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ABSTRACT 
Given rich content-based features of multimedia (e.g., visual, text, 
or audio) followed by various detectors (e.g., SVM, Adaboost, 
HMM or GMM, etc), can we find an efficient approach to 
combine these evidences? In the paper, we address this issue by 
proposing an Integrated Statistical Model (ISM) to combine 
diverse evidences extracted from the domain knowledge of 
detectors, the intrinsic structure of modality distribution and inter-
concept association. The ISM provides a unified framework for 
evidence fusion, owning the following unique advantages: 1) the 
intrinsic modes in the modality distribution are discovered and 
modeled by the generative model; 2) each mode is a partial 
description of structure of the modality and the mode 
configuration, i.e. a set of modes, is a new representation of the 
document content; 3) the mode discrimination is automatically 
learned; 4) prior knowledge such as the detector correlation and 
inter-concept relation can be explicitly described and integrated. 
More importantly, an efficient pseudo-EM algorithm is realized 
for training the statistical model. The learning algorithm relaxes 
the computation cost due to the normalized factor and latent 
variables in graphical model. We evaluate the system 
performance on multimedia semantic concept detection with the 
TRECVID 2005 development dataset, in terms of efficiency and 
capacity. Our experimental results demonstrate that the ISM 
fusion outperforms the SVM based discriminative fusion method. 

Categories and Subject Descriptors 
H.3.3 [Information Systems]: INFORMATION STORAGE 
AND RETRIEVAL. 

General Terms 
Algorithms, Management, Theory. 

Keywords 
Semantic concept detection, average precision, evidence fusion, 
model-based fusion. 

1. INTRODUCTION 
Multimedia document contains rich (e.g. information carried in 

multiple channels such as visual, textual and audio) and diverse 
(e.g. visual appearance has a lot of variations for the same 
semantic concept) information. It is far from reaching the right 
features for multimedia indexing, especially for visual indexing 
[5]. Even if the features are rightly chosen, we still face the 
problem of finding suitable machine learning tools for multimedia 
semantic concept detection and information access and retrieval. 
There are so many tools (e.g. parametric or non-parametric 
models, generative or discriminative models, etc.) available to 
address the problem in hand. It is very challenging to find the 
right ones. Thus, in practice, the choice is based on the 
experiments or experiences learned from other researchers. Rich 
and diverse information in multimedia document teaches us that 
no single solution would exist so far. Successful systems in 
TRECVID always extract various features from the visual (e.g. 
color, texture, edge, etc), textual (e.g. tf-idf, name entity, etc.) or 
audio (e.g. Mel Frequency Cepstral Coefficients (MFCC), pitch, 
Fast Fourier Transform (FFT), etc.) signals, and build various 
types of detectors (e.g. Support Vector Machine (SVM), 
AdaBoost, Hidden Markov Model (HMM), Gaussian Mixture 
Model (GMM), etc.)1. Then the outputs of these detectors are 
combined to obtain the final decision. For instance, 110 detectors 
are built based on the features extracted from the visual and 
textual modalities and are combined to improve semantic concept 
detection in [4]. 

Therefore, the evidence combination is a critical step in 
multimedia content classification. For simplicity, we discuss the 
evidence fusion in the context of semantic concept detection in 
the paper. The evidences may be extracted using the detectors 
which are trained on the different visual, textual or audio features 
using the suitable machine learning algorithms or they may be the 
prior knowledge on the feature discrimination power, the 
association strength among the semantic concepts, etc.  

For example, if we need to detect Nc semantic concepts and there 
are Nd types of detectors trained for each concept, the task of the 
fusion model is to efficiently combine the Nc*Nd detector outputs 
to boost the performance of concept detection. Many different 
approaches, i.e. the non-parametric method or the parametric 
method, have been presented to address the issue. 

