
 1

  
Abstract—In this paper, a kernel-based learning algorithm, 

KernelRank, is presented for improving the performance of se-
mantic concept detection. By designing a classifier optimizing the 
receiver operating characteristic (ROC) curve using KernelRank, 
we provide a generic framework to optimize any differentiable 
ranking function using effective smoothing functions. KernelRank 
directly maximizes a one-dimensional quality measure of ROC, 
i.e. AUC (Area under the ROC). It exploits the kernel density 
estimation to model the ranking score distributions and ap-
proximate the correct ranking count. The ranking metric is then 
derived and the learnable parameters are naturally embedded. To 
address the issues of computation and memory in learning, an 
efficient implementation is developed based on the gradient de-
scent algorithm. We apply KernelRank with two types of kernel 
density functions to train the linear discriminant function and the 
Gaussian mixture model classifiers. From our experiments car-
ried out on the development set for TREC Video Retrieval 2005, 
we conclude that (1) KernelRank is capable of training any dif-
ferentiable classifier with various kernels; and (2) the learned 
ranking function performs better than traditional maximization 
likelihood or classification error minimization based algorithms 
in terms of AUC and average precision (AP).  
 

Index Terms—Information Retrieval, Multimedia Database, 
Semantic Concept Detection, ROC curve, Area under ROC 

I. INTRODUCTION 
n a ranking system, the ranking function is utilized to sort the 
samples in a database according to their relevant degrees to 

the query so that only highly relevant documents are shown to 
the user. For example, in the high-level feature extraction in 
TREC Video Retrieval (TRECVID), the system returns the 
top-N video shots for a given semantic concept. In general, the 
ranking efficiency is measured using the ranking metrics, e.g. 
AUC (Area under the ROC curve) or AP (non-interpolated 
average precision). The objective in the paper is to investigate 
an efficient learning algorithm for designing the ranking func-
tion to optimize the ranking performance. 

Similar to supervised learning, a ranking function is esti-
mated from a given set of training samples labeled as relevance 
(positive) or irrelevance (negative). Usually, learning of the 
ranking function can be formulated as a binary classification 

 
Manuscript received July 6, 2006; revised June 3, 2007.  
Sheng Gao is with the Institute for Infocomm Research, A*STAR, 21 Heng 

Mui Keng Terrace, Singapore 119613 (corresponding author: 65-68748531; 
fax: 65-67744998; e-mail: gaosheng@i2r.a-star.edu.sg).  

Qibin Sun is with the Institute for Infocomm Research, A*STAR, 21 Heng 
Mui Keng Terrace, Singapore 119613 (e-mail: qibin@i2r.a-star.edu.sg).  

problem, so that the documents are sorted according to the 
output of the classifier. Thus, any classifier, such as support 
vector machine (SVM), linear discriminant function (LDF), 
Gaussian mixture models (GMM) etc., is applicable [5]. How-
ever, traditional learning algorithms train the classifiers by 
minimizing the classification error or maximizing the likeli-
hood rather than maximizing the ranking metrics which is 
utilized to evaluate the system of semantic concept detection. 
Such criterion mismatch definitely affects the ranking per-
formance. It is even worse when the dataset is highly imbal-
anced. Cortes & Mohri [3] studied the relationship among the 
ratio of class distribution, classification error rate and the av-
erage AUC. They experimentally showed that the average 
AUC coincides with the accuracy only in the case of even class 
distribution, where the AUC monotonically increases with 
accuracy. Their analysis provided a reasonable explanation for 
the partial success of applying classifiers learned for mini-
mizing classification error to ranking. For example, SVM 
trained for minimizing classification error is widely exploited 
for multimedia semantic concept detection in TRECVID. 
Nevertheless, they also pointed out the high variance of AUC is 
observed when the class distributions are uneven. This implies 
the classifier having a fixed classification error rate demon-
strates a noticeable difference of AUC for the highly uneven 
class distribution. The uneven distribution is a critical issue 
occurred in information retrieval and data mining. In most real 
classification (or ranking) problems, the negative samples are 
much more than the positive samples and the ratio between 
them varies much across different datasets. For example, it is 
often seen that there are only a few hundred positive samples 
versus thousands of negative samples. Therefore, it is desirable 
to find a new learning criterion, rather than classification error 
rate, to design an optimal ranking system. 

AUC characterizes the correct rank statistics on a dataset by 
a given utility function. Thus optimizing AUC is a candidate 
criterion to design the ranking function. The AUC-based ob-
jective function is a function of the scores calculated from the 
classifier estimated on training samples. Therefore, the pa-
rameters of the classifier are naturally embedded into the AUC 
definition. Maximizing the AUC metric will result in a classi-
fier that provides the maximal ranking performance.  

Like all other metrics such as classification error rate, recall, 
precision or F1 measure, AUC is also a discrete metric which 
measures how much proportion of pair-wise samples between 
the positive and the negative is correctly ranked. To solve the 
AUC-based objective function, smoothing is first applied in 

Improving Semantic Concept Detection through 
Optimizing Ranking Function 

Sheng Gao* and Qibin Sun 

I 



 2

order to obtain a differentiable function. In the paper, an effi-
cient kernel-based learning algorithm, KernelRank, is pre-
sented to design the classifiers that have the optimal ranking 
performance. First, KernelRank models the distribution of 
ranking scores using the kernel density estimation (i.e. Parzen 
window). Then, the AUC is calculated using the integral of the 
score distribution. Thus, a differentiable objective function is 
derived. Finally, the parameters of the classifiers are estimated 
using the gradient descent algorithm. Kernel density estimation 
(KDE) allows us to approximate ranking loss using the various 
functions instead of the sigmoid function [11, 12, 22]. Ker-
nelRank provides a generic and flexible framework for learning 
the ranking function. To address the issues of the high cost of 
computation and memory due to the pair-wise interactions, an 
efficient implementation, which is based on the gradient de-
scent algorithm, is introduced. Two specific ranking functions, 
i.e. LDF and GMM, are learned using the KernelRank algo-
rithm and evaluated on the large-scale development set used in 
TRECVID 2005. 

The paper is organized as follows. Related work is studied in 
the next section. Then the details of designing the objective 
function using kernel density estimation are given in Section 
III. In Section IV, the implementation and estimation of Ker-
neRank algorithm is described. The experimental evaluation 
and analyses are presented in Section V. Finally, we summarize 
our findings in Section VI.  

II.  RELATED WORK 
Using the ROC curve to evaluate the system performance 

has been extensively studied in the community of machine 
learning [4, 7, 9]. Unlike the widely used metrics such as clas-
sification error rate, precision or F1 measure, which only 
measure the behavior of the classifier at one chosen decision 
point, the ROC is an overall measure. Designing a classifier 
with an optimal ROC is preferred, particularly when we have 
little knowledge about the problems in hand. For instance, 
sometimes the cost of false decision is unknown or changing 
and the ratio of class distributions is not predictable. Tradi-
tionally, the classifier is trained on the assumption of prior 
knowledge, e.g. the costs of false decision for all classes are 
equal and the class distribution is even and constant over time. 
When the real situation does not follow these assumptions, the 
system performance is degraded. In the semantic concept de-
tection problem, the assumptions of equal cost and fixed class 
distribution are not valid. The ratio between the negative sam-
ples and the positive samples is large and varies across the 
datasets and concepts, as will be shown in Section V. It implies 
that the cost of misclassifying a positive sample should be 
higher than that of misclassifying a negative sample and the 
cost should be different over the concepts and datasets. 
Therefore, it is necessary to develop a learning algorithm to 
handle such an issue. Since the ROC is a measure that is in-
dependent of the cost and the ratio of class distributions, op-
timizing the ROC would be a good exploration. 

