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Abstract. Content-based image authentication typically assesses au-
thenticity based on a distance measure between the image to be tested
and its original. Commonly employed distance measures such as the
Minkowski measures (including Hamming and Euclidean distances) may
not be adequate for content-based image authentication since they do not
exploit statistical and spatial properties in features. This paper proposes
a feature distance measure for content-based image authentication based
on statistical and spatial properties of the feature differences. The pro-
posed statistics- and spatiality-based measure (SSM ) is motivated by an
observation that most malicious manipulations are localized whereas ac-
ceptable manipulations result in global distortions. A statistical measure,
kurtosis, is used to assess the shape of the feature difference distribution;
a spatial measure, the maximum connected component size, is used to
assess the degree of object concentration of the feature differences. The
experimental results have confirmed that our proposed measure is better
than previous measures in distinguishing malicious manipulations from
acceptable ones.
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1 Introduction

With the wide availability of digital cameras and image processing software,
the generation and manipulation of digital images are easy now. To protect the
trustworthiness of digital images, image authentication techniques are required
in many scenarios, for example, applications in health care.

Image authentication, in general, differs from data authentication in cryp-
tography. Data authentication is designed to detect a single bit change whereas
image authentication aims to authenticate the content but not the specific data
representation of an image [1], [2]. Therefore, image manipulations which do
not change semantic meaning are often acceptable, such as contrast adjustment,



histogram equalization, and compression [3], [4]. Lossy transmission is also con-
sidered as acceptable since errors under certain level in images would be tolerable
and acceptable [5]. Other manipulations that modify image content are classified
as malicious manipulations, such as object removal or insertion. Image authen-
tication is desired to be robust to acceptable manipulations, and necessary to be
sensitive to malicious ones.

In order to be robust to acceptable manipulations, several content-based im-
age authentication schemes have been proposed [6], [7], [8]. These schemes may
be robust to one or several specific manipulations, however, they would clas-
sify the image damaged by transmission errors as unauthentic [9]. Furthermore,
content-based image authentication typically measures authenticity in terms of
the distance between a feature vector from the received image and its corre-
sponding vector from the original image, and compares the distance with a pre-
set threshold to make a decision [10], [11]. Commonly employed distance mea-
sures, such as the Minkowski metrics [12] (including Hamming and Euclidean
distances), may not be suitable for robust image authentication. The reason is
that even if these measures are the same (e.g., we cannot tell whether the ques-
tion image is authentic or not), the feature difference patterns under typical
acceptable modifications or malicious ones may be still distinguishable (feature
differences are differences between the feature extracted from the original image
and the feature extracted from the testing image). That is to say, these measures
do not properly exploit statistical or spatial properties of image features. For ex-
ample, the Hamming distance measures of Fig. 1(b) and Fig. 1(d) are almost the
same, but yet, one could argue that Fig. 1(b) is probably distorted by malicious
tampering since the feature differences concentrate on the eyes.

The objective of this paper is to propose a distance measure based on sta-
tistical and spatial properties of the feature differences for content-based image
authentication. The proposed measure is derived by exploiting the discernable
patterns of feature differences between the original image and the distorted im-
age to distinguish acceptable manipulations from malicious ones. Two properties,
the kurtosis of the feature difference distribution and the maximum connected
component size in the feature differences, are combined to evaluate the dis-
cernable patterns. We call the proposed measure statistics- and spatiality-based
measure (SSM ) since it considers both global statistical properties and spatial
properties. Many acceptable manipulations, which were detected as malicious
modifications by previous schemes based on Minkowski metrics, were correctly
verified by the proposed scheme based on SSM. To illustrate how the proposed
SSM can improve the performance of image authentication scheme, we applied it
in a semi-fragile image authentication scheme [13] to authenticate images dam-
aged by transmission errors. The proposed error resilient scheme obtained better
robustness against transmission errors in JPEG or JPEG2000 images and other
acceptable manipulations than the scheme proposed in [13].