The non-parametric method, e.g. CombSUM, CombMAX, does not 
need training samples to build a fusion model [10, 14]. It is an ad-
hoc method for easy usage. On the contrary, the parametric 
method needs training samples to estimate the fusion model. It 
may treat the Nc*Nd outputs as a new representation of 
multimedia document. Then the supervised learning algorithms 

                                                                 
1 http://www-nlpir.nist.gov/projects/trecvid/ 
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are exploited, e.g. graphical model [7], SVM [1, 4, 8, 13], MC 
MFoM [16], etc. In TRECVID1 [25], the SVM-based 
discriminative fusion model is the dominant approach.  In practice, 
it may be preferred to cluster the detector outputs into a few 
groups according to some prior knowledge. In this case, the fusion 
will be completed using multiple stages. For example, if we have 
3 detectors built on color histograms in RGB, HSV and LUV 
spaces respectively and 2 detectors built on texture features such 
as Gabor filter and gray-level co-occurrence, it may be better to 
have the former 3 outputs in one group and the others in another 
group. Then the fusion is first carried out in each group and the 
outputs of the 2 groups are further combined. The domain 
knowledge can guide the design of groups. Sometimes, the 
unsupervised learning approaches such as PCA and ICA can be 
employed to discover the groups [17]. Following [17], we use the 
term modality to refer to each group.  

Besides the evidences from the detector outputs and the domain 
knowledge of detectors, another source of evidence is the inter-
concept association, i.e. the performance of detecting one concept 
can be boosted by detecting other concepts. For example, 
detecting the concept outdoor will help detecting the concept 
animal because animal frequently plays in the outdoor. Animal is 
the boosted concept while outdoor is the boosting concept.  Many 
works have been carried out to combine this contextual 
information [7, 9, 11, 20]. 

To use the inter-concept relation in the fusion stage, graphical 
model with various model structures (e.g. restricted Boltzmann 
machine, conditional random field, markov random field, etc.) is 
extensively employed. The power of the contextual evidence 
depends on many issues, e.g. the performance of boosting 
concepts, the association strength between the boosting concept 
and the boosted concept, etc. To select the strong boosting 
concepts, an active context-based concept fusion is proposed in 
[20] and it is further incorporated into the boosted conditional 
random fields in [9]. The experiments on TRECVID dataset 
report obvious performance improvement due to the combination 
of the inter-concept relation. These works empirically show that 
the evidence of the concept associations can enhance the concept 
detection. The issue is that the computation cost is high for the 
graphical model. 

In addition, the existing approaches lack the capacity to unify the 
various types of evidences. For example, in [7, 9, 11, 20], the 
models are designed to fuse the inter-concept association where 
each concept has one detector output. It is an issue whether they 
would work well when each concept has multiple detectors. They 
also ignore the evidence of the correlation among detectors. Other 
works such as [17] utilize the correlation. However, the inter-
concept relation is missed. All the approaches have no capacity to 
discover and incorporate the intrinsic statistical distribution of the 
modality, whose efficiency to improve the combination of 
multiple search engines is demonstrated in [12] through modeling 
the score distribution of the search engine output. In [12], the 
model is an exponential distribution for the non-relevant 
documents and a normal distribution for the relevant documents.  

In the paper, an Integrated Statistical Model (ISM) is presented to 
address the challenging research issue of combining multiple 
evidences extracted from the detector correlation, the modality 
distribution and inter-concept association. The ISM provides a 
unified framework to combine evidences with the following 

unique features: 1) the intrinsic modes in the modality distribution 
are discovered and modeled by the generative model; 2) each 
mode is a partial description of structure in the modality 
distribution while the mode configuration, i.e. a set of modes, can 
be used to represent the document; 3) the mode discrimination is 
automatically learned; 4) the prior knowledge such as the 
modality correlation and inter-concept relation is explicitly 
described and integrated. Further, we develop an efficient pseudo-
EM algorithm for training the statistical model. It relaxes the 
computation cost due to the normalized factor and latent variables 
in the graphical model [7, 9, 11, 20]. We study and evaluate the 
proposed fusion model on the task of semantic concept detection 
using the development set in TRECVID 2005.  
The paper is organized as follows. In the next section, the major 
components of ISM are discussed in detail. Then the pseudo-EM 
algorithm for estimating the ISM parameters is presented in 
Section 3. Experiments and analyses are given in Section 4. 
Finally, concluding remarks are presented in Section 5. 

2. OUTLINE OF ISM FRAMEWORK 
In this section, we will first give a brief overview of the proposed 
ISM framework. The learning algorithm will be further discussed 
in Section 3. Figure 1 depicts the key components of the ISM 
model. X is the detected evidence, i.e. output scores of Nc*Nd 
concept detectors and E is the prior knowledge including the 
correlation in X and the inter-concept association. In the following, 
we introduce each component from the bottom to the top as 
shown in Figure 1. 