Recently, many works have been done to study the learning 

problem. These works learn the classifiers through maximizing 
the AUC, a one-dimensional quality measure of the ROC 
curve. One way to realize the optimization is to minimize the 
pair-wise classification error, a value equivalent to one minus 
the AUC. In [3], a theoretical analysis is presented to study the 
relationship between AUC optimization and classification error 
minimization. In [10], RankBoost is developed to learn a set of 
weaker classifiers which minimize the pair-wise ranking error. 
In [22], a margin-based bound for ranking is presented and a 
smooth margin ranking algorithm is proposed. Applying SVM 
to AUC maximization is studied in [21], where the objective is 
to minimize the penalized pair-wise ranking error under a set of 
pair-wise constraints. Joachims studied the application of SVM 
for multivariate performance measures (e.g. precision, F1, AUC, 
etc.) in [15], where learning SVM for maximizing the AUC is a 
special case. Another way is to directly maximize the 
AUC-based objective function that is smoothed using some 
approximation functions. Then the highly non-linear function 
is solved using the gradient descent algorithm [2, 13, 23]. These 
works usually use the sigmoid function for smoothing and they 
don’t study the effects of smoothing functions on the ranking 
performance. Other methods include updating the decision tree 
for AUC maximization. For example, Ferri et al. [8] used the 
AUC as a splitting criterion to build the tree, while Ling & Yan 
presented a probability estimation algorithm [18]. In these 
works, the objective function is the AUC measure. Therefore, 
this kind of learning is related to the MFoM algorithm, where 
the objective function is an approximated metric such as F1 
measure used for evaluation [11, 12]. In our previous work, we 
have discussed an ensemble approach for ROC optimization 
[25], where a collection of classifiers are designed and each of 
them is optimized at the selected point in the ROC curve. 
However, the smoothing function is still sigmoid.  

The presented work, KernelRank, follows the latter path, i.e. 
training the classifier through maximizing the smoothed AUC 
metric based on kernel density estimation. It is a further ex-
tension of our work on this issue [24], where KernelRank is 
outlined without the in-depth discussion and experimental 
analysis. In the paper, we will give a thorough study on how to 
utilize the KDE to design a suitable ranking algorithm and what 
effect of KDE is on the ranking performance. Designing 
smoothing functions to approximate ranking error have not 
been studied up to now. Traditionally only a few well-known 
functions such as the sigmoid are applied. Thus, the ranking 
performance should depend on it. Recently, we noted Rudin 
[26] applied a 

pl -norm function for smoothing so that the top 

documents in the ranked list are emphasized.  

III. KERNEL-BASED AUC OPTIMISATION 
Learning a classifier for ranking is defined as follows. Given 

a set of training samples, T, having M positive samples and N 
negative ones, learn a binary classifier, ( )f X Λ ,  with the pa-

rameter set Λ  so that the function gives a higher score for the 
positive samples than for the negative ones. We denote X as a 
feature representation of the sample and X+ for the positive 



 3

sample and X- for the negative one. S+ and S- are the values of 
( )f X + Λ  and  ( )f X − Λ , respectively. 

A. AUC Metric 
The AUC, as the quantity of ranking performance for a 

classifier, is defined as the probability of the positive samples 
ranked higher than the negative ones, i.e., 

( )U P S S+ −= >    (1) 

If the joint probability density distribution ( ),g S S+ −  of the 

positive score S+ and the negative one S- is available, then the 
exact value of Eq. (1) can be calculated using the integral of 

( ),g S S+ −  on S+ and S-. However, in real applications, not only 

the probability density function of the scores is unknown, but 
also the scores are calculated from the classifier with unknown 
parameters. The empirical estimation of AUC for a known 
classifier is calculated on the training samples as: 

( )1 1

1 ,M N
i ji j

U I S S
MN

+ −
= =

= ∑ ∑                (2)        

where ( )−+
ji SSI ,  is an indicator function. It is equal to one when 

the pair-wise ranking is correct, i.e. −+ > ji SS , and zero other-

wise. 

B. Approximating AUC with Kernel Density Estimation  
Eq. (1) and (2) are embedding functions of the classifier 

parameters. Maximizing it generates a classifier with the op-
timal ranking measure. However, the function is not differen-
tiable. It is necessary to smooth it before optimization. Here-
inafter, we will talk about designing a differentiable function to 
approximate the AUC in Eq. (2).   

First, we discuss the estimation of the joint distribu-
tion ( ),g S S+ − . It can be estimated using the parametric statis-

tical model or non-parametric kernel density estimation. Herein 
we adopt the latter and estimate it from the training samples. 
Assuming that S+ and S- are independent and have the density 
distributions ( )g S+ and ( )g S− , respectively, then ( ),g S S+ − is 

factored into ( ) ( ).g S g S+ − . When the training set and the clas-

sifier are ready, a set of score samples for the positive samples, 
S+, and the negative samples, S-, are collected. Therefore, the 
individual density distributions, ( )g S+ and ( )g S− , are em-

pirically estimated using the kernel density function K(S1,S2) as 
follows: 

( ) ( )
1

1 ,
M

i
i

g S K S S
M

+ +

=

= ∑                     (3) 

( ) ( )
1

1 ,
N

i
i

g S K S S
N

− −

=

= ∑                      (4) 

where ( ),  1c
iK S S dS =∫ , { },c = + − .  

Thus, the cumulative density function (CDF) G(Z) of the 
variable Z S S− += −  is an integral of ( ),g S S+ −  on the vari-

ables S+ and S-. Similarly, in Rudin et al [22], Z is a measure of 
the ranking margin. Given a positive-negative sample pair, Z is 

less than zero for the correct ranking and larger than zero for 
the wrong ranking. For the correct ranking, we expect the 
classifier to have Z values much larger than zero. The CDF is 
calculated as: 

( ) ( ) ( ) ( ).  
S S z

G z P Z z g S g S dS dS
− +

+ + − − + −

− <

= < = ∫∫          (5) 

Here z is a constant acting as the threshold for ranking de-
cision. Substituting Eqs. (3-4) into Eq. (5), we can get the em-
pirical estimation of G(Z) as: 

( ) ( )1 1

1 ,M N
i ji j

G z S S z
MN

+ −
= =

= Φ∑ ∑             (6) 

( ) ( ) ( ), , ,
S z

i j i jS S z K S S K S S dS dS
++∞ ++ − + + − − − +

−∞ −∞
Φ = ⋅∫ ∫   (7) 

For simplicity, we assume the variable values, S+ and S-, are 
within the range between negative infinity and the positive 
infinity. When their values are in other range, it is easy to de-
rive the similar forms for Eqs. (6-7). 

Eq. (7) is a smoothed version of the indicator func-
tion, ( )−+

ji SSI , , which depends on the value z. Obviously, the 

AUC defined in Eq. (2) is a special case of Eq. (6) when z=0 
and the heavisible step function is applied in Eq. (7). Thus, we 
have, 

( )0U G=                                 (8) 

When a suitable kernel function is chosen, the smoothed 
indicator function in Eq. (7) can be efficiently computed. Thus, 
the objective function for AUC maximization can be defined 
for any interested classifier. 

Next, we discuss two possible instances of the smoothed 
indicator function designed using the kernel density estimation. 

