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ABSTRACT 
Recently, the bag-of-words approach has been successfully 
applied to automatic image annotation, object recognition, etc. 
The method needs to first quantize an image using the visual 
terms and then extract the image-level statistics for 
classification. Although successful applications have been 
reported, it lacks the capability to model the spatial dependency 
and the correspondence between the patches and visual parts. 
Moreover, quantization deteriorates the descriptive power of 
patch feature. This paper proposes the hidden maximum entropy 
(HME) approach for modeling visual concepts. Each concept is 
composed of a set of visual parts, each part having a Gaussian 
distribution. The spatial dependency and image-level statistics 
of parts are modeled through the maximum entropy. The model 
is learned using the developed EM-IIS algorithm. We report the 
preliminary results on the 260 concepts in the Corel dataset and 
compared with the maximum entropy (ME) approach. Our 
experiments on concept detection show that (1) a relative 
increment of 10.3% is observed when comparing the average 
AUC value of HME approach with that of the ME approach and 
(2) the HME approach reduces the average equal error rate 
from 0.412 for the ME approach to 0.354. 

1. INTRODUCTION 
The bag-of-words approach is commonly adopted in text 
information retrieval so that a text document is represented in 
terms of word occurrences [2]. Although the method ignores 
syntactic and semantic information, it has been shown to be 
successful in text categorization and retrieval. Recently, it 
attracts increasing attention when dealing with image-related 
classification problems such as automatic image annotation, 
scene classification, object recognition, etc [1, 3-11]. Unlike text 
document, image document is not symbolic. The clustering 
algorithms (e.g. k-means) are first utilized to quantize the 
images into clusters, a discrete equivalent of the symbolic tokens 
in text documents. A high-dimensional feature vector is then 
extracted using the feature extraction techniques for text. Finally, 
machine learning algorithms, e.g., SVM [4], MC MFoM [10], 
CMRM [6], ME [11], are exploited to train the concept model. 
Good performances have been reported on the tasks such as 
image annotation and object recognition. 

The bag-of-words approach makes it easy to utilize the 
image-level statistics. The quantities, such as unigram and 
bigram of visual terms, are invariant to rotation and robust to 
partial occlusion. This is one reason for its success in visual 
concept classification. However, the approach lacks the 
capability to model the spatial dependency and the 
correspondence between the patches and concepts. For some 
concepts, the spatial configuration may be informative for 
discriminating them from others. In addition, quantization loses 
some discriminative information held in continuous visual 
features. The loss is not recovered, regardless of how powerful 
the image model is. 

To utilize the spatial configuration of patches in the visual 
concept model and to discover the correspondence between the 
patches and concept parts, the generative object model is an 

attractive option [9]. Each concept is composed of a few visual 
parts, each visual part having a Gaussian distribution. The 
correspondence is treated as a hidden random variable and is 
learned using the EM algorithm. The generative model makes it 
feasible to integrate the appearance, shape and local spatial 
dependency. But it cannot capture the image-level statistics of 
parts because the computation cost increases exponentially with 
the order of spatial dependency. 

In the paper, a hidden maximum entropy (HME) approach is 
presented for modeling visual concepts so that we can obtain the 
benefits from both the bag-of-words and the generative models 
and can address their each individual drawback. The HME 
models the concept using the visual parts, each part being a 
Gaussian distribution. The parts connect the patch feature with 
the discrete symbols, i.e., parts. The part configuration in the 
image and their interaction are further modeled through the ME 
model. Since the correspondence between the patches and the 
parts is unknown, an EM-IIS algorithm, i.e., EM embedded with 
improved iterative scaling (IIS), is developed. 

The HME directly characterizes the distributions of the 
patch feature and part configuration. Thus, quantization is not 
necessary. When the correspondence is deterministic and all 
concept models share the visual parts, the HME would become 
the ME. It will be detailed in section 3. 