 

Figure 1 key components of the Integrated Statistical Model 

2.1 Predict Latent Modes 
Firstly we introduce a few terms which will be used throughout 
the paper in the context of evidence combination. 

Modality: Assuming that a set of detectors are built for the 
concept detection. The output value of the detector is used to 
determine whether the concept is present or absent. Usually the 
output is random and its value is a real number. We refer to the 
modality as the random variable as well as the corresponding 
detector. Sometimes we concatenate the output values from some 
detectors into a vector for decision. In this scenario the modality 
refers to the random vector as well as the corresponding vectors. 
We use modality value for a real value of random variable.  
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Modality distribution: It refers to the statistical distribution of 
modality values.  

Mode: The modality may contain rich structures, each of which 
may be described by some parametric statistical distributions. The 
mode refers to one partial structure as well as its corresponding 
parametric distribution. For example, the mode here is modeled 
by a single Gaussian distribution with the mean and covariance 
and the modality with the 2-mixture Gaussian components 
consists of 2 modes.  

Mode configuration: It is a vector whose dimension equals to the 
number of modalities. Each element in the vector is the most 
representative mode identity for the observed modality value.  

The modality distribution contains information that can improve 
the ranking performance. It is studied in [12], where the modality 
distribution is modeled by two component models, one is 
Gaussian component for relevant documents and the other is 
Poisson component for irrelevant documents. Then the documents 
are rescored using the learned models. Rather than explicitly 
modeling the modality distribution as in [12], we model the 
modes in the paper. All modes work together to render an 
approximate image of the corresponding modality. The mode 
models are unknown and mode configuration is hidden. To learn 
the mode models and mode configuration, the generative and 
discriminative approaches are employed. Not limited to the 
Gaussian distribution for mode models, other generative models 
can also be used. However, it is not studied in the paper.  

When the mode models are available, the observed modality 
values are mapped to its corresponding mode configuration. The 
mode configuration is treated as a symbolic representation of the 
modality values. The further decision can be carried out on it. It is 
much different from the traditional fusion models, where only the 
original modality value is used while the deep structure of 
modality distribution is ignored. In the next section, we will use a 
toy example to demonstrate the power of the mode models to 
classification and ranking. 

2.1.1 Toy example 
Figure 2 illustrates a toy problem for 2 categories, i.e. positive 
and negative classes. 6 samples are used: 4 negative samples and 
2 positive samples. One detector is used to score the 6 samples. 
The corresponding output scores are shown in the figure: circle 
points for negative samples and plus points for positive samples. 
The positive scores are located in the middle of the negative 
scores. With any threshold, there is always classification error 
occurred. If the threshold is set to zero, the error rate is 0.33 with 
the 2 rightmost negative samples, i.e. 0.6 and 0.8, wrongly 
classified.  

However, perfectly correct classification could be obtained if the 
mode models were known. In this example, one mode is enough 
for characterizing the modality distribution. The curve of the 
Gaussian mode model (mean: 0.23, standard derivation: 0.42) is 
plotted in the figure (blue curve). Measured by the Euclidean 
distance, the distances between the raw scores of samples and the 
mean of mode model are 0.001 and 0.034 for the 2 positive 
samples, respectively. Correspondingly, they are 0.40, 0.19, 0.13 
and 0.32 for the 4 negative samples (from the left to the right), 
respectively. Now the 6 samples can be correctly classified if the 

threshold (such as 0.035) is used. Using the new scores, the 6 
samples are correctly ranked.  

This example clearly demonstrates the usefulness of the modality 
modes, despite that it is just a toy problem. With the statistics of 
the modes, the raw modality values will be transformed into a 
new space where good ranking would be observed. 

 

Figure 2 a toy example to illustrate the mode importance of 
the modality (Circle points: negative samples. Plus points: 
positive samples. Blue curve: fitting Gaussian curve from the 
samples) 

2.1.2 Predict modality modes  
To predict the mode identity, a set of mode models are built. Each 
modality will have K modes to characterize its distribution. Like 
the toy example above, a single Gaussian distribution with the 
mean and variance is used for modeling the mode. The k-th mode 
is denoted as ( ) ( ),k k kf x N x μ= ∑ . Here x is the modality value. 

