
EXPLOITING CONCEPT ASSOCIATION TO BOOST MULTIMEDIA 
SEMANTIC CONCEPT DETECTION

 
Sheng Gao, Xinglei Zhu and Qibin Sun 

 
Institute for Infocomm Research, Singapore 119613 

{gaosheng, xzhu, qibin}@i2r.a-star.edu.sg 
 

ABSTRACT 
In the paper we study the efficiency of semantic concept 
association in multimedia semantic concept detection. We present 
an approach to automatically learn from the corpus the association 
strength between pair-wise semantic concepts. We discuss two 
usages of association strength: 1) applying positive concepts with 
high association strength for selecting expressive component in 
the model-based fusion and 2) applying negative concepts with 
low association strength as filters. We evaluate its efficiency on 
the task of semantic concept detection on the large-scale news 
video dataset from TRECVID 2005 development set. Our 
experimental results demonstrate that exploiting positive 
association reduces the size of feature dimension in the model-
based fusion and significantly improves the rank performance of 
system. The mean average precision is increased to 0. 215 on the 
validation set and 0.206 on the evaluation set. Compared to the 
traditional model-based fusion, the improvement is about 9.1% 
and 3.5%, respectively. The average feature dimension is reduced 
to 43 from 312. 
 
Index Terms – multimedia semantic concept detection, concept 
association strength, feature reduction. 

1. INTRODUCTION 
Advanced by annual TREC video retrieval evaluation, large-scale 
multimedia semantic concept detection and search have been 
extensively studied in recent years. Not only huge volume of 
annotated news video corpus (i.e. video shot segmentation, 
concept annotation at key-frame, moderate size of predefined 
semantic concepts; see [3] for details) is accessible for research, 
TRECVID also provides a platform to evaluate the state-of-art 
technology in multimedia information retrieval. One of the 
lessons learned from the systems developed by participants is that 
fusing multi-modality and various features are critical. In the top 
systems built by IBM, Columbia University, CMU, etc., multi-
modality features as well as various feature extractors are 
integrated to enhance the system performance. 

Multimedia data such as videos have three modalities: audio, 
visual and textual (e.g. text transcribed from speech signal using 
automatic speech recognition and text captured by video OCR). 
For each modality, many feature extractors are suitable for the 
content representation. For instance, many types of visual features 
(e.g. color histogram, texture, motion, edge, shape) are extracted 
to describe visual content in the keyframe images. Any single 
modality and extractor alone is not powerful enough to capture the 
rich content in multimedia data. In general, two ways are used for 
fusion. One way is to concatenate all features in one vector, which 
generates undesirable high index dimension. Thus, the issue of 
curse of dimensionality must be addressed. Furthermore, forming 
one feature vector is not always realistic in practice because 
sometimes some modalities are lost. It is a natural phenomenon in 

multimedia data. For example, sometimes there is no speech 
signal and thus there is no text from speech recognition. Therefore, 
another fusion way, i.e. model-based transformation (MBT), is 
preferred [1, 2, 7, 8, 9].   

In model-based transformation, a classifier for each feature is 
firstly trained for each semantic concept. Thus, a set of classifiers 
is collected for each concept. Suppose we have M types of 
features and N concepts, M*N classifiers should be trained. These 
classifiers are treated as the bases to map a training sample into 
M*N-dimensional model score space [1, 2, 7]. Based on the model 
score space representation, another classifier is trained for each 
concept to reach the final classification decision. In the 
classification stage, a test sample is first mapped into a M*N-
dimensional model space vector, and then the final decision is 
made using the classifier trained on the model score space. This 
scheme has been proven successful by all systems developed for 
multimedia semantic concept detection and search in TRECVID1 
[1, 2] (see TRECVID workshop papers for details).  