Similar to the part-based object model (e.g. [9]), the HME 
approach utilizes the generative visual part models to 
characterize the patch feature distributions. But their difference 
is obvious. In [9], the hidden variable is the object part 
configuration, which describes the best matching between the 
parts and the patches. Thus, for a fixed configuration, each 
object part occurs at most once. While in the HME model, the 
hidden variable is the patch configuration of an image. It 
describes the best possible part that can generate a patch. For a 
fixed configuration, each part may occur many times. Moreover, 
the HME models the image-level statistics through the feature 
extractors and maximum entropy model which is infeasible 
using the model in [9]. We observed that the most relevant work 
is the latent maximum entropy (LME) model [12], which 
addresses learning with missing variables using the maximum 
entropy principle. But the learning algorithm is inefficient when 
the image-level statistics are used because the interactions 
among the parts are non-linear. In this paper, we present a 
feasible learning algorithm, i.e., EM-IIS (improved iterative 
scaling), to estimate the HME based concept models. 

The paper is organized as the following. In the next section, 
we discuss the ME based concept model. Then the HME model 
is introduced in Section 3. The experimental results are reported 
in Section 4. Finally, we summarize our findings in Section 5. 

2. MAXIMUM ENTROPY BASED 
CONCEPT MODELING 

The maximum entropy model has been applied to text 
documents. However, the natural representation of image is a set 
of patch features (e.g., color, texture, etc.). Thus, the first step is 
to learn visual terms using the clustering algorithms such as 
k-means. Then a patch is quantized into its closest visual term 
based on its distance to the centroids of visual terms. 
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Quantization makes an image document to be a symbolic 
document. Any technique, including feature extraction and 
modeling algorithms, developed for text categorization can then 
be applied. Among them, the ME model is promising because of 
its capability to fuse diverse features. 

Assuming there are M visual concepts and a set of training 
samples, ,t tT I y , where ,t tI y  is an image document

tI  

and its annotated concept,
ty , then M concept models are trained. 

The extracted patch features are denoted 
as, 1 , 2 , ,t t t t tI x x x L , with .tx being a 

D-dimensional vector and 
tL being the number of vectors. After 

quantization using K visual terms, the image is represented 
as, 1 , 2 , ,t t t t tI q q q L , where 

tq is a visual term 

quantized for .tx . From the quantized image document, the 

text-like features, e.g. tf-idf, unigram, bigram, etc., can be 
extracted [2]. For the ME model based classification, the popular 
feature extractors extract unigram or bigram features (e.g., [5, 
11]). 

2.1 Maximum Entropy Model 
For M concept classification, we would like to calculate the 
predicted conditional probability, ,P y I , for the concept y, 

where 1,y M , I is the symbolized image document and  

is the model parameter set. Then the image will be assigned to 
the concept, *y , which has the maximal predicted probability, 
i.e., 

*

1,
arg max ,

y M
y P y I     (1) 

Assuming N feature extractors, ,if I y , are designed to 

extract informative features, then the ME model can be 
estimated by maximizing the empirical maximum entropy in the 
training set under a set of constraints. These constraints state that 
the empirical quantity of each feature in the training set must be 
equal to its predicted value by the learned model. The 
optimization criterion gives rise to the following form of the 
visual concept model (Refer to [13] for details), 

1, exp ,
, i ii

P y I f I y
Z I

 (2), 

where , exp ,i iy i
Z I f I y , 

1 2, , , N
. 

Similar to [4, 5, 11], the unigram feature is used in the paper. 
It is defined as, 

,

# ,
,     

,
0,          

q c

q I
if c y

If I y

otherwise

   (3), 

where q is a visual term, c is a visual concept and I  is the 

occurrence number of all terms in I. Now the feature extractor is 
indexed by both q and c. Eq. (3) implies each concept model in 
Eq. (2) has its own distinct parameters. 

Maximizing the log-likelihood in the training set gives rise 
to the model parameters. Generalized iterative scaling (GIS) or 
IIS algorithm is developed for efficient estimation [13]. 