The predicted probability to assign the k-th mode to x is 
calculated as, 

 ( ) ( )
( )

kf x
P k x

Z x

η

=                                   (1) 

where ( ) ( )1

K
ii

Z x f x η

=
= ∑ and η  is a smoothing constant. Then 

the mode with the maximal probability, ( )h x , is assigned to x as 

( )
[ ]

( )
1,

arg max
k K

h x P k x
∈

=                                     (2). 

However, the question is that the modes are unknown and they 
are hidden in the modality samples. There is no prior knowledge 
of the correct assignments between the modality value and the 
mode identity. Thus, the supervised learning approaches are 
infeasible. Fortunately, our aim is to use the mode as the 
intermediate representation rather than to discover the meaningful 
modality modes. Therefore, the unsupervised learning algorithms, 
e.g. the k-means clustering, are employed. In the ISM fusion 
model, the k-means clustering algorithm is used to initialize the 
mode models. Then the mode models are updated in the E-step in 
the iterative pseudo-EM algorithm developed for learning ISM 
model (detailed in Section 3). 

2.2 Co-occurrence Mode Feature Extraction 
When the mode models of all modalities are available, the mode 
configuration can be found according to Eq. (2). Assuming that 
there are M modalities each having K modes, the modality values 
are [ ]{ }, 1,iX x i M= ∈ and the corresponding mode configuration 



is [ ]{ }, 1,iH h i M= ∈ , where ih is the mode identity of ix . This 

configuration gives a symbolic description of the document. Each 
mode will function as a word likewise in a text document. After 
mapping the modality value using the mode models, a document 
represented in the continuous feature space is tokenized using a 
set of modes. Thus, the document-level features such as tf-idf, 
unigram or bigram become available like in text categorization 
and text information retrieval [22]. In this paper, the unigram 
feature, similar to that adopted in text categorization [21], is 
extracted. It is defined as, 

( )
( )
( ),

,

# ,
,   

, ,
0,                 

q c
q c

q I
w if c y

f I y Z q c
otherwise

⎧
⋅ =⎪= ⎨

⎪
⎩

                        (3) 

Here q is one mode identity of M*N*K modality modes (N: the 
number of concepts). I is a document belonging to the concept y. 

,q cw is a weight measuring the association degree between the 

mode q and the concept c (to be detailed in Section 2.4). It comes 
from the prior knowledge of the inter-concept association. ( ),q cf ⋅  

is a feature extractor designed for the mode q and the concept c. 
( ),Z q c is a normalization factor so that the sum of features is 

equal to 1, i.e. 

( ),,
, 1q cq c

f I y =∑                                (4) 

2.3 Predict Concept Probability 
From the co-occurrence mode features (see Eq. (3)), we can train 
the concept models to predict the probability assigned to a 
concept. The maximum entropy (ME) approach is applied to 
model the concepts in the paper [2]. When the ME models have 
been trained, they are used to predict the probability assigned to 
the concept c according to the observed evidence X. It is 
calculated as, 

( ) ( ) ( )( ), ,,

1, exp ,
, q c q cq c

P c I f I c
Z I

θ λ
θ

= ⋅∑   (5) 

where ( ) ( )( ), ,,
, exp ,q c q cc q c

Z I f I cθ λ= ⋅∑ ∑ is the normalization 

factor and { },q cθ λ=  is the parameter set of concept models. 

,q cλ is a weight coefficient of the feature extracted in Eq. (3). Eq. 

(5) is concept dependent. Hereafter, we use the term concept 
model to refer to it. In the context of classification, the document 
is assigned to the concept *c which has the maximal probability 
according to Eq. (5). 

[ ]
( )*

1,
arg max ,

cc N
c P c I θ

∈
=                                   (6) 

The model parameters θ can be trained through maximizing the 
likelihood on the training samples. Efficient algorithms such as 
generalized iterative scaling (GIS) or improved iterative scaling 
(IIS) are developed for estimating the model parameters. 

2.4 Prior Knowledge 
The prior knowledge includes the relations among the detectors 
and the association between the semantic concepts. The former 

helps to cluster the detectors into groups to obtain the modalities. 
In the paper, a group or modality only contains the detectors built 
for one concept. For example, if a concept, saying A, has a set of 
detectors {A}. Similarly, the concept B has a set of detectors {B}. 
Grouping the detectors is only carried out in {A} or {B} separately. 
And it is not allowed to cluster the element in {A} and the 
elements in {B} into one group. This constraint keeps each 
modality to have one unique concept identity, which is shared by 
all its modes. It facilitates the definition of the weights between 
the modality mode and the concept, i.e.