2 Proposed Statistics- and Spatiality-based Measure
(SSM ) for Image Authentication

Content-based or feature-based image authentication generally verifies authen-
ticity by comparing the distance between the feature vector extracted from the
testing image and the original with some preset thresholds [14]. The distance
metric commonly used is the Minkowski metric d(X, Y ) [12]:

d(X, Y ) = (
N∑

i=1

|xi − yi|r)1/r (1)

where X, Y are two N dimensional feature vectors, and r is a Minkowski factor.
Note that when r is set as 2, it is actually Euclidean distance; when r is 1,
Manhattan distance (or Hamming distance for binary vectors).

However, the Minkowski metric does not exploit statistical or spatial prop-
erties of image features. Therefore, the image authentication scheme based on
Minkowski metric may not be suitable to distinguish the tampered images (e.g.,
small local objects removed or modified) from the images by acceptable manip-
ulations such as lossy compression. On the other hand, we found that even if the
Minkowski metric distances are the same, the feature difference under typical
acceptable manipulations and malicious ones are still distinguishable especially
in the case that the feature contains spatial information such as edges or block
DCT coefficients. Therefore, the Minkowski metric is not a proper measure for
content-based image authentication.

2.1 Main Observations of Feature Differences

Many features used in content-based image authentication are composed of lo-
calized information about the image such as edges [3], [6], block DCT coefficients
[1], [10], [13], highly compressed version of the original image [7], or block in-
tensity histogram [11]. To facilitate discussions, we let xi be the feature value
at spatial location i, and X be an N -dimension feature vector, for example,
N = W · H when using edge feature (W and H are the width and height of
the image). We define the feature difference vector δ as the difference between
feature vector X of the testing image and feature vector Y of the original image:

δi = |xi − yi| (2)

where δi is the difference of features at spatial location i.
After examining many discernable feature difference patterns from various

image manipulations, we could draw three observations on feature differences:

1. The feature differences by most acceptable operations are evenly distributed
spatially, whereas the differences by malicious operations are locally concen-
trated.



2. The maximum connected component size of the feature differences caused
by acceptable manipulations is usually small, whereas the one by malicious
operation is large.

3. Even if the maximum connected component size is fairly small, the image
could have also been tampered with if those small components are spatially
concentrated.

These observations are supported by our intensive experiments and other lit-
eratures mentioned previously [6], [9]. Image contents are typically represented
by objects and each object is usually represented by spatially clustered image
pixels. Therefore, the feature to represent the content of the image would inherit
some spatial relations.

A malicious manipulation of an image is usually concentrated on modifying
objects in image, changing the image to a new one which carries different visual
meaning to the observers. If the contents of an image are modified, the features
around the objects may also be changed, and the affected feature points tend to
be connected with each other. Therefore, the feature differences introduced by
a meaningful tampering typically would be spatially concentrated.

On the contrary, acceptable image manipulations such as image compression,
contrast adjustment, and histogram equalization introduce distortions globally
into the image. The feature differences may likely to cluster around all objects
in the image, therefore they are not as concentrated locally as those by mali-
cious manipulations. In addition, many objects may spread out spatially in the
image, thus the feature differences are likely to be evenly distributed with little
connectedness. The distortion introduced by transmission errors would also be
evenly distributed since the transmission errors are randomly introduced into
the image [18].

The above observations not only prove the unsuitability of Minkowski metric
to be used in image authentication, but also provide some hints on how a good
distance function would work: it should exploit the statistical and spatial prop-
erties of feature differences. These observations further lead us to design a new
feature distance measure for content-based image authentication.

2.2 Proposed Feature Distance Measure for Image Authentication

Based on the observations discussed so far, a feature distance measure is pro-
posed in this section for image authentication. The distance measure is based on
the differences of the two feature vectors from the testing image and from the
original image. Two measures are used to exploit statistical and spatial prop-
erties of feature differences, including the kurtosis (kurt) of feature difference
distribution and the maximum connected component size (mccs) in the feature
difference map. Observation (1) motivates the uses of the kurtosis measure, and
observation (2) motivates the uses of the mccs measure. They are combined
together since any one of the above alone is still insufficient, as stated in obser-
vation (3).



