E85.2607: Lecture 1 - Introduction

2010-01-21

1 / 24

- Advanced Digital Signal Theory
- Design, analysis, and implementation of audio effects and synthesizers
 - EQ, reverb, chorus, phase vocoder, sinusoidal modeling, FM synthesis, ...
- Emphasis on practical implementation, building complete systems.
- Course web page: http://www.ee.columbia.edu/~ronw/adst

- PhD, Electrical Engineering, Columbia University
- Research interests: Source separation, speech recognition, music information retrieval
- http://www.ee.columbia.edu/~ronw

- Periodic and aperiodic signals
- Discrete Fourier Transform
- Convolution, filtering
- Linear time-invariant systems
- Impulse response
- Frequency response
- z-transform

Digital signals

Discrete-time signal sequence of samples

• e.g. x[n] = [0, -2.3, -1.3, 20, 4.2, ...]

Digital signal discrete-time signal that has been quantized

- Discrete on both axes: samples can only take on a limited set of values (quantization levels)
- Quantization introduces noise

Sampling

Important signals: impulse

Think of all discrete time signals as a sequence of scaled and time-shifted impulses.

$$x[n] = [0, -2.3, -1.3, 20, 4.2, \dots]$$

= 0 $\delta[n] - 2.3 \delta[n-1] - 1.3 \delta[n-2] + 20 \delta[n-3] + 4.2 \delta[n-4] + \dots$

Important signals: sinusoid

- $\sin(2\pi fn + \phi)$, frequency = $f \frac{\text{cycles}}{\text{sample}}$, phase = ϕ
- Period: $N = \frac{1}{f}$ samples
- But what will it sound like?

Important signals: sinusoid

• $\sin(2\pi fn + \phi)$, frequency = $f \frac{\text{cycles}}{\text{sample}}$, phase = ϕ

- Period: $N = \frac{1}{f}$ samples
- But what will it sound like?

 - Convert from samples: f cycles × 1/fs samples
 How many samples in one period of a 440 Hz tone sampled at 44.1 kHz?

Decompose any periodic signal into sum of re-scaled sinusoids

Inverse DFT

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi nk/N}$$
 $k = 0, \dots, N-1$

Forward DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N}$$

Note that X[k] are complex: $X[k] = X_R[k] + jX_I[k]$

イロト イヨト イヨト

Magnitude and Phase spectra

$$X[k] = |X[k]| e^{j \angle X[k]}$$

• Magnitude: amount of energy at each frequency

$$|X[k]| = \sqrt{X_R^2[k] + X_I^2[k]}$$

• Phase: delay at each frequency

$$\angle X[k] = \arctan \frac{X_l[k]}{X_R[k]}$$

DFT symmetry and aliasing

- The spectrum of a discrete time signal is periodic with period f_s
- The spectrum of a real valued signal is symmetric around $f_s/2$
- Any energy at frequencies greater than $f_s/2$ will wrap around

- What if frequency content varies with time?
- Break signal up into short (optionally overlapping) segments
- Multiply by window function
- Take DFT of each segment

STFT example

2010-01-21 13 / 24

$$x[n] \longrightarrow h \longrightarrow y[n]$$

- Process input signal using delays, multiplications, additions
- Describe using a difference equation, e.g.

$$y[n] = b_0 x[n] + b_1 x[n-1]$$

• Can also have feedback, e.g.

$$y[n] = b_0 x[n] + b_1 x[n-1] + a_1 y[n-1] + a_2 y[n-2]$$

LTI systems – Block diagram

LTI systems - Properties

Impulse response and convolution

Characterize LTI system in time-domain by its impulse response h[n]
 An LTI system is just another signal

• Given input signal x[n], output is convolution with h[n]

Convolution

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

 But how do we compute the impulse response from a difference equation?

