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Course overview

Advanced Digital Signal Theory

Design, analysis, and implementation of audio effects and synthesizers

EQ, reverb, chorus, phase vocoder, sinusoidal modeling, FM synthesis, ...

Emphasis on practical implementation, building complete systems.

Course web page: http://www.ee.columbia.edu/~ronw/adst
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PhD, Electrical Engineering, Columbia University

Research interests: Source separation, speech recognition, music
information retrieval

http://www.ee.columbia.edu/~ronw
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Sound familiar?

Periodic and aperiodic signals

Discrete Fourier Transform

Convolution, filtering

Linear time-invariant systems

Impulse response

Frequency response

z-transform
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Digital signals
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Discrete-time signal sequence of samples

e.g. x [n ] = [0,−2.3,−1.3, 20, 4.2, ... ]

Digital signal discrete-time signal that has been quantized

Discrete on both axes: samples can only take on a limited set of
values (quantization levels)
Quantization introduces noise
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Sampling
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Important signals: impulse
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Think of all discrete time signals as a sequence of scaled and time-shifted
impulses.

x [n ] = [0,−2.3,−1.3, 20, 4.2, ... ]

= 0 δ[n ]− 2.3 δ[n − 1]− 1.3 δ[n − 2] + 20 δ[n − 3] + 4.2 δ[n − 4] + ...
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Important signals: sinusoid
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sin(2πfn + φ), frequency = f cycles
sample , phase = φ

Period: N = 1
f samples

But what will it sound like?

Convert from samples: f cycles
sample × 1

fs

samples
second

How many samples in one period of a 440 Hz tone sampled at 44.1 kHz?
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Discrete Fourier Transform

Decompose any periodic signal into sum of re-scaled sinusoids

Inverse DFT

x [n ] =
1

N

N−1∑
n=0

X [k ] e j2πnk/N k = 0, . . . ,N − 1

Forward DFT

X [k ] =
N−1∑
n=0

x [n ] e−j2πnk/N

Note that X [k ] are complex: X [k ] = XR [k ] + jXI [k ]
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Magnitude and Phase spectra

X [k ] = |X [k ] | e j∠X [k ]

Magnitude: amount of energy at
each frequency

|X [k ]| =
√

X 2
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Phase: delay at each frequency
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DFT symmetry and aliasing

24000 28000 32000 36000 40000
-80

-60

-40

-20

0

X
(f

)
in

d
B

f in Hz !

0 4000 8000 12000 16000 20000 44000 48000 52000 56000 60000

24000 28000 32000 36000 40000
-80

-60

-40

-20

0

X
(f

)
in

d
B

Spectrum of analog signal

!

0 4000 8000 12000 16000 20000 44000 48000 52000 56000 60000

f in Hz

Spectrum of digital signal
Sampling frequency f =40000 kHzS

The spectrum of a discrete time signal is periodic with period fs

The spectrum of a real valued signal is symmetric around fs/2

Any energy at frequencies greater than fs/2 will wrap around
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Short-time Fourier Transform

What if frequency content varies with
time?

Break signal up into short (optionally
overlapping) segments

Multiply by window function

Take DFT of each segment
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STFT example
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Linear time-invariant systems

Process input signal using delays, multiplications, additions

Describe using a difference equation, e.g.

y [n ] = b0 x [n ] + b1 x [n − 1]

Can also have feedback, e.g.

y [n ] = b0 x [n ] + b1 x [n − 1] + a1 y [n − 1] + a2 y [n − 2]
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LTI systems – Block diagram
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LTI systems – Properties
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Impulse response and convolution

h(n)

y(n) = h(n)

-1 0 1 2 3 4
n

x(n) = (n)! y(n) = h(n)

x(n) = (n)!

-1 0 1 2 3
n

1

Characterize LTI system in time-domain by its impulse response h[n ]
An LTI system is just another signal

Given input signal x [n ], output is convolution with h[n ]

Convolution

y [n ] = x [n ] ∗ h[n ] =
∞∑

k=−∞
x [k ] h[n − k ]

But how do we compute the impulse response from a difference
equation?
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z-transform

z-transform

X (z) =
∞∑

n=−∞
x [n ] z−n

Maps discrete-time signal to a continuous function of a complex
variable

Incredibly useful for analyzing LTI systems

Turns difference equations into polynomials:

x [n −m ]
z←→ z−M X (z)

Convolution becomes multiplication:

x [n ] ∗ h[n ]
z←→ X (z) H(z)

If z = e jΩ, get discrete-time Fourier transform (DTFT)
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Transfer function

Transfer function H(z) is the z-transform of the impulse response

Can read off z-transform from difference equation

y [n ] = b0 x [n ] + b1 x [n − 1] + a1 y [n − 1] + a2 y [n − 2]

z←→ Y (z) = (bo + b1 z−1) X (z) + (a1 z−1 + a2 z−2) Y (z)

H(z) =
Y (z)

X (z)
=

bo + b1 z−1

1− a1 z−1 − a2 z−2

But why? δ[n ]
z←→ 1

Compute impulse response analytically by finding inverse z-transform of
H(z) (lots of algebra)
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Frequency response
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Phase Response

Often more intuitive to analyze system in the frequency-domain

H(e jΩ) DTFT of impulse response

Slice of z-transform corresponding to the unit circle
DFT (discrete freq) is just sampled DTFT (continuous freq)
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Poles and zeros
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Zeros: roots of numerator of H(z)

Correspond to valleys in frequency response

Poles: roots of denominator of H(z)

Correspond to peaks in frequency response

System is unstable if it has poles outside of (or on) the unit circle

Impulse response goes to infinity
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FIR and IIR filters

Finite Impulse Response

No feedback ⇒ all zeroes ⇒ always stable∗

∗ if coefficients are finite

Easy to design by drawing frequency response by hand, then using
inverse DFT to get impulse response
Often needs a long impulse response ⇒ expensive to implement

Infinite Impulse Response

Feedback ⇒ has poles ⇒ can be unstable
Can implement complex filters using fewer delays than FIR
But harder to design
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Fun with Matlab

Signal generation linspace, rand, sin
I/O wavread, wavwrite, soundsc
Plotting plot, imagesc
Transforms fft, ifft
Filtering conv, filter
Analyzing filters freqz, zplane, iztrans
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Reading

Review your DST notes

Skim Introduction to Digital Filters

Linear Time-Invariant Filters
Transfer Function Analysis
Frequency Response Analysis

DAFX, Chapter 1 (if you have it)
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