The proposed Statistics- and Spatiality-based Measure (SSM ) is calculated
by sigmoid membership function based on both mccs and kurt. Given two feature
vectors X and Y , the proposed feature distance measure SSM (X, Y ) is defined
as follows:

SSM(X, Y ) =
1

1 + e α(mccs·kurt·θ−2− β)
(3)

The measure SSM (X, Y ) is derived from the feature difference vector δ defined
in Eq. (2). The mccs and kurt are obtained from δ, and their details are given
in the next few paragraphs. θ is a normalizing factor.

The parameter α controls the changing speed especially at the point mccs ·
kurt · θ−2 = β. β is the average mccs · kurt · θ−2 value obtained by calculating
from a set of malicious attacked images and acceptable manipulated images.
In this paper, the acceptable manipulations are defined as contrast adjustment,
noise addition, blurring, sharpening, compression and lossy transmission (with
error concealment); the malicious tampering operations are object replacement,
addition or removal. During authentication, if the measure SSM (X, Y ) of an
image is smaller than 0.5 (that is, mccs · kurt · θ−2 < β, the image is identified
as authentic, otherwise it is unauthentic.

Kurtosis. Kurtosis describes the shape of a random variable’s probability dis-
tribution based on the size of the distribution’s tails. It is a statistical measure
used to describe the concentration of data around the mean. A high kurtosis
portrays a distribution with fat tails and a low even distribution, whereas a low
kurtosis portrays a distribution with skinny tails and a distribution concentrated
towards the mean.

Therefore, it could be used to distinguish feature difference distribution of
the malicious manipulations from that of the acceptable manipulations.

Let us partition the spatial locations of the image into neighborhoods, and
let Ni be the i-th neighborhood. That is, Ni is a set of locations that are in
a same neighborhood. For example, by dividing the image into blocks of 8×8,
we have a total of W ·H/64 neighborhoods, and each neighborhood contains 64
locations. Let Di be the total feature distortion in the i-th neighborhood Ni:

Di =
∑
j∈Ni

δj (4)

We can view Di as a sample of a distribution D. The kurt in the Eq. (3) is the
kurtosis of the distribution D. It can be estimated by:

kurt(D) =

N∑
i=1

(Di − µ)4

Num σ4
− 3 (5)

where Num is the total number of all samples used for estimation. µ and σ is
the estimated mean and standard deviation of D, respectively.



Maximum Connected Component Size. Connected component is a set of
points in which every point is connected to all others. Its size is defined as the
total number of points in this set. The maximum connected component size
(mccs) is usually calculated by morphological operators. The isolated points in
the feature difference map are first removed and then broken segments are joined
by morphological dilation. The maximum connected component size (mccs) is
then calculated by using connected components labeling on the feature map
based on 8-connected neighborhood. Details can be found in [15].

Normalizing Factor. Since images may have different number of objects, de-
tails as well as dimensions, normalization is therefore needed. Instead of using
traditional normalization (i.e., the ratios of the number of extracted feature
points to image dimension), we employ a new normalizing factor θ as:

θ =
µ

W · H
(6)

where W and H are the width and height of the image respectively. µ is the
estimated mean of D, same as that in Eq.(5). The normalized factor θ makes
the proposed measure more suitable for natural scene images.

It is worth noting that the two measures mccs and kurt should be combined
together to handle different malicious tampering. Usually tampering results in
three cases in terms of the values of mccs and kurt : (1) the most general case
is that tampered areas are with large maximum connected size and distributed
locally (Fig. 1(b)). In this case, both kurt and mccs are large; (2) small local
object is modified such as a small spot added in face (Fig. 2(a)). In this case,
the mccs is usually very small, but kurt is large; (3) tampered areas are with
large maximum connected size but these areas are evenly distributed in the
whole image (Fig. 2(c)). In this case, the mccs is usually large, but kurt is small.
Therefore, it is necessary for SSM to combine these two measures so that SSM
could detect all these cases of malicious modifications.