1) Gaussian kernel density function 
The first case is to use the Gaussian kernel density function 

for approximation. The Gaussian kernel is defined as: 

( )
( )

( )( )2 2
1/ 2

1, exp 2
2

K x y x y σ
π σ

= − −     (9) 

where σ  is a variance to control the size of smoothing window. 
Substituting it into Eq. (7) and we get a Gaussian kernel-based 
approximation function, 

( ) ( )

( )

( )

2 2

2 2

2 2

1, exp 2
2

1                     exp 2
2
1                   = exp 4

2 2

ij

ij

i j

x z z

z z

S S z x

y dydx

y dy

σ
πσ

σ
πσ

σ
π σ

∞+ −

−∞

+ +

−∞

+

−∞

Φ = −

⋅ −

−

∫

∫

∫

   (10) 

with 
ij i jz S S+ −= − . There is no analytic solution for it. However, 

it does not affect the learning algorithm used in the paper be-
cause its gradient over zij is analytic (see Section IV). The 
differentiable function has two variables, i.e. the pair-wise 
score difference between the positive and the negative samples, 
zij, and the margin value, z. The score is the output of the clas-
sifier, thus, the model parameters are naturally embedded into 
Eq. (10) and the AUC-based objective function is defined as: 



 4

( )1 1

1 , 0M N
i ji j

U S S z
MN

+ −
= =

= Φ =∑ ∑        (11) 

with ( )c c
k kS f X= Λ , { },c = + − , for the k-th training sample. In 

Eq. (11), only the parameter set Λ  is unknown and needs to be 
estimated on the training set. Many optimization algorithms can 
be utilized to solve the equation. 

2) Sigmoid-like kernel density function 
The second kernel, a sigmoid-like density function whose 

cumulative function is a sigmoid one, is defined as: 
( ) ( ), 1xy xyK x y l lα= −          (12) 

with  
( )( )( )1 1 expxyl x yα= + − −                  (13) 

It is easy to derive the smoothing function, ( ),i jS S z+ −Φ , for 

the kernel: 

( ) ( ) ( )2, ln
1 1

i j
x xS S z x

x x
+ −Φ = − ⋅

− −
      (14) 

with ( )ijz zx eα += . At the discontinuous point x=1 (i.e. 
zij+z=0), its value is equal to its limit, 0.5. Similar to the case of 
Gaussian kernel, the AUC-based objective function Eq. (11) 
can be obtained by substituting Eq. (14) into it. 

C. Experiential AUC curves 
It is expressive and useful to visualize the AUC curve. The 

AUC is a random variable that is further interlinked with the 
parameters of the classifier (see Eq. (1)). It is impossible, in 
practice, to know its probability density function (PDF) or 
CDF. Therefore, the experiential AUC curve is derived for 
different kernels based on the samples (see Eq. (2) and its 
variable smoothing versions such as Eq. (11)).  

The approximated AUC definition in Eq. (11) is the function 
of the pair-wise score difference variable, zij, between the 
positive and negative samples and summed over all possible 
pairs. If we make the following assumptions: (1) zij’s are ran-
dom variables and independent of each other and (2) they have 
the same probability density distributions pdf(z), then each term 
in the sum has the same distribution which makes the AUC 
random variable have a simple form of z. Therefore, the PDF of 
AUC can be derived. 

To plot the experiential AUC curves, pdf(z) is estimated 
using the samples of pair-wise score difference from our ex-
periments. Figure 1 shows the experiential CDF curves of the 
AUC for Gaussian kernel (marked GAUS, diamond dark line), 
sigmoid-like kernel (marked SIGL, empty circle pink line), 
sigmoid function (marked SIG, triangle red line), and the 
non-smoothing curve (marked Discrete, cross blue line). The 
samples for drawing the curves are randomly selected from one 
experimental result on the evaluation set for the concept 
Building (TRECVID 2005) with the textual modality feature 
(see Section V for details). There are 143 positive score ex-
amples and 857 negative ones selected so that 122,551 different 
score pairs are generated. The variance coefficient for the 
Gaussian kernel and alpha values for the sigmoid-like kernel 
and sigmoid smoothing function are set according to our ex-

periments. The X-axis is the pair-wise score difference and the 
Y-axis is the AUC value. It is found that the AUC curves for the 
three smoothing functions are very similar. 

IV. LEARNING WITH GRADIENT DESCENT 
ALGORITHM 

As the indicator function is smoothed using the kernel 
methods discussed above, the AUC-based objective function is 
now differentiable for optimization. By maximizing the objec-
tive function, the parameters of the classifier are estimated. The 
objective function is often highly non-linear for the chosen 
classifier. Its solution is calculated using the gradient descent 
algorithm, thus the solution is locally rather than globally op-
timal. Furthermore, the starting point in the iterations affects 
the estimation. In our experiments, we start the iterative algo-
rithm from the point estimated using the traditional maximum 
likelihood (ML) algorithm. 

A. Parameter Estimation 
We exemplify the KernelRank estimation algorithm using 

the kernel functions introduced in Section III. The objective 
function is defined in Eq. (11) and its gradients with respect 
to Λ can be derived as: 

( ) ( ) ( )( )
1 1

1 , 0
ij

M N

i j z i j
i j

U S S z f X f X
MN

+ − + −
Λ Λ Λ

= =

∇ = ∇Φ = ⋅ ∇ Λ −∇ Λ∑∑   (15) 

The first term in the summary is the gradient with respect to 

0.0

0.2

0.4

0.6

0.8

1.0

-0.19 -0.15 -0.11 -0.07 -0.04 0.00 0.04 0.08 0.12 0.16 0.19

Score

A
U

C

GAUS SIGL SIG Discrete

 
Fig.1. Experiential AUC curves for Gaussian kernel (diamond dark line), 
sigmoid-like kernel (empty circle pink line), sigmoid smoothing (triangle red 
line), and non-smoothing (cross blue line) (X-axis: the value of Zij. Y-axis: 
AUC value. Variance in Gaussian kernel: 0.043. Alpha in Sigmoid-like kernel 
and Sigmoid: 7.45) 

. 

   
(a) (b) 

 
Fig.2. First-order derivative of the smoothed indicator functions for AUC 
approximation (z=0), (a) Gaussian kernel function ( 1.0σ = ); (b) Sig-
moid-like kernel function ( 1.0α = ). X-axis: the value of Zij. Y-axis: the 
value of the gradients. 



 5

zij, a variable of pair-wise score difference between the positive 
sample and the negative one. Its form depends on the kernel. 
The second term, whose form depends on the classifier, is the 
difference of gradients between the positive sample and the 
negative one. Thus the kernel dependent part and the classifier 
dependent part are separated.  

For the Gaussian kernel, the first term is: 

( ) ( )2
21, 0 exp 2 2

2 2iji j z ijS S z z σ
π σ

+ − ⎛ ⎞⎛ ⎞∇Φ = = − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
   (16) 

while for the sigmoid-like kernel, it is: 

( )
( ) ( )3 2

1 2, 0 ln
1 1iji j z

xS S z x x
x x

α+ −
⎛ ⎞+⎜ ⎟∇Φ = = ⋅ −
⎜ ⎟− −⎝ ⎠

     (17) 

with zij
x e

α⋅
= . At the discontinuous point zij=0, the value of Eq. 

(17) equals to 1/6. Figure 2 shows the curves for the above two 
gradient functions. 

The second term will be determined once the classifier is 
designated. Using the above gradients, the iterative algorithm is 
utilized to seek the parameters of classifiers. 

B. Efficient Implementation 
To get the gradient of a parameter from Eq. (15), it requires 

M*N sums and M*N pair-wise gradients over high dimensional 
model parameters. For example, in our experiments with the 
3,464-dimensional textual feature for the concept Building, the 
number of pairs is about 3.6*107 (i.e. 2,008*17,935) and the 
dimension of the model parameters is 3,464. It is a huge burden 
for computation and memory. Some efforts have been done to 
reduce the burden by selecting a few numbers of neighboring 
samples for a given sample rather than all pairs for approximate 
computation [13, 21]. However, the approximation computa-
tion is not necessary in our algorithm. Exact computation can 
be efficiently performed. 