2.2 Limitations of the ME Model 
With carefully designed feature extractors, the ME based 
concept model can capture the image-level statistics of visual 
terms, e.g. occurrence of a visual term or co-occurrence of any 
two visual terms. These features are invariant to rotation and are 

robust to partial occlusion. However, the spatial dependency of 
patches is not characterized. It also cannot represent the 
correspondence between the image patches and the visual parts 
of the concepts because of its image-level representation. 
Moreover, quantization error is unavoidable in the method and it 
cannot be recovered by the subsequent process. Therefore, the 
bag-of-words description limits the utilization of patch features. 
For instance, currently only the appearance feature is used to 
generate the visual terms. It is challenging to incorporate the 
shape model because the shape model needs the spatial 
configuration of the concept parts.  

In the next section, we will introduce the hidden maximum 
entropy approach to address the issue. The HME model treats 
learning visual terms and estimating the correspondence as a 
hidden stage. It jointly characterizes the distribution of patch 
features and part configuration of visual concept.  

3. HIDDEN MAXIMUM ENTROPY 
CONCEPT MODELING 

The bag-of-words based visual concept models consist of a 
universal visual term models, which map the image patches to 
their closest visual terms, and a concept dependent model, which 
characterizes the image-level statistics of the symbolized image. 
While in the HME based visual concept model, each concept 
model may have their distinct visual parts (hereafter, we don’t 
distinguish visual part from visual term) which generate the 
observed patch features, and the image-level statistics for one 
correspondence is described by the ME model. The HME is 
different from the bag-of-words approach in that the 
correspondence mapping in HME is hidden and probabilistic 
while in the bag-of-words approach, it is deterministic. 

3.1 Hidden Maximum Entropy Principle 
For the image patch representation, 1 , 2 , ,I x x x L , 

and the concept models, there is a hidden random 
variable, 1 , 2 , ,H h h h L , to describe the mapping 

between the concept visual parts and the patches. Here h i  is 

one of K parts. Thus the log-likelihood for predicting the 
concept y is calculated through summing all possible mappings, 
i.e., 

log , log , ,
H

P y I P y H I   (4) 

For the K-parts concept model and L-patches image, there 
will be LK  correspondence. Thus, the computation cost for the 
above sum is very huge. Even it is possible, there is another 
challenge to find a computationally tractable function for the 
joint distribution of the concept and hidden variable, 
i.e., , ,P y H I . Thus we will seek an approximate 

computational model for Eq. (4) so that the above computation 
is tractable and the cost can be reduced.  

According to the Bayesian rule and Jensen’s inequality, we 
can factorize the joint distribution in Eq. (4) and find its lower 
bound,  

log , log , ,

                       , log ,
H

H

P y I P H I P y H

P H I P y H
 (5) 

The sum in the second line in Eq. (5) is the lower bound of 
Eq. (4). We would rather compute the lower-bound to 
approximate the log-likelihood in Eq. (4), i.e,  

log , , log ,
H

P y I P H I P y H   (6). 
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The two terms in the equation defines the HME based visual 
concept model. Their definitions are finalized as follows. 

The first term in the right hand side is the probability of one 
mapping configuration given the observed visual features. It 
depends on the visual features. The second term explains how 
much a visual concept y is generated for a fixed configuration. 
When the two terms are known, the concept model is 
determined. 

The first term bridges the concept model with the low-level 
patch features. For simplicity, here the patches are assumed to be 
independent and the spatial dependency is not considered. Thus 
the visual part identity of each patch will be predicted by its 
observed patch feature. The probability of a mapping 
configuration can be factorized as, 

, ,
i

P H I P h i x i            (7) 

where ,P h i x i  is a probability measure of the i-th 

patch belonging to h(i)-th visual part. In the paper, the visual 
part is modeled by the Gaussian distribution. For a visual 
concept y with K parts, the visual part models are denoted 
as, ,y y y

j j jp N x , 1,j K , 1,y M . The probability 

of the i-th patch assigned to the j-th part is approximated as, 
1 ,y y y

j j jP h i j x i P N x i
Z x i

 (8), 

where ,y y y
k k kk

Z x i P N x i , y
kP is a prior 

probability of the j-th part for the concept y, and  is a 
smoothing constant.  