3 Application of SSM to Error Resilient Image
Authentication

Image transmission is always affected by the errors due to channel noises, fading,
multi-path transmission and Doppler frequency shift [16] in wireless channel, or
packet loss due to congestion in Internet [17]. Therefore, error resilient image
authentication which is robust to acceptable manipulations and transmission
errors is desirable. Based on the proposed feature distance measure, an error
resilient image authentication scheme is proposed in this section.

The proposed error resilient scheme exploits the proposed measure in a
generic semi-fragile image authentication framework [8] to distinguish images
distorted by transmission errors from maliciously modified ones. The experi-
mental results support that the proposed feature distance measure can improve
the performance of the previous scheme in terms of robustness and sensitivity.



3.1 Feature Extraction for Error Resilient Image Authentication

One basic requirement for selecting feature for content-based image authentica-
tion is that the feature should be sensitive to malicious attacks on the image
content. Edge-based features would be a good choice because usually malicious
tampering will incur the changes on edges. And edge may also be robust to some
distortions. For instances, the results in [18] show that high edge preserving ratios
can be achieved even if there are uncorrectable transmission errors. Therefore,
the remaining issue is to make the edge more robust to the defined acceptable
manipulations. Note that this is main reason why we employ the normalization
by Eq. (6) to suppress those “acceptable” distortions around edges.

In [19], a method based on fuzzy reasoning is proposed to classify each pixel of
a gray-value image into a shaped, textured, or smooth feature point. In this paper
we adopt their fuzzy reasoning based detector because of its good robustness.

3.2 Image Signing

The image signing procedure is outlined in Fig. 3. Binary edge of the original
image is extracted using the fuzzy reasoning based edge detection method [19].
Then, the edge feature is divided into 8×8 blocks, and edge point number in
each block is encoded by error correcting code (ECC) [8]. BCH(7,4,1) is used to
generate one parity check bit (PCB) for ECC codeword (edge point number) of
every 8×8 block. The signature is generated by hashing and encrypting the con-
catenated ECC codewords using a private key. Finally, the PCB bits embedded
into the DCT coefficients of the image. In our implementation, the PCB bits
are embedded into the middle-low frequency DCT coefficients using the same
quantization based watermarking as in [13].

Let the total selected DCT coefficients form a set P. For each coefficient c in
P, it is replaced with cw which is calculated by:

cw =
{

Qround(c/Q), if LSB(round(c/Q)) = w
Q (round(c/Q) + sgn (c − Qround(c/Q))) , else (7)

where w (0 or 1) is the bit to be embedded. Function round(x) returns the
nearest integrate of x, sgn(x) returns the sign of x, and LSB(x) returns the least
significant bit of x. Eq. (7) makes sure that the LSB of the coefficient is the same
as the watermark bit.

Note that embedding procedure should not affect the feature extracted, since
the watermarking procedure would introduce some distortions. In order to ex-
clude the effect of watermarking from feature extraction, a compensation oper-
ator Cw is adopted before feature extraction and watermarking:{

Ic = Cw(I)
Iw = fe(Ic)

(8)

Cw(I) = IDCT {IntQuan (di, 2Q,P)} (9)



where di is the i-th DCT coefficient of I, and IDCT is inverse DCT transform.
fe(I) is the watermarking function, and Iw is the final watermarked image. The
IntQuan(c, P, Q) function is defined as:

IntQuan (c,Q,P) =
{

c, if c /∈ P
Q round(c/Q), else (10)

Cw is designed according to the watermarking algorithm, which uses 2Q to pre-
quantize the DCT coefficients before feature extraction and watermarking. That
is, from Eq. (7), (9) and (10), we can get Cw(Iw) = Cw(I), thus fe(Iw) =
fe(I), i.e., the feature extracted from the original image I is the same as the
one from the watermarked image Iw. This compensation operator ensures that
watermarking does not affect the extracted feature.

