,t)
= y++y-

c

c
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Digital waveguides

Represent each traveling wave using a delay line

Digital Waveguide 
•  y+(n-m) and y-(n+m) can be thought of as the 

outputs of a m-samples bidirectional delay lines 
with inputs y+(n) and y-(m) respectively.  

•  Therefore the digital waveguide is a digital 
implementation of the wave equation. 

•  The waveguide presents some wave impedance 
(denoted by R) 

z-m 

z-m 

R 

y+(n-m) 

y-(n+m) 

y+(n) 

y-(n) 

String length determines length of delay line m
wave impedance R

Compute solution to wave equation by sampling delay line and
summing contribution of each traveling wave

Digital Waveguide 
•  We can compute the physical string displacement at 

any spatial sampling point xm by simply adding the 
upper and lower rails together at position m along 
the bi-directional delay line:  

z-m 

z-m 

y(xm,tn) 

y+(n-m) 

y-(n+m) 

y+(n) 

y-(n) 
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Physical outputs

Can work with other physical variables (acceleration, velocity)

Derived from displacement:

v =
∂y

∂t
= velocity a =

∂2y

∂t2
= acceleration

Physical outputs 

… … 
v(t) a(t) y(t) v(t) a(t) 

•  So far, we have only considered discrete-time simulation of 
transverse string displacement y(x,t) in the ideal string. 

•  However we can also choose to work with other physical 
variables. 

•  Many of these variables can be computed as the derivative or 
integral of displacement with respect to time or position 

•  For derivatives/integrals of y(x,t) w.r.t. time 

Implement using digital filters

Physical outputs 
•  In discrete time, integration and differentiation can 

be approximated using digital filters: 

z-1 - 

z-1 
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Terminations and reflections

Waves in musical instruments aren’t the Energizer bunny . . .
Solution to wave equation must match constraints

leads to reflections at rigid terminations
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Terminations & Reflections
• Boundary conditions include fixed points

e.g. held ends of string

• Superposition of 
traveling waves 
must match 
constraints
hence reflections

• Any impedance change
results in some reflection

• Energy loss...

5

x = L

y(x,t)
= y+ + y–

y+

y–

Easy to incorporate into digital waveguide

Rigid Terminations 

y+(n-N/2) 
N/2 samples delay 

y(nT,mX) 

y-(n+N/2) 

y+(n) 

y-(n) N/2 samples delay 

-1 -1 

•  A digital simulation of the rigidly terminated ideal string 

•  This result is equivalent to considering the termination as a 
scattering junction between our system and a system with 
impedance set to infinity 

•  Rigid terminations reflect displacement, velocity or acceleration 
waves with a sign inversion. Slope or force waves reflect with no 
sign inversion 
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Alternative interpretation: Mass-spring (lumped) model
Mass-spring for vibrating strings 

Initial displacement 

Mass Spring 

Longitudinal 
wave 

Transversal
wave 

wave propagation 

Real strings have losses (e.g. friction within springs) . . .
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(More sophisticated: 2-D mass-spring)Mass-spring for surfaces 

A drum membrane A 2-D square surface 
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Lossy 1-D wave

Simple model: constant loss at each “spring”:

y(x , t) = g xy+(x − ct) + g−xy−(x + ct)

The lossy 1-D wave 
•  Sampling these exponentially decaying waves at intervals of T 

seconds (X=cT meters) gives: 

z-1 

z-1 

y(2cT,nT) 

y-(n) 

y+(n) z-1 

z-1 z-1 

z-1 

y(0,nT) 

g g g 

g g g 

z-2 g2 

Consolidate delays and losses where possible

More realistic: frequency-dependent losses

Replace g with filter
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Putting it all together: Damped plucked strings

We almost have a guitar string:

Rigid Terminations 
N/2 samples delay 

output 

N/2 samples delay 

-1 

-1 

•  Considering a lossy string model, and the non-linear behaviour 
of the bridges, the model of rigid terminations is the starting point 
for the development of a physical model for certain instruments, 
e.g. a guitar.  

But, real strings have losses
exponentially decaying traveling waves

Damped plucked strings 
•  Any model of a plucked string cannot be perfectly periodic and 

never decay 
•  Thus, we incorporate damping: using exponentially decaying 

travelling waves instead of non-decaying waves 
•  Let us consider a model which is “plucked” by initial conditions 

y+(n-N/2)gN/2 
N/2 samples delay and 

loss factors g 
output 

y-(n+N/2)g-N/2 

y+(n) 

y-(n) 

-1 -1 

N/2 samples delay and 
loss factors g 

Because there is no input/output coupling, can consolidate all delays
and loses at a single point in the loop:

Damped plucked strings 
•  Because there is no input/output coupling we may lump all the 

losses at a single point in the delay loop 
•  Furthermore, the two reflecting terminations may be 

commuted so as to cancel them 
•  Finally, the two delay lines may be combined resulting in a 

single N-length delay line  

y+(n-N) 
N samples delay 

output 

gN 

y+(n) 
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Digital waveguide review
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Digital Waveguides
• Direct physical model + simplifications

13

Delay z-L

L = SR/f0Initialize with random values

Initialize with pluck shape

Delay Lines

y+(x,t)

y-(x,t)

-1

-1

y+(0,t) 
= –y-(0,t)

y-(L,t) 
= hreflec(t) * y+(L,t)

s(t)

hLP

hreflec

String WaveguideNut Bridge dispersion
+ radiation load

Karplus-
Strong
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The Karplus-Strong algorithm (1978)

Karplus-Strong 

•  Generally, the KS algorithm can be implemented with any LPF 
whose cutoff frequency controls the rate of damping, thus the 
duration of the sound. 