,q cw , in Eq. (3). The 

weight
,q cw  is set to be equal to the association strength between 

the concept identity assigned to q and the concept c.  

The pair-wise association strength is adopted in the paper. The 
degree of association strength is estimated from the training 
samples. For example, the association strength,

, 'c cw , between the 

concept c and another concept c’ is calculated as, 

( )
( ), '

# , '
#c c

c c
w

c
=                             (7) 

where #(c, c’) is the number of documents relevant to both c and 
c’ in the training set and #(c) is the number of documents only 
relevant to c. Eq. (7) is the measurement of conditional 
probability of c’ on c. Higher the value is, stronger the association 
between c’ and c is. The strength of c with itself is defined to be 1. 
For example, the association strength between the concept 
airplane and outdoor is 0.84 and 0.67 between the airplane and 
sky. But it is zero between airplane and animal or building 
(estimated from the training set based on TRECVID’05 
development set. See section 4 for details.). 

2.5 Discussions 
So far, the key components have been explained. We would like 
to stress that the ISM unifies these components rather than 
sequentially combining them. In the above, the mode 
configuration is deterministic for simplifying the discussion. This 
induces a simple bottom-up structure. Once the mode models are 
learned, they are not affected by the concept models estimated in 
the component predict concept probability. It is not optimal. The 
good one is to integrate the bottom-up and the top-down methods, 
i.e. firstly, the mode models (Eq. (1)) are estimated from the 
observed modality values as well as the concept model parameters 
in Eq. (5) in the bottom-up manner; secondly, the learned models 
are used to predict the concept probability, which are further 
feedback to the bottom so that the mode models are updated using 
the top-down manner. These procedures make it impossible to 
learn the ISM model using the traditional algorithms. In the next 
section, we will present an efficient learning algorithm to train the 
ISM and to use it to infer the concept identity assigned to the 
document. 

3. LEARNING AND INFERENCE 
We assume that there are M modalities according to the domain 
knowledge of detectors, denoted by [ ]{ }, 1,iX x i M= ∈ . Each 

modality gets the values in the multidimensional space. 
Correspondingly, the dimensions for M modalities are denoted 
as [ ]{ }, 1,iD d i M= ∈ . 

id is the number of detectors assigned to 



the i-th modality, i.e. the dimension of the i-th modality.  Thus, a 
document I is represented in the M modality space by a set of 
vectors, say ( )1 2, , , MI x x x= L . Sometimes a few modalities are 

missed due to many reasons, e.g. there are no detector outputs for 
these modalities or the detectors are not used. In this case, these 
modalities are skipped in learning and inference. To learn the ISM 
for detecting the concept C, a training set, ( ) { }{ }, , 1,0S I y y= ∈ , 

is given. y is the annotation for the document I, which is 1 if I is 
relevant to C ( i.e. the positive class) and 0 (i.e. the negative class) 
otherwise. The model parameters to be estimated include 1) the 
mean and covariance (diagonal here) of the mode 
models, { },

q q

m mφ μ= ∑ , with 
q

mμ   and 
q

m∑  being the parameters 

for the mode q of the modality m and 2) the mode weights, i.e. 

{ },q y

mθ λ= , 
,q y

mλ  for the mode q of the modality m and class y.  

3.1 Objective Function 
In the ISM, there is a variable ( )1 2, , , MH h h h= L to describe the 

mapping between the observed modality values and the mode 
identities. If it is deterministic, learning is easy. However, it is 
hidden and random. In the next, we will derive an objective 
function for efficient optimization.  

Firstly, we see the calculation of log-likelihood to predict the 
class y, given the ISM. It is calculated as,  

 ( )( ) ( )log , , log , , ,
H

P y I P y H Iφ θ φ θ= ∑   (8) 

It is the sum over all possible mode configurations H.  

For M modalities each having K modes, there will be MK  
configurations. It is impossible to compute Eq. (8) in practice. 
Even if it were possible, there would be some other challenges to 
find a computable model for the joint distribution of the class and 
the hidden variables, i.e. ( ), , ,P y H I φ θ . Here we seek an 

approximate computational model to solve the problem.  