3.3 Image Authenticity Verification

The image verification procedure can be viewed as an inverse process of the image
signing procedure, as shown in Fig. 4. Firstly, error concealment is carried out if
transmission errors are detected. The feature of image is extracted using the same
method as used in image signing procedure. Watermarks are then extracted. If
there are no uncorrectable errors in ECC codewords, the authentication is based
on bit-wise comparison between the decrypted hashed feature and the hashed
feature extracted from the image [8]. Otherwise, image authenticity is calculated
by the SSM based on differences between the PCB bits of the re-extracted feature
and the extracted watermark. Finally, if the image is identified as unauthentic,
the attacked areas are then detected.

Error Concealment. Given an image to be verified, the first step is to con-
ceal the errors if some transmission errors are detected. For wavelet-based im-
ages, edge directed filter-based error concealment algorithm proposed in [18]
is adopted. For DCT-based JPEG images, a content-based error concealment
proposed in [20] is used.

It is efficient and advisable to apply error concealment before image authen-
tication since the edge feature of the error-concealed image is much closer to the
original one than that of the damaged image [18], [20]. As a result, the content
authenticity of the error concealed image is higher than that of the damaged
image, which is validated in our experiments of the error resilient image authen-
tication.

Image Content Authenticity. Given an image to be verified, we repeat fea-
ture extraction described in image signing procedure. The corresponding PCB
bits (PCBW ) of all 8×8 blocks (one bit/block) of the image are extracted from
the embedded watermarks. Then the feature set extracted from the image is
combined with the corresponding PCBs to form ECC codewords. If all code-
words are correctable, we concatenate all codewords and cryptographically hash



the result sequence. The final authentication result is then concluded by bit-by-
bit comparison between these two hashed sets. If there are uncorrectable errors
in ECC codewords, image authenticity is calculated based on the proposed dis-
tance measure. The two feature vectors in the proposed measure are PCBW

from watermarks and the recalculated PCB bits (PCBF ) from ECC coding of
the re-extracted image feature set. If the distance measure between PCBW and
PCBF is smaller than 0.5 (SSM (PCBW , PCBF ) <0.5), the image is authentic.
Otherwise, the image is unauthentic.

Feature Aided Attack Location. If the image is verified as unauthentic, the
tampered areas will be detected. Attack location is an important part of the au-
thentication result since the detected attacked areas give the users a clear figure
where the image has been possibly tampered with. The diagram of our feature
aided attack location algorithm is shown in Fig. 5. The attack areas are detected
using information from watermarks and image feature. The difference map be-
tween PCBW and PCBF is calculated, and then morphological operations are
used to compute connected areas, with isolated pixels and small connected areas
removed. After these operations, the difference map is masked with the union
of the watermark and feature. The masking operation can refine the detected
areas by concentrating them on the objects in the tampered image or in the
original image. The areas in the difference map which do not belong to any ob-
ject (defined by edge feature) are removed, which may be a false alarm of some
noises.

It is worth noting that the authentication result of our scheme is friendly to
users. Since human perceptivity treats image as a combination of objects, some
objects may be region of interest (ROI) to users. If the image fails to pass the
authentication, our scheme provides possible attacked areas which concentrate
on objects. If these detected areas are not the user’s ROI, further decision can be
made by the user on a case by case basis. Finally, this scheme can also provide
a degree of authenticity (by SSM measure) to the user which gives the user a
confidence on the trustiness of the image.

4 Experimental Results and Discussions

In this Section, the proposed SSM is evaluated by experiments, compared with
Minkowski metrics and our previous results [13]. In our experiments, JPEG
and JPEG2000 image formats were used. Testing images include Actor, Bar-
bara, Bike, Airplane, Fruits, Girl, Goldhill, Lena, Mandrill, Monarch, Pepper,
Woman, and so on. The dimensions of these images differ among 512×512,
640×512, 640×800, and 720×576. Daubechies 9/7 wavelet filter is used for the
wavelet transformation which is used in JPEG2000 standard [21]. The parame-
ters α and β in Eq.(3) were set to 0.5 and 48.0, respectively.