•  A lower cutoff frequency eliminates more high frequencies per cycle, 
speeding up the process of reaching equilibrium 

•  Higher cutoff frequencies allow more high-frequency components to 
pass per iteration. More cycles are required to reach equilibrium. 

•  In real scenario, every filter introduces a delay, which needs to be 
considered when calculating the pitch of the sound. 

•  Ignoring this fact, results in pitches being slightly flatter (lower in 
frequency) than expected. 

z-N LPF 

Input 

Output 

cutoff frequency 

Initialize the waveguide with random noise

Noise “wave” will propagate through the loop

decaying as it passes through the filter

Pitch is proportional to length of delay line: f = fs
N

Does this look familiar?
it’s just an IIR comb filter . . .

with an LPF in the loop instead of a fixed gain

pass a short noise burst in instead of long term noise
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Karplus-Strong examples
Karplus-Strong 

•  Averaging acts as a low-pass 
filter 

•  limits the speed of change of 
the signal,  

•  hence limiting  the presence of 
high frequencies. 

•  Because we are feeding back 
the averaged values, our 
waveform evolves. 

•  These accumulative low-pass 
filtering will keep stabilising the 
process until we reach 
equilibrium 
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4. Filtering
• Amplitude modulation alone is not enough

real instruments have time-varying spectra
e.g. plucked string

• Generally just LPF (+ resonance)
high frequencies die away after initial transient
resonance can give some BPF effect

13

Strings: Drums:
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http://ccrma.stanford.edu/~jos/wav/karplus1.wav
http://ccrma.stanford.edu/~jos/wav/karplus2.wav
http://ccrma.stanford.edu/~jos/wav/plucked.wav
http://ccrma.stanford.edu/~jos/mp3/ksdrum.mp3
http://ccrma.stanford.edu/~jos/mp3/ksdrumst.mp3


Extended Karplus-Strong (Jaffe and Smith, 1983)
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http://ccrma.stanford.edu/~jos/wav/bachfugue.wav


Bowed strings (1986)

Bowed strings have more complex excitation

Bowed String 
•  Example of bowed-string instruments include the violin, viola, cello, 

and bass viol 
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http://www.youtube.com/watch?v=KPpBvHXYWz4
http://ccrma.stanford.edu/~jos/wav/bowedf.wav
http://ccrma.stanford.edu/~jos/wav/cello82.wav


More strings: Clavichord (Valimaki et al, 2004)
! Valimaki et al, 2003; used for clavichord synthesis 

State-of-the-art models 
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http://ccrma.stanford.edu/~jos/wav/harpsi-cs.wav
http://ccrma.stanford.edu/~jos/wav/Harpsichord.wav
http://ccrma.stanford.edu/~jos/wav/pno-cs.wav


Woodwinds (Smith, 1986)
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Air Column
• Wave equation in air

pressure waves traveling in tube
resonance of tube depends on length
coupled energy input

• Clarinet, oboe, organ, flute
finger holes disrupt waveguide (scattering)
first reflection determines oscillation period

11

U0 e
j!t

kx = " 
x = # / 2

pressure = 0 (node) 
vol.veloc. = max        

           (antinode)

Wind Instruments 
•  Example of wind instruments include the clarinet, trumpet, flute, and 

organ pipe 
•  Digital waveguide Woodwind instrument 
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http://ccrma.stanford.edu/~jos/wav/clarinet.wav
http://ccrma.stanford.edu/~jos/wav/oboe-bassoon.wav
http://ccrma.stanford.edu/~jos/wav/tenor-sax.wav


Physical Modeling: The Verdict

Realistic synthesis of acoustic instruments

Parameters based on the physical attributes of real instruments

less guesswork involved

But expensive to implement

Need different model for each instrument
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Reading

J. Smith, Physical Modeling using Digital Waveguides, Computer
Music Journal, 1992.

J. Smith, Virtual Acoustic Musical Instruments: Review of Models and
Selected Research, WASPAA, 2005

Much more at https://ccrma.stanford.edu/∼jos/wg.html
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https://ccrma.stanford.edu/~jos/pmudw/pmudw.pdf
https://ccrma.stanford.edu/~jos/Mohonk05/Mohonk05.html
https://ccrma.stanford.edu/~jos/Mohonk05/Mohonk05.html
https://ccrma.stanford.edu/~jos/wg.html

