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Course overview

@ Advanced Digital Signal Theory

@ Design, analysis, and implementation of audio effects and synthesizers
o EQ, reverb, chorus, phase vocoder, sinusoidal modeling, FM synthesis, ...

@ Emphasis on practical implementation, building complete systems.

o Course web page: http://www.ee.columbia.edu/~ronw/adst
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http://www.ee.columbia.edu/~ronw/adst

@ PhD, Electrical Engineering, Columbia University

@ Research interests: Source separation, speech recognition, music
information retrieval

@ http://www.ee.columbia.edu/~ronw
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Sound familiar?

Periodic and aperiodic signals
Discrete Fourier Transform

Convolution, filtering

Impulse response

o
o
o
@ Linear time-invariant systems
o
o Frequency response

o

z-transform
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Digital signals

Continuous time Discrete time
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Discrete-time signal sequence of samples
e eg. x[n] =[0,-2.3,-1.3,20,4.2,...]

Digital signal discrete-time signal that has been quantized
@ Discrete on both axes: samples can only take on a limited set of
values (quantization levels)
@ Quantization introduces noise
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Sampling
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Important signals: impulse

Think of all discrete time signals as a sequence of scaled and time-shifted
impulses.

x[n] = [0,-2.3,-1.3,20,4.2, ...]
=006[n]—238[n—1]—136[n—2]+200[n—3]+4.25[n—4]+...
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Important signals: sinusoid

T T =

x[n] = sin(27 fn) L

o (=]
ot o
T
o—
[ —
l——
o———
o——
o—
[ J
L

1

cycles
sample’

@ sin(2wfn + ¢), frequency = f phase = ¢
@ Period: N = % samples

@ But what will it sound like?
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Important signals: sinusoid
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@ sin(2wfn + ¢), frequency = f phase = ¢

@ Period: N = % samples
@ But what will it sound like?
cycles 1 samples

e Convert from samples: f sample X 7 second
e How many samples in one period of a 440 Hz tone sampled at 44.1 kHz?
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Discrete Fourier Transform

Decompose any periodic signal into sum of re-scaled sinusoids

Inverse DFT
N-1
J27Tnk/N -
x[n] = N;)X[k] k=0,...,N—1
Forward DFT
N-1 '
X[k] =) x[n] e I2mnk/N
n=0

Note that X[k] are complex: X[k] = Xg[k] + jXi[k]
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Magnitude and Phase spectra

x[n] = cos(2m fn)
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DFT symmetry and aliasing

‘Spectrum of analog signal
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@ The spectrum of a discrete time signal is periodic with period f;
@ The spectrum of a real valued signal is symmetric around f;/2

@ Any energy at frequencies greater than f;/2 will wrap around

2010-01-21
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Short-time Fourier Transform

o What if frequency content varies with
time?

@ Break signal up into short (optionally
overlapping) segments

@ Multiply by window function

o Take DFT of each segment
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example

Frequency (kHz)
(==}
Power (dB)

Time (sec)

©
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http://www.ee.columbia.edu/~ronw/adst/lectures/matlab/wavs/lib-excerpt.wav

Linear time-invariant systems

xn] — h ——yn|

@ Process input signal using delays, multiplications, additions

@ Describe using a difference equation, e.g.
y[n] = bo x[n] 4+ b1 x[n — 1]
@ Can also have feedback, e.g.

y[n] = box[n] + by x[n — 1]+ a1 y[n — 1] + a2 y[n — 2]
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LTI systems — Block diagram

0
X(n) y(n)
> @ )
z1] Db a1 [z']
z‘-1 b2 -a2 z!
—
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LTI systems — Properties

XNl — h —— yn]

Given:

x2[n] —{ h +—— y2[n]

1. Linearity

axin] — h +—— ay[n] Scaling

x[n] +x2[nN] —— h —— y[n]+y2[n] Superposition

2. Time-invariance

X[n-k] —— h |—— y[n-K]
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Impulse response and convolution

o Characterize LTI system in time-domain by its impulse response h[n]
o An LTI system is just another signal

e Given input signal x[n], output is convolution with h[n]