4.1 Feature Distance Measure Evaluation

The observations present in Section 2, which are the basis of the proposed SSM,
were investigated first in our experiments. Edge detected by [19] was selected
as feature in our evaluations. Fig. 6 shows the histogram of edge difference and
their respective probability density estimates of noisy, error concealed, damaged
and maliciously tampered images. We can find that the distribution of feature
differences between malicious tampered image and the original image have a
much longer tail than that of the error-concealed image. The damaged, error-
concealed and noisy images all have smaller right tails. These results support
our observations that the maliciously tampered image has a different pattern of
feature differences from that of the acceptable manipulations.

Some acceptable distortions and malicious attacks were introduced into the
original images for robustness evaluation. The proposed SSM was compared with
Hamming (Minkowski Metric with r=1 for binary feature) as shown in Fig. 7.
Pratt’s Figure of Merit (FoM ) [22] was also used for comparison, since it is
commonly used at measuring image similarity based on edges, which is defined
as:

FoM =
1

max (NO, NC)

NC∑
i=1

1
1 + λ × di2

(11)

where NC and NO are the number of detected and original edge pixels, respec-
tively. di is the Euclidean distance between the detected edge pixel and the
nearest original edge pixel, and λ is a constant typically set to 0.1. Fig. 7(a)
shows the experimental results of the proposed SSM for image Lena after JPEG
compression, and Fig. 7(b) shows the experimental results for Gaussian noisy
images. These figures show that the Hamming and FoM distances are almost
linear to the compression level or Gaussian noise strength. On the contrary,
there were some sharper changes (such as the circled points in Fig. 7) in SSM
curves which may be good choices for authenticity threshold. As an image can
be considered as points in a continuous space, it is typically difficult to set up a
sharp boundary between authentic and unauthentic images [10]. This intrinsic
fuzziness makes the content-based authentication design challenging and, likely,
ad hoc in most cases [10]. Therefore, the sharper change of authenticity based
on the proposed measure around threshold may lead to a sharper boundary be-
tween the surely authentic and unauthentic images, which is desirable for image
authentication.

Fig. 8 shows the comparison results of different distance measures in terms
of their discernable abilities. In Fig. 8(a), the last three columns are images
maliciously tampered from the original portrait image Lena, by enlarging the
eyes, modifying multiple objects in the image, and adding a small spot on the
face. The others are images from acceptable manipulations including Gaussian
noise introduction, auto contrast adjustment, sharpening, and lossy transmis-
sion (with error concealment). Fig. 8(b) shows results of image Bike with much
stronger edges than image Lena. The last three columns of Fig. 8(b) are images
tampered by deleting the saddle, modifying multiple objects (changing logo at



the left top, modifying the display of the clock at right top, and deleting the
saddle), and adding a small spot in the center of the right circle. Note that the
SSMs were all below 0.5 for acceptable manipulations and all above 0.5 for ma-
liciously attacked images. On the contrary, the Hamming and Figure of Merit
(FoM ) measures of maliciously attacked images were among the range of ac-
ceptable manipulations especially the measures of the attacked image in which
there was a small local object changed (last column). The results show that
the proposed SSM was able to distinguish the malicious manipulations from
acceptable ones, i.e., identify lossy transmission as acceptable, and was sensitive
to malicious manipulations. On the contrary, the Hamming and FoM measures
were not sensitive to small localized object modification. The results indicate
that the proposed SSM is more suitable for content-based image authentication
than Hamming and FoM measures.