We reorganize Eq. (15) as: 

( ) ( )

( ) ( )
1 1

1 1

1 1 , 0

1 1            - , 0

         

ij

ij

M N

i j z i
i j

N M

i j z j
j i

U S S z f X
M N

S S z f X
N M

+ − +
Λ Λ

= =

+ − −
Λ

= =

⎛ ⎞
∇ = ∇Φ = ⋅∇ Λ⎜ ⎟

⎝ ⎠
⎛ ⎞

∇Φ = ⋅∇ Λ⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑ .  (18) 

The inner sum in the first line of Eq. (18) is the average 
gradient on zij of the smoothed indicator function for a positive 
sample summed over all negative samples. Its value indicates 
the contribution degree of the positive sample to the overall 
gradient, which weighs the gradient of the classi-
fier ( )if X +∇ Λ . The outer sum is a weighted average of gra-

dients ( )if X +∇ Λ , computed on all positive samples. Similarly, 

the inner sum in the second line measures the contribution 
degree for a negative sample while the outer sum is the 
weighted average of gradients summed on the negative sam-
ples. 

The reorganization reduces the number of gradients to be 
calculated for the classifier from M*N to M+N. However, there 
are still M*N gradients to be calculated for the smoothing 
function. In practice, the latter has much lower computation 

cost when compared with the former considering that the size 
of classifier parameters is high (e.g. 3,464 for textual feature) 
while the latter only needs to calculate the gradient for a 
one-dimensional variable zij.  

V. RESULTS AND ANALYSIS 
 In this section the proposed KernelRank algorithm is ana-

lyzed using the development set for evaluating high-level fea-
ture extraction task in TRECVID 2005. 

A. Experimental Setup 
The development set consists of 74,509 keyframes that are 

extracted from 137 news videos (~80 hours). There are ten 
concepts used in NIST TRECVID’05 official evaluation. The 
news videos are in three languages, i.e. English, Chinese, and 
Arabic. Automatic speech recognition (ASR) technology is 
used to transcribe the audio channel into text, and machine 
translation (MT) technology is used to automatically translate 
Chinese and Arabic text into English text. All transcripts are 
provided at the shot level. Thus, there are two modality fea-
tures, i.e. textual and visual, available for building the detection 
system. There are some shots in which the textual feature is 
absent due to various reasons such as recognition errors of 
ASR/MT or the audio channel having no speech. These shots 
are removed in our experiments based on the textual feature.  

We randomly split the development set into the training set 

TABLE 1 
DETAILED DESCRIPTION OF THE EXPERIMENTAL DATASET DERIVED FROM THE 

DEVELOPMENT SET OF TRECVID 2005 
CONCEPT TEXTUAL VISUAL 
BUILDING 

(C1) 
T: 19,943 (2,008) 
V: 8,538 (1,254) 
E: 6,447 (958) 

T: 41,978 (3,604) 
V: 11,173 (1,416) 
E: 8,295 (1,064) 

CAR 
(C2) 

T: 19,943 (1,204) 
V: 8,538 (624) 
E: 6,447 (272) 

T: 41,919 (2,253) 
V: 11,325 (767) 
E: 8,487 (370) 

EXPLOSION_FIRE 
(C3) 

T: 19,943 (492) 
V: 8,538(71) 
E: 6,447 (23) 

T: 42,038 (641) 
V: 11,301 (81) 
E: 8,497 (26) 

US_FLAG 
(C4) 

T: 19,943 (285) 
V: 8538(48) 
E: 6,447 (90) 

T: 42052 (337) 
V: 10,970 (51) 
E: 8,497 (92) 

MAPS 
(C5) 

T: 19,943 (423) 
V: 8,538(161) 
E: 6,447 (142) 

T: 41,988 (594) 
V: 11,290  (171) 
E: 8,473 (145) 

MOUNTAIN 
(C6) 

T: 19,943 (139) 
V: 8,538(154) 
E: 6,447 (65) 

T: 42,073 (385) 
V: 11,331 (168) 

E: 8,496 (73) 
PEOPLE_MARCHING 

(C7) 
T: 19,943 (715) 
V: 8,538(209) 
E: 6,447 (86) 

T: 42,021 (996) 
V: 11,321 (221) 

E: 8,473 (91) 
PRISONER 

(C8) 
T: 19,943 (43) 
V: 8,538(41) 
E: 6,447 (2) 

T: 42,003 (61) 
V: 11,332 (43) 

E: 8,112 (2) 
SPORTS 

(C9) 
T: 19,943 (332) 
V: 8,538(240) 
E: 6,447 (98) 

T: 41,753 (1,140) 
V: 11,310 (295) 
E: 8,498 (135) 

WATERSCAPE_WATERFRONT 
(C10) 

T: 19,943 (372) 
V: 8,538(122) 
E: 6,447 (92) 

T: 42,043 (819) 
V: 11,312 (152) 
E: 8,484 (110) 

 



 6

(T), the validation set (V) and the evaluation set (E). The de-
tails, i.e. data size and positive sample number, of each data set 
are summarized in Table 1. The first column (Column Concept) 
lists the concept names together with their concept identities 
(bracket by parentheses); the second (Column Textual) de-
scribes the dataset for the textual features while the third 
(Column Visual) is for the visual feature. The concept Building 
(second row) and the textual feature (second column) are used 
to show how to read the numbers. In this example, the concept 
has 19,943 shots in the training set T, of which 2,008 shots are 
labeled as positive. It is abbreviated to 19,943 (2,008) in the 
table. 

To collect enough information to classify the shot using the 
textual feature, we extract the 3,464-dimensional tf-idf feature 
from the text contained in the current shot and its 3 neighboring 
shots. To represent the visual content of image, we uniformly 
segment a keyframe into 77 grids, each having 32x32 pixels, 
from which a 12-dimensional texture feature (energy of log 
Gabor filter) is extracted. The visual feature is simple; how-
ever, our concern in this paper is to evaluate the efficiency of 
the learning algorithm for ranking rather than to select the best 
visual feature for representation.  

B. Baseline Classifiers 
The classifiers are LDF for the textual feature and 4-mixture 

GMM (mixture number is fixed for all concepts) for the visual 
feature. Because of the high cost of computation to fine-tune 
the mixture number of GMM for all concepts on the large 
dataset, the mixture number is empirically set to be 4. For the 
LDF classifier, a D-dimensional vector, X, is extracted for 
representing the sample. The ranking function is, 

( ); Tf X W XΛ = ⋅                                    (19) 

with W being a D-dimensional parameter vector, i.e. Λ .  
For the GMM classifier, we assume a set of D-dimensional 

vectors, X, is extracted from an image, and is denoted as 
( )1 2 Lx , x , , xX = L with ix DR∈  and L being the size of X. Then 

the ranking function is: 

( ) ( ) ( )( )i i1 1

1; log x , , log x , ,L L

i i
f X g w g w

L
µ µ+ + + + − − − −

= =
Λ = Σ − Σ∑ ∑   (20) 

where,  

( ) ( ) { }i i1
x , , x , , ,Kc c c c c c c

k k kk
g w w N cµ µ

=
Σ = ⋅ Σ = + −∑   (21) 

with K being the mixture number, c
kw  the weights, and N(.)a 

Gaussian distribution with the mean c
kµ  and covariance matrix 

c
kΣ  (a diagonal matrix is used in our experiments). Thus, the 

parameter set is { }, , ,c c c
k k kw µΛ = Σ [ ]1,k K∈ and { },c ∈ + − . Eq. (20) 

is the average likelihood ratio.  
The GMM model is estimated using the EM algorithm. To 

initialize the starting points at the iterative EM, we first use the 
hierarchical k-means clustering algorithm to get the weights, 
means and variances of K clusters. The hierarchical clustering 
works as follows: first, one-mixture GMM is estimated. Then 
its center is split into two to obtain initial parameters of 
two-mixture GMM, from which two-mixture GMM is trained 
using the standard k-means algorithm. The above procedure 

runs until K-mixture GMM is reached. At each split, one cluster 
is increased. Finally, the EM algorithm starts to run from the 
estimated parameters to refine the K-mixture GMM model. 