The model-based transformation in the above is still facing the 
curse of dimensionality. For a concept lexicon [3] of moderate 
size in which 101 concepts are annotated, the dimension of model 
space will reach 1,010 if 10 types of features are used (note: 10 
types are not much by studying the top systems [1]). In the MBT 
method, it is not easy to answer which modalities or features are 
important and which concepts are more critical to boost the 
specific concept detection. Wu & Chang in [9] studied the first 
issue. They applied principle component analysis (PCA) to reduce 
the feature dimension and independent component analysis (ICA) 
to identify the important modalities. In the paper, we will address 
the second issue. 

Relation between semantic concepts is well studied in natural 
language processing (e.g. WordNet is built to describe relation 
among words). Detecting one concept will boost chances of 
detection of another concept. For example, the concept airplane 
has a high association with sky but has never co-occurred with 
sports. Thus, if the detectors of sky and sports have high accuracy, 
they can be used to enhance the airplane detector. In [4], Naphade 
& Huang developed multinet (i.e. Bayesian network) to integrate 
concept relation into semantic indexing and retrieval in video. 
However, training and inference in Bayesian network are high 
computation consuming, especially for large-scale semantic 
concept detection.  

In the paper, we will study 1) automatically extracting the 
semantic concept association from the corpus and 2) exploiting 
the knowledge to boost semantic concept detection. We will 
evaluate the efficiency for semantic concept detection based on 
TRECVID 2005 development set. 

In the next section, we will introduce extraction of semantic 
concept association. Then the experimental evaluation results and 

                                                                 
1 http://www-nlpir.nist.gov/projects/trecvid/ 
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analysis are shown in Section 3. Finally, we will conclude our 
findings.  

2. EXTRACTING CONCEPT ASSOCIATION 
Although Wordnet describes concept relations, it cannot indicate 
the strength of association between two concepts. It is also too 
general to reflect domain knowledge, which has been proven to 
play an important role in many applications such as machine 
translation, speech recognition, language modeling, etc. 
Exploiting domain knowledge often significantly improves the 
system performance. Here we study extracting domain-specific 
semantic concept association from the news video corpus. Thanks 
to LSCOM (i.e. Large Scale Concept Ontology for 
Multimedia), we have large-scale annotated video corpus 
for semantic concept lexicon of moderate size. Based on 
the annotated corpus, we can automatically extract the 
association between any two concepts and their strength.  

In the recent version LSCOM, 449 concepts are annotated, of 
which 39 concepts are used here. The subset is used in the 
evaluation of high-level feature extraction task in TRECVID 
20062. The names and the identity number (ID) of the semantic 
concepts are listed in Table 1. 

Table 1 Names and ID of the semantic concepts in TRECVID’06 

ID Concept ID Concept ID Concept 
1 Sports 14 Sky 27 Computer_TV-screen
2 Entertainment 15 Snow 28 Flag-US 
3 Weather 16 Urban 29 Airplane 
4 Court 17 Waterscape_Waterfront 30 Car 
5 Office 18 Crowd 31 Bus 
6 Meeting 19 Face 32 Truck 
7 Studio 20 Person 33 Boat_Ship 
8 Outdoor 21 Government-Leader 34 Walking_Running 
9 Building 22 Corporate-Leader 35 People-Marching 
10 Desert 23 Police_Security 36 Explosion_Fire 
11 Vegetation 24 Military 37 Natural-Disaster 
12 Mountain 25 Prisoner 38 Maps 
13 Road 26 Animal 39 Charts 

2.1 Learning Concept Association from Corpus 
To learn concept association, following the terms in [4], we notate 
the concept pairs in which two concepts co-occur with each other 
at least once as positive association and negative association 
otherwise. In the following, we will note a concept as target 
concept when we calculate its co-occurrence with other concepts, 
which are noted as associated concept. 

The annotated corpus is the development set of TRECVID 
2005. Each news video file is segmented into the shots, which are 
represented by a few keyframes. For each keyframe and concept, 
the annotator labels it as positive if it is relevant with the concept 
and negative otherwise. Annotation of the shot can be derived 
from the keyframes. A shot is positive for a concept if at least one 
keyframe in the shot is relevant with it. Because we are interested 
in the shot level annotation in the TRECVID, we will count the 
statistical association on the shots for the pair-wise concepts. 