4.2 SSM -based Error Resilient Image Authentication Scheme
Evaluation

Robustness to Transmission Errors and other Acceptable Manipula-
tions. The transmission errors in wireless networks were simulated based on the
Rayleigh model [20] which is commonly used for wireless networks. Fig. 9(b) is
an example of wavelet-based images damaged by transmission errors, and Fig.
9(c) is its error-concealed result. Fig. 9(d) is a DCT-based image damaged by
transmission errors, and Fig. 9(e) is its error concealed result. The SSM values
of image Fig. 9(c) and Fig. 9(e) are 0.134 and 0.250, i.e., the error-concealed
images are both authentic.

With the set of images produced, an average peak signal-to-noise ratio (de-
fined by PSNR) of 44.46 dB (Table 1) was obtained which is above the usually
tolerated degradation level of 40 dB [23] and much better than the average
33.45dB in [13]. It is also better than the 42.47 dB obtained by the paper [23].
The quantization table used in these experiments is JPEG recommended quan-
tization table of Q50. These results indicate the embedding procedure did not
introduce visual artifacts in the images.

Table 2 shows the evaluation results of the system robustness of the proposed
error resilient image authentication scheme based on the proposed SSM. PSNR
and SSM measures of the images damaged by transmission errors with differ-
ent bit error rate (BER) 10−4 and 2×10−4. The corresponding PSNR and SSM
of the error-concealed images are also listed in this table. 60% of the damaged
images at BER 10−4 and 100% at BER 2×10−4 in our experiments were veri-
fied as unauthentic. On the contrary, all error-concealed images were verified as
authentic. These results indicate that our proposed scheme could obtain a good
robustness to transmission errors. Note that on the contrary, the authentication
scheme [23] was not robust to transmission errors. These results further confirm
that it is effective and advisable for error concealment to be applied before image
authentication. The reason that the authenticities of the recovered images were
better than those of the damaged images may be the image quality improvement
by using error concealment on the damaged images [18], [20]. For example, the



recovered image had much better objective qualities than the damaged images
(evaluated by PSNR). This quality improvement made features of the error-
concealed images closer to those of the original images than damaged images, so
that the image authenticities (evaluated by SSM ) of the error-concealed images
were much larger than the damaged images.

Our scheme was also tested with other acceptable manipulations such as
image contrast adjustment, histogram equalization, compression and noises ad-
dition. The results are shown in Table 3, with the parameter for each manipula-
tion. The SSM values of these images were all less than 0.5, i.e., all these images
can pass the authentication. These results validate that the proposed scheme is
not only designed to be robust to transmission errors, but also robust to general
acceptable manipulations.

Sensitivity to Malicious Content Tampering. An important aspect of our
SSM -based authentication scheme is that it is sensitive to the malicious content
tampering. For that reason, we tampered the previous watermarked Bike and
Lena images and tested the ability of our system to detect and highlight the
attacked areas. All the attacked images were detected and possible attacked
areas were located. The attack location results are shown in Fig. 10.

These results indicate that the ability of our system to detect tampering is
good even in the presence of multiple tampered areas (Fig. 10(e)), or noises
(Fig. 10(a)), or very small area modified (Fig. 10(c)). Furthermore, the attack
detection result of our scheme is friendly to users. If the image fails to pass the
authentication, our scheme provides detected attacked areas which concentrate
on objects. Further authentication decision can be made by the user with the
aid of attack detection results.

5 Conclusions

A new feature distance measure based on statistical and spatial properties of
the feature differences for content-based image authentication is proposed in
this paper. The use of the typical patterns of feature differences by accept-
able image manipulations and malicious content modifications did help improve
system performance. Many acceptable manipulations which were detected as
malicious modifications in the previous schemes were correctly classified into
authentic images in the scheme based on SSM. The results also indicate that
the statistical and spatial properties of the image feature are helpful and useful
in distinguishing acceptable image manipulations from malicious content mod-
ifications. Moreover, the results would lead to a better understanding of the
role of statistics and spatial properties of feature differences for detecting digital
forgeries. The scheme was further evaluated under transmission errors.

The proposed feature distance measure is quite general and can be used in
many other content-based authentication schemes provided that the features
contain spatial information.