For each concept, the GMM (visual feature) /LDF (textual 
feature) classifiers are trained using the KernelRank algorithm 
for the Gaussian kernel and sigmoid-like kernel. For com-
parison, the following benchmark systems are built: (1) the 
classifier trained for maximizing AUC using the sigmoid 
function [23] (hereafter, it is named sigmoid smoothing); (2) 
the GMM classifier (for the visual feature) estimated using the 
EM algorithm introduced above; and (3) the SVM classifiers 
(for the textual feature) trained for minimizing classification 
error using the SVMlight 1 tool and for maximizing AUC using 
the SVMperf 2. To be a fair comparison, the linear kernel based 
SVM is trained to compare with the KernelRank based LDF. 
The SVM classifiers are trained because it is widely used for 
semantic concept detection in TRECVID, especially for SVM 
trained for classification error minimization.  

C. Tuning Systems 
The SVMlight and SVMPerf tool packages should be carefully 

tuned for getting good results. The most important parameters 
to be adjusted are the kernel type, the trade-off coefficient 
between the training error and the margin, and the parameters 
of the corresponding kernel (e.g. it is the polynomial order for 
the polynomial kernel and the gamma for the RBF kernel). For 
the linear kernel, we only tune the trade-off coefficient. The 
optimal coefficient, which gives the best AUC value on the 
validation set, is determined through a 10-point grid search in a 
predefined range. The range is experimentally determined by 
0.25 and 16 times of the default value (in SVMlight, the default 
value is calculated as the inverse of the average dot-product 
among training samples; in SVMPerf, we set it equal to 20). In 
the 10-fold evaluation, we tune the configuration parameters 
based on one fold. And in large-scale experiments, the valida-
tion set is used for tuning the system. The results are reported 
based on the models trained using the best configuration.  

In KernelRank, the parameters to be tuned are the vari-
ance σ for the Gaussian kernel and α for the sigmoid-like 
kernel and sigmoid function. The default value of α is set as 
the inverse of absolute average value of the scores calculated 
using the initial model on training samples. The default value of 
σ is set as the standard deviation of difference scores of the 
pair-wise samples on the training set. Similar to the tuning of 
SVM, the configuration is searched in a range of 0.1 and 10 
times of the default value. The optimal value is the one that 
gives the maximal AUC value on the dataset used for tuning. 

D. Evaluation Metrics 
In addition to the AUC metric reported for comparing the 

systems, the average precision (AP), an official evaluation 
metric in TRECVID, is also given. The AP is defined as: 

 
1 http://www.cs.cornell.edu/People/tj/svm_light/index.html 
2 http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html 



 7

1

1 Q i
ii

RAP I
M i=

= ∗∑         (22) 

M is the number of true relevant (or positive) samples in the 
evaluation set. Q is the number of retrieved samples by the 
system, for example, Q=100 when only returning the top 100 
samples for a given query. Ii is the i-th indicator in the rank list, 
which is equal to 1 if the i-th sample is relevant and zero oth-
erwise. Ri is the number of relevant samples in the top i. 

The AP value approximates the area under the Preci-
sion-Recall (PR) curve, which is an alternative view of the 
ROC curve. Thus the AP should be closely related with the 
AUC. We will experimentally show that the classifier trained 
for maximizing AUC will benefit the AP metric with the high 
chances. 

E. Analysis on Small Dataset 
First we analyze the proposed learning algorithm on a small 

dataset. The dataset is built by selecting 100 positive shots and 
500 negative ones from the training set for the textual feature. 
The means of AUC values are reported as well as the mean of 
AP values on the 10-fold cross validation for 10 concepts.   

The mean of AUC values and the corresponding standard 
deviation on the 10 folds are illustrated in Table 2 (Column 
GAUS: KernelRank with Gaussian kernel, Column SIGL: Ker-
nelRank with sigmoid-like kernel, Column SIG: sigmoid 
smoothing). The last row (Row: Avg.) is the average AUC 
values on ten concepts. For comparison, the SVM results are 
listed in the last two columns in the table (Column SVM_C: 
SVM for minimizing classification error, Column SVM_AUC: 
SVM for maximizing AUC). 

First, the effects of two kernels discussed in Section III on 
the ranking measure are studied. As shown in the two left 
columns in Table 2, the KernelRank with the Gaussian gives 
the average AUC value of 94.5% vs. 93.9% for that with the 
sigmoid-like. They are comparable with the sigmoid smoothing 
(Column SIG). Second, KernelRank performs a little better than 
SVMs (Column SVM_C and SVM_AUC). Finally, comparison 
between SVM_C and SVM_AUC shows that SVM_C with an 
AUC value of 92.5% is competitive with the SVM_AUC with 
an AUC value of 92.2%.  

To have an expressive analysis of different systems, the error 
bar is plotted in Figure 3 for visualizing the significance test (at 
the 95% confidence interval) based on the 10-fold AUC values. 
The X-axis is the concept identity while the Y-axis is the AUC 
value plus their error bars. For each concept, the columns from 
the left to the right are those for KernelRank with the Gaussian, 
sigmoid-like, sigmoid smoothing, SVM_C and SVM_AUC. It 
is obvious that although KernelRank works better than others 
for most of concepts, the improvement is not significant at the 
95% confidence level. 

As discussed above, the AP is another view of ranking per-
formance. The system having better AUC should also have 
better AP values. To experimentally evaluate this property, the 
means of AP values on 10 folds are shown in Table 3. The AP 
value is calculated on the 10-fold evaluation. Similar observa-
tions to the above AUC analysis are obtained. Again, the Ker-

nelRank with the Gaussian ranks best among them with an 
average AP value of 83.4%, while KernelRank with the sig-
moid-like kernel has a comparable AP value with the sigmoid 
smoothing. SVM_C is a little better than SVM_AUC. From the 
result of the pair-wise comparison between the AP values in 
Table 3 and the AUC values in Table 2, in general, the system 
with a better AUC correspondingly has a better AP value.  