(o)

yIn] = x[n]  hln] = 3 x[k] hln — K]

k=—o0

@ But how do we compute the impulse response from a difference
equation?
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z-transform

o0

X(z)= > x[n]z"

n=—o0o

@ Maps discrete-time signal to a continuous function of a complex
variable

@ Incredibly useful for analyzing LTI systems
e Turns difference equations into polynomials:

xn—m] <= 27 MX(2)
o Convolution becomes multiplication:
x[n] * h[n] <2 X(z) H(z)
o If z = &/, get discrete-time Fourier transform (DTFT)
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Transfer function

e Transfer function H(z) is the z-transform of the impulse response

@ Can read off z-transform from difference equation

y[n] = box[n] 4+ by x[n — 1]+ a1 y[n — 1] + a2 y[n — 2]
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Transfer function

e Transfer function H(z) is the z-transform of the impulse response
@ Can read off z-transform from difference equation
y[n] = box[n] + by x[n — 1] + a1 y[n — 1]+ ap y[n — 2]
o Y(2)=(bo+ b1z ) X(2) + (a1 27 +a2272) Y(2)
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Transfer function

e Transfer function H(z) is the z-transform of the impulse response

@ Can read off z-transform from difference equation

y[n] = box[n] 4+ by x[n — 1]+ a1 y[n — 1] + a2 y[n — 2]
o Y(2)=(bo+ b1z ) X(2) + (a1 27 +a2272) Y(2)

Y(z) bo + by z71

H(z) = X(z) T 1-azl-ayz2
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Transfer function

e Transfer function H(z) is the z-transform of the impulse response
@ Can read off z-transform from difference equation
y[n] = box[n] + by x[n — 1] + a1 y[n — 1]+ ap y[n — 2]
o Y(2)=(bo+ b1z ) X(2) + (a1 27 +a2272) Y(2)

Y(z) bo + by z71
X(z) 1—ajzl—ayz2

H(z) =

e But why? 6[n] < 1

@ Compute impulse response analytically by finding inverse z-transform of
H(z) (lots of algebra)
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Frequency response
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@ Often more intuitive to analyze system in the frequency-domain
o H(e/?) DTFT of impulse response

o Slice of z-transform corresponding to the unit circle
o DFT (discrete freq) is just sampled DTFT (continuous freq)
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Poles and zeros
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@ Zeros: roots of numerator of H(z)
o Correspond to valleys in frequency response

@ Poles: roots of denominator of H(z)
o Correspond to peaks in frequency response

e System is unstable if it has poles outside of (or on) the unit circle
o Impulse response goes to infinity
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FIR and IIR filters

@ Finite Impulse Response
o No feedback = all zeroes = always stable*
x if coefficients are finite
o Easy to design by drawing frequency response by hand, then using
inverse DFT to get impulse response
o Often needs a long impulse response = expensive to implement

@ Infinite Impulse Response

o Feedback = has poles = can be unstable
e Can implement complex filters using fewer delays than FIR
o But harder to design
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Fun with Matlab

Signal generation linspace, rand, sin

/O wavread, wavwrite, soundsc
Plotting plot, imagesc

Transforms fft, ifft

Filtering conv, filter

Analyzing filters  freqz, zplane, iztrans
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@ Review your DST notes
@ Skim Introduction to Digital Filters

o Linear Time-Invariant Filters
o Transfer Function Analysis
e Frequency Response Analysis

e DAFX, Chapter 1 (if you have it)

E85.2607: Lecture 1 — Introduction 2010-01-21


https://ccrma.stanford.edu/~jos/filters/Linear_Time_Invariant_Digital_Filters.html
https://ccrma.stanford.edu/~jos/filters/Transfer_Function_Analysis.html
https://ccrma.stanford.edu/~jos/filters/Frequency_Response_Analysis.html
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