(a)

(b) (c)

(d) (e)
Fig. 1. Discernable patterns of edge feature differences caused by acceptable image

manipulation and malicious modification: (a) original image; (b) tampered image; (c)
feature difference of (b); (d) blurred image (by Gaussian 3×3 filter); (e) feature

difference of (d)



(a) (b)

(c) (d)
Fig. 2. Cases that required both mccs and kurt to work together to successfully

detect malicious modifications: (a) small object tampered (kurt : large; mccs: small);
(b) feature differences of (a); (c) large object tampered with global distortions (kurt :

small; mccs: large); (d) feature differences of (c)

Fig. 3. Signing process of the proposed error resilient image authentication scheme



Fig. 4. Image authentication process of the proposed error resilient image
authentication scheme

Fig. 5. Feature aided attack location process

(a) (b)
Fig. 6. Different patterns of edge difference distribution: (a) histograms of edge

differences; (b) probability density estimation



(a) (b)
Fig. 7. Distance measures comparison: (a) for JPEG compressions (b) for Gaussian

noises

(a) (b)
Fig. 8. Comparison of distinguish ability of different distance measures: only the

proposed measure can successfully distinguish malicious manipulations from
acceptable ones: (a) Results of image Lena; (b) Results of image Bike

Table 1. Comparison of objective quality decrease introduced by watermarking:
PSNR(dB) of watermarked images

PSNR Barbara Bike Airplane Girl Goldhill Lena Mandrill Monarch Pepper Woman

Proposed 44.17 44.40 44.56 44.39 44.32 44.60 44.14 44.75 44.46 44.79

Ref. [13] 32.90 29.91 32.01 34.20 34.07 36.11 32.38 30.43 35.53 36.98

Ref. [23] 42.72 / 43.15 / / / / / / /



(a)

(b) (c)

(d) (e)
Fig. 9. Robustness against transmission errors: (a) original image (b) damaged image
(wavelet based); (c) error concealed result of (b); (d) damaged image (DCT based);

(e) error concealed result of (c)



(a) (b)

(c) (d)

(e) (f)
Fig. 10. Detected possible attack locations which are concentrated on objects in

images: (a) noisy tampered image Lena (0.995); (b) attacked areas detected of (a);
(c) Lena with small spot added (0.569); (d) attacked areas detected of (c); (e)
attacked image Bike (logo modified, time modified, saddle deleted, and circle

copied/pasted) (0.995); (f) attacked areas detected of (e)



Table 2. Authentication performance improvement by error concealment:
PSNR (dB) and SSM of damaged images and error-concealed images

(BER1:10−4; BER2:2×10−4)

Images Actor Bike Chart Flight Fruits Hotel Lake Lena Pepper Woman

Damaged BER1 30.78 31.26 33.95 32.41 33.68 33.87 31.39 33.31 33.07 35.50
PSNR BER2 25.87 25.76 28.51 26.05 27.81 26.71 25.68 30.34 27.74 30.72

Damaged BER1 0.948 0.939 0.707 0.297 0.794 0.365 0.143 0.391 0.729 0.989
SSM BER2 0.812 0.999 0.987 0.951 0.942 0.568 0.883 0.638 0.865 0.955

Recovered BER1 38.03 41.76 41.11 41.03 39.90 42.40 38.54 40.21 41.25 42.96
PSNR BER2 32.06 34.99 34.74 34.06 31.68 33.26 31.64 36.03 33.85 36.84

Recovered BER1 0.158 0.134 0.141 0.035 0.204 0.067 0.057 0.345 0.089 0.329
SSM BER2 0.220 0.099 0.446 0.072 0.406 0.045 0.280 0.059 0.182 0.015

Table 3. Robustness against acceptable image manipulations
Manipulations Histogram

Normalizing
Brightness
Adjustment

Contrast
Adjustment

JPEG
Compression

JPEG2000
Compression

Parameter Auto -40 Auto 10:1 1bpp

SSM 0.159 0.159 0.262 0.017 0.057
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