TABLE 2 
MEAN OF AUC (%) VALUES PLUS STANDARD DEVIATION OF KERNELRANK FOR 
GAUSSIAN KERNEL (COLUMN GAUS) AND SIGMOID-LIKE KERNEL (COLUMN 

SIGL), SIGMOID SMOOTHING (COLUMN SIG), SVM FOR MINIMIZING 
CLASSIFICATION ERROR (SVM-C) AND SVM FOR MAXIMIZING AUC 

(SVM_AUC) (TEXTUAL) 

CONCEPT GAUS SIGL SIG SVM_AUC SVM_C 
C1 87.5±7.9 85.7±8.4 86.0±7.9 83.2±9.2 83.7±8.2 
C2 93.1±4.6 93.2±4.6 93.1±4.6 90.3±6.0 90.6±6.3 
C3 95.2±3.1 94.9±2.9 94.7±3.1 94.8±2.8 93.4±3.4 
C4 95.5±3.2 94.3±2.9 94.1±3.0 91.1±4.7 91.4±5.1 
C5 93.3±5.3 93.1±5.5 93.1±5.6 89.1±6.7 90.7±4.9 
C6 95.2±4.4 95.3±3.5 95.0±3.6 93.3±5.9 93.9±6.0 
C7 94.0±5.1 93.8±5.2 93.9±5.3 92.7±5.8 93.4±5.2 
C8 97.0±3.2 95.3±4.7 94.8±5.1 96.3±4.4 96.5±4.3 
C9 99.6±0.5 99.3±0.9 99.4±1.0 98.6±2.0 98.5±2.0 
C10 94.2±4.4 94.4±4.2 95.0±3.6 92.7±5.7 92.8±4.8 
AVG. 94.5 93.9 93.9 92.2 92.5 

TABLE 3 
MEAN OF AP (%) VALUES PLUS STANDARD DEVIATION OF KERNELRANK FOR 

THE GAUSSIAN KERNEL (COLUMN GAUS) AND SIGMOID-LIKE KERNEL 
(COLUMN SIGL), SIGMOID SMOOTHING (COLUMN SIG), SVM FOR MINIMIZING 

CLASSIFICATION ERROR (SVM_C) AND SVM FOR MAXIMIZING AUC 
(SVM_AUC) (TEXTUAL) 

CONCEPT GAUS SIGL SIG SVM_AUC SVM_C 
C1 71.4±13.5 70.5±13.3 70.4±12.7 69.5±12.0 69.4±13.3
C2 79.2±13.2 81.5±10.9 81.0±11.2 76.8±10.0 77.4±10.6
C3 81.1±11.8 80.4±11.5 79.8±12.1 80.6±10.9 79.4±10.9
C4 85.5±8.4 81.9±7.0 81.5±7.0 80.3±7.7 81.1±8.6 
C5 80.5±10.2 79.9±8.7 79.1±10.1 74.2±9.6 80.5±5.1 
C6 87.3±8.7 86.4±7.0 85.1±8.7 83.5±8.3 84.1±8.4 
C7 87.1±9.1 87.8±7.9 88.8±8.1 85.7±10.4 88.3±7.2 
C8 82.6±15.9 77.6±21.2 77.5±21.6 87.1±13.3 87.8±13.2
C9 98.2±2.3 97.4±3.3 97.9±2.9 94.1±6.6 95.1±6.0 
C10 80.7±12.2 83.2±11.0 85.1±7.4 82.6±10.9 83.1±9.0 
AVG. 83.4 82.7 82.6 81.4 82.6 

70

75

80

85

90

95

100

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

A
U

C
(%

)

GAUS SIGL SIG SVM_C SVM_AUC

 
Fig. 3. Error bar illustration of AUC values (%) on 10 folds among the Gaus-
sian kernel (GAUS), sigmoid-like kernel (SIGL), sigmoid smoothing (SIG), 
SVM classification (SVM_C), and ROC optimized SVM (SVM_AUC) 
(X-axis: concept identity, Y-axis: mean of AUC value plus 95% confidence 
interval). 



 8

F. Results on Large-scale Datasets 
The second experiment is carried out on the large-scale 

dataset (details are shown in Table 1) for evaluating the ranking 
learning algorithms. Now the whole training set is used to learn 
the model parameters using the best configurations automati-
cally determined based on the validation set. The AUC and AP 
values on the evaluation set are reported. In addition, the ROC 
curves for a few concepts are also given to visualize the be-
havior of learning algorithms at every operating point. The 
experiments are performed on the textual feature and visual 
feature independently. The AP value is calculated based on the 
full rank list of the test samples.  

1) Textual feature 
The AUC values on the evaluation set are shown in Table 4. 

The KernelRank results are in the columns GAUS for the 
Gaussian kernel and the column SIGL for the sigmoid-like 
kernel, respectively. The results of three benchmark systems 
are listed in the column SIG for sigmoid smoothing, SVM_AUC 
for SVM with maximizing AUC, and SVM_C for SVM with 
minimizing classification error.  

The two types of kernels are comparable in terms of the 
overall average AUC and each concept. The average AUC 
values are 63.2%  for the Gaussian kernel and 63.4% for the 
sigmoid-like one, respectively. Correspondingly, the system 
for the sigmoid smoothing has the average AUC value 63.7%. 
Thus, it is comparable with KernelRank. Second, we compare 
KernelRank with the SVM (Columns SVM_AUC and SVM_C). 
Obviously, KernelRank outperforms SVM models trained for 
maximizing AUC and for minimizing classification error. Fi-
nally, we analyze the two types of SVM models. As discussed 
on the small dataset (see Table 2), SVM_C is competitive with 
SVM_AUC. On the large-scale dataset, the SVM_AUC gets 
the average AUC value 61.8% on the evaluation set. It is sig-
nificantly better than SVM_C, whose AUC value is only 
55.7%. The reason may be that the data is much more highly 
unbalanced in the large dataset than the small dataset. For 
example, the ratio between the negative samples and the posi-
tive ones is about 5 in the small dataset for the 10-fold evalua-
tion. However, it is increased to 16 in the training set for the 
concept Building (it is the concept having the smallest ratio on 
the training set among 10 concepts). More importantly, the 
ratio in the training set is much different from the evaluation set 
in the large-scale evaluation. 

The corresponding AP values for the above experiments are 
shown in Table 5. Analyzing the AP values reaches the similar 
conclusions as analyzing the AUC. KernelRank ranks in the top 
performance in terms of AP values.  

2) Visual feature 
We demonstrate above the success of KernelRank on the 

textual feature by learning a simple LDF classifier. Now we 
move into the visual feature and learn a GMM classifier using 
the KernelRank for the Gaussian kernel and sigmoid-like kernel 
and the sigmoid smoothing. The benchmark system is trained 
by maximizing the likelihood.  

Table 6 summaries the AUC values on ten concepts on the 
evaluation set. For each column in the table, from the left to the 

right, they are the AUC values for the KernelRank with the 
Gaussian (Column GAUS), KernelRank with the sigmoid-like 
(Column SIGL), sigmoid smoothing (Column SIG), and the 
benchmark (Column ML). Similar to the results on the textual 
feature, the performance of the two types of KernelRank sys-
tems are comparable. While compared with the sigmoid 
smoothing, no obvious improvement is observed. However, 
KernelRank performs significantly better than the benchmark 
system trained on the ML for all concepts. KernelRank has an 
AUC value 81.5% (sigmoid-like kernel) on the evaluation set. 
Correspondingly, the benchmark system only has 68.3%. It 
reminds us that learning the classifier for maximizing AUC is 
preferred for the ranking problem. 

The AP values on the evaluation set are shown in Table 7. 
There is a little improvement on the AP values when comparing 
KernelRank with the sigmoid smoothing. They are 8.4% for the 
Gaussian kernel and 8.6% for the sigmoid-like kernel com-
pared with 8.3% for the sigmoid smoothing. However, both of 
them are much better than 5.2%, the average AP value of the 
benchmark system. 