Up to now, the first part of the definition has been completed. 
Now we will introduce the definition of the second part. There 
are many ways to model the conditional probability for a fixed 
mapping configuration. Here the ME model (see Section 2) is 
applied to account for the distribution of the visual part 
configuration. For a possible mapping, the feature extractors 
(see Eq. (3)) are used to extract the feature and calculate the 
conditional probability.  

Therefore, the complete HME concept model has the 
parameters for the generative part model, i.e., y

kP , y
j
, y

j
, and 

the weights of feature extractors in the ME, i.e.,
n

. They will be 
learned through maximizing the log-likelihood on the training 
set. Now, the objective function is defined as, 

,
, , ,

            , log ,

i iI y H i

I H

T P I y P H I f H y

P I P H I Z H
 (9), 

where ,P I y and P I  are the empirical distribution on the 

training set. 
However, directly optimizing Eq. (9) is still challenging due 

to the non-linear term, ,Z H . Its lower bound is further 

exploited for approximation. Its form is, 
,

, expi
iy i

f H y
Z H f

f
  (10) 

where ,ii
f f H y . 

3.2 Estimating Model Parameters  
The EM-IIS algorithm is developed for optimizing Eq. (9) after 
substituting Eq. (10) into it. In the E-step, the ME parameters are 
fixed and we maximize the objective function to get the 
parameters of visual part models, i.e., y

kP , y
j
and y

j
. That is 

done using the gradient descent algorithms. Then Eq. (7) is 

calculated. In the M-step, the IIS algorithm is used to learn the 
ME parameters,

n
while others are fixed. Due to the above 

approximation, the ME parameters have the closed form (proof 
is skipped due to the limited space). Figure 1 outlines the 
EM-IIS algorithm. 

Figure 1 The EM-IIS algorithm for estimating HME model 

4. EXPERIMENTS 
The HME model can be applied to multi-category image 
classification problem. However, we will study its capacity on 
the binary classification problem in the paper, i.e., training the 
concept model to discriminate an image containing the concept 
from another without the presence of the concept, i.e., the 
negative. As discussed above, the ME model is a special case of 
HME model when the HME concept models share the visual 
parts and the correspondence is deterministic. Thus, the ME 
based concept model is trained as the baseline.  

4.1 Experimental Setup 
The Corel CD image dataset, a popular set for automatic image 
annotation and retrieval, is used [8]. It has 374 concepts with a 
total of 5,000 images, 4,500 images for training and 500 for 
testing. But there are only 260 concepts which have at least one 
sample in both the training and test sets. Thus our experiments 
are based on the 260 concepts. For each concept, one concept 
model and one negative model are trained. To avoid a model 
becoming bias to the negative class because it has larger training 
samples than the samples of the concept, we randomly sample 
equal number of negative samples when training the concept 
model and the negative model. The detection performances are 
measured by EER (i.e., equal error rate) and AUC (i.e., area 
under the ROC curve). The latter is a one-scale quantity of the 
ROC curve. It is equal to the probability of correctly ranked 
positive-negative sample pairs in the evaluation set [14].   

The SIFT detector is used to extract a set of patches, each 
being a 128-dimensional appearance feature vector [3]. For the 
bag-of-words based ME model, four visual terms are learned 
using the k-means clustering. As a fair comparison, the HME 
model also uses four visual parts shared by both the concept and 
the negative models. This setting ensures that the two systems 
have equal number of parameters. Better results should be 
observed when more visual parts are used, however, it is not 
studied here.  is set to be 0.2 empirically.  