Given the target concept A and a concept B, we measure the 
strength of their association, Str, as, 

# ,
#

A B
Str

A
                                 (1), 

                                                                 
2 http://www-nlpir.nist.gov/projects/tv2006/tv2006.html 

where #(A, B) is the number of shots relevant with both A and B, 
and #(A) is the number of shot relevant with A. It is the 
measurement of conditional probability of B on A. Higher value of 
Str means concept B has a stronger relation with A. The 
measurement in Eq. (1) is asymmetric, i.e. the conditional 
probability of B on A is not equal to that of A on B. It is easy to be 
verified from Eq. (1). Although their numerators are same, their 
denominators may be different. For example, in the TRECVID 
2005 corpus, outdoor ranks the first in terms of the association 
strength for the concept airplane, however, airplane ranks the 
25th for outdoor (the first is person).  

The pair-wise association strengths among 39 concepts are 
shown in an association map in Figure 1. Y-axis is the target 
concept ID while X-axis is the associated concept ID. The 
brightness of the blocks corresponds to the association strength. 
The association strength between the concept and itself is defined 
as one. It is the brightest diagonal line in the figure. The darkest 
area is the negative association. The association map clearly 
shows most of the concepts have a higher association strength 
with outdoor (see vertical line at ID=8, X-axis) and person (see 
vertical line at ID=20, X-axis). The concept person associates 
with all concepts. It is in accordance with our intuition that person 
is central in news video. It means that it has little information to 
discriminate the target concept from others.  

 
Figure 1 Association map for pair-wise concept association 
strength (X-axis, Y-axis: the concept ID listed in Table 1) 

2.2 Exploiting Concept Association for Indexing 
The associated concepts with high association strength boost the 
detection of the target concept. Sometimes, the target concept may 
have poor detection performance, but some of its associated 
concepts can be detected with high accuracy. Then we can use the 
detection outputs of its associated concepts to help detecting the 
target concept. Here we introduce an application of association 
map to select the most efficient feature components for indexing 
in the MBT fusion.  

For simplicity, we assume one type of low-level feature and N 
semantic concepts. Thus, N classifier are trained, each for one 
concept. Following the terms in [2], each classifier is treated as a 
basis model which plays a similar role as the eigenvector in the 
eigenspace, and it maps the low-level feature into one component 
in model score space. Traditionally, the N basis models are 
equally treated, and the feature dimension in the MBT fusion will 
be N. In Figure 1, the association of a target concept with other 
concepts varies in a large range from one concept to another. The 
components corresponding to concepts with strong association 
strength are much more important than others. We exploit the 
association strength to select them. 
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For a specific target concept, we sort the concept (or basis 
model) according to their association strength defined in Eq. (1). 
Then a predefined threshold is used to prune concepts with 
unqualified association strength. Thus the size of basis models is 
reduced as well as the dimension of the fused feature vector. 
Because the model bases are chosen based on the domain 
knowledge extracted from the corpus, it is not affected by the type 
of low-level features. If K (K<N) basis models are chosen and 
there are M types of features, then the indexing dimension in 
MBT fusion will be K*M. It is clear that indexing dimension may 
be different across target concepts. 

2.3 Exploiting Negative Association 
In Section 2.1, we have introduced the negative association, i.e. 
concepts have never co-occurred with the target concept. The 
basis models corresponding to these concepts will not be used for 
indexing. Here we discuss using these concept detectors as a filter 
to prune the most impossible ranking document for a specific 
target concept.  

Given the target concept A, we assume another two concepts, 
B and C, having negative association with it. In semantic concept 
detection task, the ranking lists on test database A, B, and C, are 
RA, RB, and RC respectively. Each element in the ranking list is a 
shot. If B and C detectors have high accuracy, we should expect 
most of their top-N shots will be strongly relevant with B and C. 
Due to their negative association with A, the union of their top-N 
shots should have the smallest chance to occur among the top-N 
for ranking RA. If the shots in the union occur in the top-N of RA, 
we can safely remove them from RA to improve ranking 
performance of concept A. 