TABLE 4 
AUC (%) VALUES ON THE EVALUATION SET FOR THE GAUSSIAN KERNEL 
(COLUMN GAUS) AND SIGMOID-LIKE KERNEL (COLUMN SIGL), SIGMOID 

SMOOTHING (COLUMN SIG), SVM FOR MINIMIZING CLASSIFICATION ERROR 
(SVM_C) AND SVM FOR MAXIMIZING AUC (SVM_AUC) 

 (TEXTUAL) 
 

CONCEPT GAUS SIGL SIG SVM_AUC SVM_C 
C1 55.0  54.9  54.9  54.7  51.3  
C2 66.3  66.5  66.0  66.2  62.4  
C3 73.4  73.6  73.9  73.8  66.3  
C4 71.0  70.7  71.0  71.3  58.0  
C5 72.7  72.3  72.8  71.5  65.5  
C6 65.9  67.5  67.1  61.7  53.7  
C7 57.6  57.9  61.2  55.2  47.6  
C8 27.5  27.6  27.6  25.3  26.6  
C9 79.6  79.8  79.6  76.9  71.6  

C10 63.2  63.2  63.2  60.9  54.3  
AVG 63.2  63.4  63.7  61.8  55.7  

TABLE 5 
AP (%) VALUES ON THE EVALUATION SET FOR THE GAUSSIAN KERNEL 

(COLUMN GAUS) AND SIGMOID-LIKE KERNEL (COLUMN SIGL), SIGMOID 
SMOOTHING (COLUMN SIG), SVM FOR MINIMIZING CLASSIFICATION ERROR

(SVM_C) AND SVM FOR MAXIMIZING AUC (SVM_AUC) 
(TEXTUAL) 

 
CONCEPT GAUS SIGL SIG SVM_AUC SVM_C 

C1 18.0 18.0 18.0 17.7 15.1 
C2 10.6 10.7 10.5 10.5 8.1 
C3 2.2 2.2 2.2 3.1 3.1 
C4 5.2 5.4 5.2 5.2 3.4 
C5 11.8 11.8 11.7 11.7 8.2 
C6 2.7 2.4 2.4 2.0 2.9 
C7 1.7 1.7 2.0 1.6 1.3 
C8 0.0 0.0 0.0 0.0 0.0 
C9 18.7 17.7 18.7 17.7 21.0 

C10 7.7 7.6 7.7 6.6 1.8 
AVG 7.9 7.8 7.8 7.6 6.5 



 9

3) Discussion 
From the above experiments on the textual and visual fea-

tures, we find that (1) KernelRank performs better than SVM 
classifiers trained for maximizing AUC or for minimizing 
classification error; (2) KernelRank outperforms the models 
trained for maximizing the likelihood; (3) for ranking prob-
lems, classifiers should be trained for maximizing AUC, e.g. 
SVM for maximizing AUC is better than SVM for minimizing 
classification error.  

However, we cannot achieve significant gain from the ker-
nel- based smoothing functions, at least for the current two 
types of functions, when compared with the sigmoid smooth-
ing. The reason needs to be investigated in the future work. One 
possible reason may be that their experiential AUC curves (see 
Figure 1) are very similar to each other, although the ker-
nel-based smoothing functions are different from the sigmoid 
smoothing. The good news is that KernelRank provides a way 
of designing and analyzing wide-scale smoothing functions 
based on the kernel. In future, we will further study the effect of 
other kernel families and develop a method of designing ef-
fective kernels based on the data. 

4) ROC curve analysis 
The AUC value is just a one-dimensional quality measure of 

the ROC curve (see discussions in Section II). Similarly, the AP 
is a one-dimensional quality measure of the PR curve. They 

only give an overall measure of a ranking system rather than the 
behavior at every operating point. The two-dimensional ROC 
curve shows more details. 

In this section, the KernelRank algorithm is analyzed using 
the ROC curve. Due to limited space, we only select 2 concepts, 
i.e. Mountain and Sports, rather than 10 concepts for illustra-
tion, and draw their ROC curves based on the evaluation set. 

TABLE 6 
AUC (%) VALUES ON THE EVALUATION SET FOR THE GAUSSIAN KERNEL 
(COLUMN GAUS) AND SIGMOID-LIKE KERNEL (COLUMN SIGL), SIGMOID 

SMOOTHING (COLUMN SIG) AND THE BENCHMARK (COLUMN ML)  
(VISUAL) 

CONCEPT GAUS SIGL SIG ML 
C1 70.0 69.7 69.7 62.0 
C2 77.2 77.6 77.7 65.7 
C3 82.0 82.3 82.6 74.9 
C4 80.1 79.8 79.6 80.4 
C5 84.9 83.9 83.9 76.9 
C6 92.7 91.6 91.6 74.8 
C7 81.3 85.3 85.1 80.5 
C8 87.6 85.9 86.4 29.9 
C9 78.5 78.7 76.8 72.0 
C10 79.3 79.8 79.1 65.9 
AVG 81.4 81.5 81.2 68.3 

TABLE 7 
AP (%) VALUES ON THE EVALUATION SET FOR THE GAUSSIAN KERNEL 

(COLUMN GAUS) AND SIGMOID-LIKE KERNEL (COLUMN SIGL), SIGMOID 
SMOOTHING (COLUMN SIG) AND THE BENCHMARK (COLUMN ML) 

(VISUAL) 
CONCEPT GAUS SIGL SIG ML 

C1 24.0  23.4  23.4  18.4  
C2 14.4  14.4  14.5  8.4  
C3 2.2  2.0  2.1  1.2  
C4 5.4  5.4  5.4  3.1  
C5 11.0  10.1  10.2  4.9  
C6 9.0  9.6  9.8  3.7  
C7 3.3  6.3  5.9  4.0  
C8 0.2  0.1  0.1  0.0  
C9 7.9  7.9  5.1  4.0  
C10 6.9  7.0  7.0  3.9  
AVG. 8.4  8.6  8.3  5.2  

 

 
(a) C6 (Mountain, textual) (b) C9 (Sports, textual) 

 
Fig.4. Compare ROC curves (textual feature) among KernelRank with Gaus-
sian kernel (GAUS: red dash-dot line), KernelRank with sigmoid-like (SIGL: 
green dash line), and sigmoid smoothing (SIG: blue solid line) (X axis: false 
positive probability, Y axis: true positive probability) 

 
(a) C6 (Mountain, textual) (b) C9 (Sports, textual) 

 
Fig.5. Compare ROC curves (textual feature) among KernelRank with Gaus-
sian kernel (GAUS: red solid line), AUC maximization based SVM
(SVM_AUC: black dash line) and classification error minimization based 
SVM (SVM_C: blue dot line) (X axis: false positive probability, Y axis: true 
positive probability) 
 

 
(a) C6 (Mountain, visual) (b) C9 (Sports, visual) 

 
Fig.6. Compare ROC curves (visual feature) among KernelRank with the 
Gaussian (GAUS: red solid line), KernelRank with sigmoid-like (SIGL: green 
solid line), sigmoid smoothing (SIG: blue dot line), and the benchmark (black 
dash-dot line) (X axis: false positive probability, Y axis: true positive prob-
ability) 



 10

The ROC curves for the textual feature are plotted in Figures 4 
and 5. Figure 4 visualizes the comparison between KernelRank 
(red dash-dot line for Gaussian kernel, GAUS, and green dash 
line for sigmoid-like kernel, SIGL) and sigmoid smoothing 
(blue thick line, SIG). At every decision point, KernelRank is 
comparable with the sigmoid-smoothing for the 2 concepts. It is 
also reflected by their corresponding AUC values (see Table 4), 
i.e. 65.9% (GAUS), 67.5% (SIGL) and 67.1% (SIG) for Moun-
tain and 79.6% (GAUS), 79.8% (SIGL) and 79.6% (SIG) for 
Sports. Figure 5 compares the ROC curves between Kernel-
Rank with the Gaussian (red solid line, GAUS) and SVM (black 
dash line for AUC maximization based SVM, SVM_AUC, and 
blue dot line for classification error minimization based SVM, 
SVM_C). It is clearly seen that KernelRank outperforms AUC 
maximization based SVM at most of operating points, which is 
further better than the SVM for minimizing classification error. 
It is also indicated by their corresponding AUC values (see 
Table 4), i.e. 65.9% (GAUS) vs. 61.7% (SVM_AUC) and 53.7% 
(SVM_C) for Mountain and 79.6% (GAUS) vs. 76.9% 
(SVM_AUC) and 71.6% (SVM_C) for Sports. Moreover, the 
ROC reveals much more information than the AUC. For ex-
ample, when the false positive probability is less than 0.1 in 
Figure 5, the true positive probabilities of the three systems are 
almost equal. This information is not provided by the one-scale 
AUC value. 