4.2 Performance Comparison 
The HME based system gives an average AUC value of 0.673 
over 260 concepts. Compared with 0.610 for the ME based 
system, the relative improvement is 10.3%. Further 
concept-by-concept analysis shows that the HME model 
improves the AUC on 211 concepts, degrades the AUC on 46 

1. Initialization 
a) k-means clustering for initializing part weights, 

means and covariance matrix of part models 
b) Weights of feature extractors are set to zeros. 

2. M-step: IIS algorithm to update the weights based on 
the current estimation of part models 

3. E-step: Update parameters of part models using the 
gradient descent algorithm. 

4. Stop until the predefined criterion is reached, i.e., the 
maximal iterative number or the relative increment of 
objective function value is less than a threshold. 
Otherwise, go to (2).  
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concepts and the AUC values have no change on 3 concepts. 
When comparing the EER, we observe that the HME system has 
the average EER, 0.354 versus 0.412 for the ME system i.e. a 
14.1% relative reduction in average EER. Measured by EER, 
there are 179 concepts whose EERs are reduced by the HME 
system, 49 concepts where EERs are increased and 32 concepts 
where EERs have no change. Therefore, the HME system 
obviously outperforms the ME system 

Now we plot an overall ROC curve across 260 concepts for 
comparing the HME system with the ME system. To do it, we 
collect the output scores from 260 concept detectors for the 
positive samples as the overall positive scores and those scores 
of all negative samples as the overall negative scores. The scores 
are not normalized, although normalization may be better. Then 
the overall ROC curves are drawn in Figure 2 according to the 
overall positive and negative scores. It shows that the ROC 
curve of the HME system (red solid curve) has clear advantage 
over that of the ME system (blue dashed curve).  

 
Figure 2 The overall ROC curve comparison between the HME 
and ME based systems (X-axis: false positive rate. Y-axis: true 
positive rate. HME: red solid curve. ME: blue dashed curve.) 

Plane 
 

HME 

 ME 

Sun 
 

HME 

 ME 

(a) Top-10 images for plane and sun using HME and ME 

 
Plane Sun 

(b) ROC curves for plane and sun trained with HME and ME 

Figure 3 Illustration for visual concepts plane and sun (a) the 
top-10 retrieved images (Row HME: top-10 images for the HME 
system. Row ME: top-10 images for the ME system.) and (b) the 
corresponding PR-curves (HME: red solid curve. ME: blue 
dashed curve.) 

4.3 Examples of Retrieval 
We will now list the retrieval results for 2 selected concepts, i.e., 

plane and sun. For each concept, the 500 test images are ranked 
from the highest score to the lowest according to the 
log-likelihood ratio between the concept model and its negative 
model. The top-10 images are depicted in Figure 3a. For each 
concept, the first row is the result for the HME model and the 
second is for the ME model. To have an overview of the 
retrieval performance, the corresponding precision-recall (PR) 
curves are also depicted in Figure 3b for the two concepts. For 
the two selected concepts, the precision at the top-10 images for 
HME model is better than that for the ME model. From the PR 
curve comparison, the improvement by the HME model is 
obviously seen at most of the precision-recall points.  

5. CONCLUSION 
The paper presents a novel hidden maximum entropy algorithm 
for modeling visual concepts. The HME model combines the 
good properties of both the bag-of-words approach and the 
generative model and overcomes each individual drawback. 
HME allows us to model the local spatial dependency 
represented in the generative model as well as the image-level 
statistics captured by the ME model. Our preliminary 
experiments are carried out on the visual concept detection 
problem for 260 visual concepts labeled in the Corel dataset. We 
observe that (1) the relative increment of the average AUC value 
of 10.3% is obtained when comparing the HME based system 
with the ME based system; (2) the HME system reduces the 
average equal error rate from 0.412 to 0.354. In future, we will 
consider: (1) embedding the shape model and local spatial 
dependency, (2) evaluating on the multi-category concept 
recognition and annotation, (3) inferring the hidden 
correspondence to study its property on segmentation etc. 
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