2010-01-21

17 / 24

z-transform

z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] \, z^{-n}$$

- Maps discrete-time signal to a continuous function of a complex variable
- Incredibly useful for analyzing LTI systems
 - Turns difference equations into polynomials:

$$x[n-m] \stackrel{z}{\longleftrightarrow} z^{-M} X(z)$$

• Convolution becomes multiplication:

$$x[n] * h[n] \stackrel{z}{\longleftrightarrow} X(z) H(z)$$

• If $z = e^{j\Omega}$, get discrete-time Fourier transform (DTFT)

- Transfer function H(z) is the z-transform of the impulse response
- Can read off z-transform from difference equation

$$y[n] = b_0 x[n] + b_1 x[n-1] + a_1 y[n-1] + a_2 y[n-2]$$

- Transfer function H(z) is the z-transform of the impulse response
- Can read off z-transform from difference equation

$$y[n] = b_0 x[n] + b_1 x[n-1] + a_1 y[n-1] + a_2 y[n-2]$$

$$\stackrel{z}{\longleftrightarrow} Y(z) = (b_o + b_1 z^{-1}) X(z) + (a_1 z^{-1} + a_2 z^{-2}) Y(z)$$

- Transfer function H(z) is the z-transform of the impulse response
- Can read off z-transform from difference equation

$$y[n] = b_0 x[n] + b_1 x[n-1] + a_1 y[n-1] + a_2 y[n-2]$$

$$\stackrel{z}{\longleftrightarrow} Y(z) = (b_o + b_1 z^{-1}) X(z) + (a_1 z^{-1} + a_2 z^{-2}) Y(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_o + b_1 z^{-1}}{1 - a_1 z^{-1} - a_2 z^{-2}}$$

Image: Image:

- Transfer function H(z) is the z-transform of the impulse response
- Can read off z-transform from difference equation

$$y[n] = b_0 x[n] + b_1 x[n-1] + a_1 y[n-1] + a_2 y[n-2]$$

$$\stackrel{z}{\longleftrightarrow} Y(z) = (b_0 + b_1 z^{-1}) X(z) + (a_1 z^{-1} + a_2 z^{-2}) Y(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_o + b_1 z^{-1}}{1 - a_1 z^{-1} - a_2 z^{-2}}$$

- But why? $\delta[n] \stackrel{z}{\longleftrightarrow} 1$
- Compute impulse response analytically by finding inverse z-transform of H(z) (lots of algebra)

< ロト < 同ト < ヨト < ヨト

Frequency response

- Often more intuitive to analyze system in the frequency-domain
- $H(e^{j\Omega})$ DTFT of impulse response
 - Slice of z-transform corresponding to the unit circle
 - DFT (discrete freq) is just sampled DTFT (continuous freq)

- Zeros: roots of numerator of H(z)
 - Correspond to valleys in frequency response
- Poles: roots of denominator of H(z)
 - Correspond to peaks in frequency response
- System is unstable if it has poles outside of (or on) the unit circle
 - Impulse response goes to infinity

• Finite Impulse Response

- $\bullet \ \ \mathsf{No} \ \mathsf{feedback} \Rightarrow \mathsf{all} \ \mathsf{zeroes} \Rightarrow \mathsf{always} \ \mathsf{stable}^*$
 - \ast if coefficients are finite
- Easy to design by drawing frequency response by hand, then using inverse DFT to get impulse response
- Often needs a long impulse response \Rightarrow expensive to implement

• Infinite Impulse Response

- Feedback \Rightarrow has poles \Rightarrow can be unstable
- Can implement complex filters using fewer delays than FIR
- But harder to design

Signal generation	linspace, rand, sin
I/O	wavread, wavwrite, soundsc
Plotting	plot, imagesc
Transforms	fft, ifft
Filtering	conv, filter
Analyzing filters	freqz, zplane, iztrans

・ロト ・ 日 ト ・ 日 ト ・

- Review your DST notes
- Skim Introduction to Digital Filters
 - Linear Time-Invariant Filters
 - Transfer Function Analysis
 - Frequency Response Analysis
- DAFX, Chapter 1 (if you have it)