The ROC curves for the same concept on the visual feature 
are depicted in Figure 6. Similarly, the ROC curves of Ker-
nelRank are close to those of the sigmoid smoothing. But at 
some operating points, a little improvement is observed. For 
example, the true positive probability reaches 1.0 (see Figure 
6a) for Gaussian kernel when the false positive probability is 
between 0.4 and 0.6. As a comparison, the sigmoid smoothing 
has a true positive probability ~0.97.  

Comparing KernelRank with the benchmark system trained 
for maximizing the likelihood (black dash-dot line, ML), an 
obvious improvement is obtained. At most of operating points, 
the AUC maximization based KernelRank outperforms the 
baseline. It is noted that even for the traditional classification 
problem, where the interested metric is accuracy, KernelRank 
is a better candidate rather than maximizing the likelihood or 
minimizing classification error using the MFoM [11, 12].  

VI. CONCLUSION 
An efficient kernel based learning algorithm, KernelRank, is 

presented for improving the performance of semantic concept 
detection. KernelRank designs a classifier for optimizing the 
ROC curve by directly maximizing a one-dimensional quality 
measure of the ROC curve, i.e. AUC, so that the parameters of 
classifiers are estimated. It exploits the kernel density estima-
tion methods to model the ranking score distributions and to 
approximate the correcting ranking count. The model parame-
ters are then naturally embedded into the objective function. To 
address the high cost of computation and memory in learning, 
an efficient implementation is developed based on the gradient 
descent algorithm. KernelRank is utilized to design two types 

of smoothing functions and to train the LDF and GMM classi-
fiers. KernelRank is evaluated on the large-scale video dataset 
used for TRECVID 2005. Our experimental results and analy-
sis show that (1) KernelRank is capable of training any dif-
ferentiable classifier with various kernels; and (2) the learned 
ranking function performs better than the traditional maximi-
zation likelihood or classification error minimization based 
algorithms in terms of AUC and AP. 

REFERENCES 
[1] Bradley, A.P., The use of the area under the ROC curve in the evaluation 

of machine learning algorithms. Pattern Recognition, 30, pp. 1145-1159, 
1997. 

[2] Burges, C., et al. Learning to rank using gradient descent. ICML’05. 
[3] Cortes, C. & Mohri, M. AUC optimization vs. error rate minimization. 

NIPS’03. 
[4] Drummond, C. & Holte, R.C. What ROC curves can’t do (and cost curves 

can). ECAI’2004 workshop. 
[5] Duda, R. O., Hart, P.E. & Stock, D.GPattern classification. Wiley Inter-

science, 2nd edition, 2001. 
[6] Egan, J. Signal detection theory and ROC analysis. Academic Press, 

1975. 
[7] Fawcett, T. ROC graphs: notes and practical considerations for re-

searchers. Technical Report HPL-2003-4, HP Labs, 2003.   
[8] Ferri, C., Flach, P. & Hernandez, J. Learning decision trees using the area 

under the ROC curve. ICML’02. 
[9] Flach, P. A. The geometry of ROC space: understanding machine learning 

metrics through ROC isometrics. ICML’03. 
[10] Freund, Y., Iyer, R., Schapire, R. & Singer, Y. An efficient boosting 

algorithm for combining preferences. Journal of Machine Learning Re-
search, 4, 933-969, 2003. 

[11] Gao, S., Wu W., Lee, C.-H. & Chua, T.-S. A MFoM learning approach to 
robust multiclass multi-label text categorization. ICML’04. 

[12] Gao, S., Wu, W., Lee, C.-H. & Chua, T.-S. A maximal figure-of-merit 
approach to text categorization. SIGIR’03. 

[13] Herschtal, A. & Raskutti, B. Optimising area under the ROC curve using 
gradient descent. ICML’04. 

[14] Joachims, T. Learning to classify text using support vector machines. 
Kluwer Academic Publishers, 2002. 

[15] Joachims, T., A support vector method for multivariate performance 
measures, ICML’05. 

[16] Joachims, T., Optimizing Search Engines Using Clickthrough Data, 
KDD’02. 

[17] Lehmann, E. L. Testing Statistical Hypotheses, John Wiley & Sons, 1959. 
[18] Ling, X. & Yan, J. Decision tree with better ranking. ICML’03. 
[19] Mozer, M. C., Dodier, R. & Colagrosso, M. Prodding the ROC curve: 

constrained optimization of classifier performance. NIPS’02. 
[20] Prati, R. C. & Flach, P. A. ROCCER: A ROC convex hull rule learning 

algorithm. ECML-PKDD’04 workshop, Advances in Inductive Rule 
Learning.  

[21] Rakotomamonjy, A. Support vector machines and area under ROC 
curves. Technical report PSI-INSA de Rouen, 2004. 

[22] Rudin, C., Cortes, C., Mohri, M. & Schapire, R. Margin-based ranking 
meets boosting in the middle. COLT’05. 

[23] Yan, L., Dodier R., Mozer, M.C. & Wolniewicz, R. Optimizing classifier 
performance via an approximation to the Wilcoxon-Mann-Whitney sta-
tistic, ICML’03. 

[24] Gao, S. & Sun Q. B., Classifier optimization for multimedia semantic 
concept detection, ICME’06. 

[25] Gao, S., Lee, C.-H. & Lim, J.-H., An ensemble classifier learning ap-
proach to ROC optimization, ICPR’06. 

[26] Rudin, C., Ranking with a P-norm push, COLT’ 06. 
[27] Yang, Y.M. and Liu, X. A re-examination of text categorization methods. 

SIGIR'99. 
 
 
 
 
 



 11

Sheng Gao (M’04) received the B.E. in electronic 
engineering from North-western Polytechnical Uni-
versity, China in 1993, the M.E. in telecommunica-
tion from Beijing University of Posts and Telecom-
munications, China in 1996, and the Ph.D in pattern 
recognition and intelligent system from Institute of 
Automation, Chinese Academy of Sciences, China in 
2001. 
 In 2001, he was Invited Researcher at the Spoken 
Language Translation Research Laboratories, Ad-

vanced Telecommunications Research Institute International, Japan, and in 
2002, he was Research Fellow at the National University of Singapore. He is 
currently Senior Research Fellow at the Institute for Infocomm Research, 
Singapore. His research interests are focused on multimedia information re-
trieval, machine learning, speech recognition, and image and speech signal 
processing. 
 

 Qibin Sun received his Ph.D. degrees in Electrical 
Engineering, from University of Science and Tech-
nology of China (USTC), Anhui, China, in 1997. Since 
1996, he is with the Institute for Infocomm Research, 
Singapore, where he is responsible for industrial as well 
as academic research projects in the area of media 
security, image and video analysis, etc. Dr. Sun is the 
Head of Delegates of Singapore in ISO/IEC SC29 
WG1(JPEG). He worked in Columbia University 
during 2000-2001, as a research scientist.  

Dr. Sun actively participates in professional activities such IEEE ICME, IEEE 
ISCAS, IEEE ICASSP and ACM MM, etc. He now serves as the member of 
Editorial Board in IEEE Multimedia Magazine, the member of Editorial Board 
in LNCS Transactions on Data Hiding and Multimedia Security, the member of 
Editorial Board in EUROSIP on Information Security and the Associate Editor 
of IEEE Transactions on Circuits and Systems on Video Technology 
 