According to the Bayesian rule and Jensen’s inequality, we can 
factorize the joint distribution in Eq. (8) and find its lower bound,  

( )( ) ( ) ( )
( ) ( )( )

log , , log , , , ,

                        , log ,
H

H

P y I P H I P y H

P H I P y H

φ θ φ θ φ θ

φ θ

=

≥

∑
∑

     (9) 

The sum in the second line in Eq. (9) is the lower bound of Eq. (8) 
(note that ( ), ,P H I φ θ is independent of θ  and ( ), ,P y H φ θ  is 

independent of φ ). Rather than computing Eq. (8), we use its 
lower-bound to approximate it, i.e,  

( )( ) ( ) ( )( )log , , , log ,
H

P y I P H I P y Hφ θ φ θ≈∑   (10) 

The first term on the right hand side (RHS) is the predicted 
probability of one mode configuration given the observed 
modality features and the mode models. The second term explains 
how much probability the class y can be predicted from a fixed 
configuration given the concept models.  

With the assumption that the modalities occur independently, the 
first term on the RHS in Eq. (10) is factorized to be, 

( ) ( ), ,ii
P H I P h xφ φ=∏            (11) 

where ( ),i iP h x φ  is the probability assigned to the mode i by the 

mode predictors. It is calculated from Eq. (1). 

Substituting Eq. (5) into Eq. (10), the overall likelihood in the 
training set S is,  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

, ,, ,

, , , ,

         , , ,

            , log ,

I y

q c q cI y H q c

I H

S P I y P y I

P I y P H I f H y

P I P H I Z H

φ θ φ θ

φ λ

φ θ

Γ =

=

−

∑
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∑ ∑

%

%

%

 (12) 

where ( ),P I y% and ( )P I%  are the empirical distributions in the 

training set. 

Eq. (12) is still difficult for optimization due to the nonlinear term, 
( )log ,Z I θ . We further approximate it using its upper bound, i.e., 

( ) ( )log , 1 ,Z H Z Hθ θ− ≥ −   (13) 

and,                 

( ) ( ) ( ),
,,

,
, expq c

q cy q c

f H y
Z H f

f
θ λ− ≥ − ⋅∑ ∑     (14) 

where ( ),,
,q cq c

f f H y=∑ . It is a constant and is equal to 1 in 

the paper (see Eq. (4)). 

Substituting Eqs. (13-14) into Eq. (12), we can obtain the lower 
bound of Eq. (12), i.e., 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,, ,

,
,,

, , , ,

,
1 , exp

low q c q cI y H q c

q c
q cI H y q c

S P I y P H I f H y

f H y
P I P H I f

f

φ θ φ λ

φ λ

Γ =

+ − ⋅

∑ ∑ ∑

∑ ∑ ∑ ∑

%

%

 (15) 

In the equation, ( ),P H I φ is factorized as in Eq. (11), 

( ), ,q cf H y is a linear function that is calculated through simply 

counting the number of occurrences of the mode in the document, 
and ( ),exp q c fλ ⋅  only depends on one term. Thus, it can be 

efficiently optimized using the following pseudo-EM algorithm. 
This lower-bound function is the objective function for learning 
the ISM. 

3.2 Pseudo-EM Algorithm 
The ISM parameters are solved through maximizing the objective 
function of Eq. (15). Since the mode model parameters φ  and 
concept model parameters θ are intertwined, we seek an iterative 
algorithm, i.e. the pseudo-EM algorithm, to find the solution. In 
the M-step, the mode models are fixed so that the concept 
models,θ , are found for maximizing Eq. (15). By allowing the 
gradients of the objective function over θ  to be zero, we will find 
that θ  has a closed solution (see Eqs. 16 (a-c)). In the E-step, θ  
is fixed so that φ  is solved by maximizing Eq. (15). However, 
φ is not analytic and the gradient descent algorithm is applied to 
find a local solution (see Eq. (17)).  