Of course, the operation has risk, especially when the concept 
detectors as the filters that have low performance. In practice, we 
choose the concepts having high performance, i.e. more than a 
threshold, as the filter. We will experimentally study its effect on 
the ranking performance in next section.  

Using filter operation to improve ranking performance is not 
new. But, traditionally, the filter detector needs extra resources, 
e.g. manual annotation beside the common annotation set. For 
example, to use commercial detector, the developer must label 
their own training samples because commercial concept is not in 
the semantic concept lexicon. The novelty of using the negative 
association concept as filter is in that 1) extra labeling and training 
are not required and 2) it provides an efficient way to use 
available resources to achieve their best ability. 

3. EVALUATION AND ANALYSIS 
We have discussed the method to exploit the strength of pair-wise 
concept association for indexing and filtering in the above. Now 
we evaluate its efficiency on semantic concept detection on the 
TRECVID 2005 development set. The set has 137 mpeg news 
videos. We randomly split the videos into three sets, i.e. 70% (96 
videos, ~40,000 keyframes) for training, 15% (20 videos, ~10,000 
keyframes) for validation, and 15% (21 videos, ~10,000 
keyframes) for evaluation. The 39 semantic concepts have been 
listed in Table 1.  

In the experiment, we use the MBT to fuse multiple visual 
features as shown below: 

 Global color correlogram (GCC) in HSV space: 324-
dimension [11]. 

 Co-occurrence texture extracted from global gray-level co-
occurrence matrix (GLCM): 64-dimension [12]. 

 3-D global color histogram in HSV (HSV): 162-dimension. 

 3-D global color histogram in RGB (RGB): 125-dimension. 
 3-D global color histogram in LAB (LAB): 125-dimension. 

For each type of feature and concept, one SVM classifier 
(SVM) or linear discriminative function (LDF) classifier is trained. 
The details are shown in Table 2. If a classifier is trained for a 
feature, a mark ‘+’ is given. Otherwise, it is left empty. Thus there 
are 8 classifiers trained for each concept.  

Table 2 Description of trained classifiers (+: the classifier is 
trained for the feature) 

 SVM LDF 
GCC + + 
GLCM + + 
HSV + + 
RGB +  
LAB +  

3.1 Tuning Classifiers 
We train SVM classifier using SVM-light [10] tool package and 
LDF using our developed ROC optimized learning algorithm [6]. 
Now we will discuss automatically setting the configuration of 
SVM to get the optimal average precision. The tuned parameters 
are kernel type and kernel parameters. For example, for linear 
kernel its parameter is a coefficient controlling the trade-off 
between training error and margin. For polynomial and RBF 
kernel, the kernel parameters are the polynomial order and gamma, 
respectively, besides the trade-off coefficient. For each type of 
kernel, we linearly search in a range to find its combination of 
trade-off coefficient and polynomial order or gamma. Then, the 
configuration which gives best average precision on validation set 
is chosen. Finally, the SVM model is trained on the best 
configuration and evaluated on evaluation set. All other 
parameters in SVM-light tool are assigned as the default setting. 

In ROC optimized learning algorithm [6], the tuned parameter 
is alpha which controls the smoothness of sigmoid function. 
Similar to tuning SVM, we linearly search alpha in a range to get 
the optimal one giving the best average precision. Then, the 
selected configuration is used for training. 

3.2 Effect of Positive Concept Association 
To study the efficiency of exploiting the positive concept 
association on indexing and semantic concept detection, we build 
the semantic concept detection system using the strength of the 
positive concept association. It is compared with a benchmark 
system, which is trained using the traditional MBT fusion. 
Hereafter, the two systems are named as AssociationMap and 
Benchmark. 

As introduced above, 8 classifiers are trained for each 
semantic concept. Thus, the feature dimension in the model score 
space is 312 (8*39). Using the 312-dimensional feature, a SVM 
classifier is trained for each concept using the tune method in 
section 3.1. The MBT classifier is then used to rank the shots in 
the validation set and evaluation set. The official NIST evaluation 
metric, i.e. average precision (AP) at the top-2000 retrieved shots, 
is reported here.  

A threshold (0.2 in our system) is set to get the top-N concepts 
having high association strength for each semantic concept. Here 
the minimal K is set equal to 5. As K associated concepts are 
chosen, we construct K*8-dimensional model space feature 
vectors. In our experiment, the average K on 39 concepts is ~5.4 
and the maximal value is 8. Thus the maximal dimension is 64. 
Comparing with 312, there is a significant reduction of the feature 
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dimension. Each component in the association strength has a clear 
meaning, while in other feature reduction methods such as PCA, it 
is difficult to explain its component in the eigenspace. 

The AP values of the two systems over 39 semantic concepts 
are shown in Figure 2 for the validation set and in Figure 3 the 
evaluation set. From these two figures, it is obvious that 
exploiting concept association significantly improves the average 
precision over most concepts. The mean average precision (MAP) 
of the AssociationMap system reaches 0.215 on the validation set 
and 0.206 on the evaluation set. For comparison, the benchmark 
system has 0.197 on the validation set and 0.199 on the evaluation 
set. A little improvement is observed. To further illustrate that the 
AssociationMap boosts ranking, we compare their precision at 
top-100 shots. The precision for the benchmark is 0.333 on the 
validation set and 0.326 on the evaluation set while they are 0.334 
and 0.323 for the AssociationMap, respectively. Although the 
AssociationMap uses a much lower indexing dimension, its 
ranking performance is competitive with the benchmark using the 
full dimension indexing. 

 
Figure 2 Comparison of the average precision on the validation set 
between the AssociationMap (red bar) and benchmark (white bar) 
(X-axis: concept ID. Y-axis: AP value.) 

 
 Figure 3 Comparison of the average precision on the evaluation 
set between the AssociationMap (red bar) and benchmark (white 
bar) (X-axis: concept ID. Y-axis: AP value.) 

3.3 Effect of Negative Concept as Filter 
In this section we experimentally study how the negative concepts 
as the filters affect the ranking performance. We use the filter 
concepts to prune the ranking shots of target concept in the 
AssociationMap system to explore whether the filter concepts 
improve the ranking performance. 

 Besides the negative concepts of each target concept, positive 
concepts with association strength less than a threshold (0.1 in our 
system) are also considered as the candidates of filter concepts. 
We remove the concepts whose AP values on the validation set 
are less than a threshold (0.3 in our system). Thus, the final filter 
concepts are determined for each target concepts. As discussed in 

Section 2.3, we use the ranking shots in the filter concepts to 
prune the target concepts. Due to limited space, we only show the 
overall performance on 39 concepts. After filtering, the MAPs are 
0.211 on the validation set and 0.205 on the evaluation set, and 
the precisions at top-100 are 0.331 and 0.322, respectively. 
Compared with the AssociationMap system without filter, there is 
a little reduction in ranking performance. Our preliminary analysis 
on each concept reveals that filter operation seems to help the 
concepts with poor performance and deteriorate those with good 
performance. For example, filter operation improves AP of 
corporate-Leader to 0.0023 from 0.0016 on the evaluation set. 
But it reduces AP of sky from 0.453 to 0.430. However, it cannot 
yet get a general conclusion about it. Considering the gain from 
the positive concept association, the negative association should 
have more benefit than that has been exploited here. In future, we 
will study how to efficiently integrate the negative association 
knowledge into semantic concept detection. 

4. CONCLUSION  
In the paper we presented an approach to automatically learn the 
association strength among semantic concepts from the corpus 
and study the usage of association strength in indexing and 
semantic concept detection. Its efficiency is evaluated on semantic 
concept detection based on the large-scale news video dataset 
from TRECVID 2005. Our experimental results demonstrate that 
exploiting positive association concepts significantly improve the 
system performance. The mean average precision is increased to 
0.215 on the validation set and 0.206 on the evaluation set. 
Compared to the traditional model-based fusion, the improvement 
of MAP is about 9.1% and 3.5% respectively. The average feature 
dimension is significantly reduced to 43 from 312. 
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