Figure 3 Pseudo-EM algorithm to estimate the ISM  

In the M-step, the concept model parameters,θ , are calculated as, 

( ) ( ) ( )
( ),

,
log

m
qm I c

q y m
qI

P I P c I o c y
P I o

δ
λ = ∑ ∑

∑
% %

%
      (16a) 

where [1, ]m M∈ , [1, ]q K∈ , { }1,0y∈ , 

 ( ),m mm
q

I

P h q x
o

Z
φ=

=                                    (16b) 

and, 

,
m

I qq m
Z o=∑                                                 (16c) 

( ),c yδ  is an indicator function, which is 1 if c is equal to y and 0 

otherwise. 
In the E-step, φ  is found using the gradient descent algorithm, 

( )
1

,low
t t

Sδ φ θ
φ φ α

δφ+

Γ
= +                       (17) 

where 
tφ is the estimate of φ at the t-th iteration and α is a 

constant to control the learning rate. For a specific mode model, it 
is easy to deduce their particular gradient functions. Thus, the 
details are skipped here. Note that the variances are updated in the 
log-domain to avoid overflow.  

3.3  Ranking with ISM 
Once the ISM is learned, we can use it for classification or 
ranking. Thus, we need to calculate the log-likelihood in Eq. (8). 
Again its lower-bound is used for approximation. The 
approximated log-likelihood, Ly, for the class y is computed as,  

 *  
c

T T
y y c

L O O= Λ ⋅ − Λ ⋅∑             (18a) 

where, 

( )1 1
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( )1 1
1 1 1, , , , , , , , , ,

Tm m M M
K K KO o o o o o o= L L L L L          (18e)  

The computation is trivial. When the likelihood is known for all 
classes, the document will be assigned to the class having the 
maximal value.  

To use the ISM for ranking, the likelihood ratio or the log-
likelihood difference between the positive class and the negative 
class is used. The log-likelihood difference is calculated as, 

1 0R L L= −                             (19). 

The documents are ranked according to the decreasing score R. 
Higher the value R is, higher the rank is assigned to the 
corresponding document. 

4. RESULTS AND ANALYSES 
We evaluate the presented fusion model on the task of semantic 
concept detection using the development dataset in TRECVID 
2005. The dataset has 137 MPEG news videos. We randomly split 
the videos into three sets, i.e. 70% (96 videos, ~30,000 shots) for 
training, 15% (20 videos, ~7,000 shots) for validation, and 15% 
(21 videos, ~6,700 shots) for evaluation. 39 semantic concepts, 
officially used in TRECVID, are listed in Table 1.  

Table 1 Semantic concepts in TRECVID’05 

ID Concept ID Concept ID Concept 
1 Airplane 14 Explosion_Fire 27 Police_Security 
2 Animal 15 Face 28 Prisoner 
3 Boat_Ship 16 Flag-US 29 Road 
4 Building 17 Government-Leader 30 Sky 
5 Bus 18 Maps 31 Snow 
6 Car 19 Meeting 32 Sports 
7 Charts 20 Military 33 Studio 
8 Computer_TV-

screen 
21 Mountain 34 Truck 

9 Corporate-Leader 22 Natural-Disaster r 35 Urban 
10 Court 23 Office 36 Vegetation 
11 Crowd 24 Outdoor 37 Walking_Running 
12 Desert 25 People-Marching 38 Waterscape_Waterfront
13 Entertainment 26 Person 39 Weather 
 

The features used to build the concept detectors are shown below: 

 Global color correlogram (GCC) in HSV space: 324-
dimension. 

 Co-occurrence texture extracted from global gray-level 
co-occurrence matrix (GLCM): 64-dimension. 

 3-D global color histogram in HSV (HSV): 162-dimension. 
 3-D global color histogram in RGB (RGB): 125-dimension. 
 3-D global color histogram in LAB (LAB): 125-dimension. 

 
For each type of features, one SVM classifier (SVM) [24] or one 
linear discriminative function (LDF) classifier is trained. LDF is 
trained using the ROC optimization algorithm [23]. Table 2 lists 
the details of 8 classifiers, i.e. the identity number of a classifier 
(Column ID), feature type (Column Feature) and classifier type 
(Column Classifier). For each concept, these 8 classifiers are 
trained. In total there are 312 detector scores available for fusion.  

The performance metric of the concept detection is the average 
precision (AP) at the top-2000 retrieved shots and the system 
performance is measured by the mean average precision (MAP) 
over 39 concepts. This is the official NIST evaluation metric. 

 

1. Initialization 
a) k-means clustering for initializing modality mode 

models φ . 
b) θ  is set to zero. 

2. M-step: Calculate concept models θ  whenφ is fixed. 
3. E-step: Update mode models φ  using the gradient 

descent algorithm when θ  is fixed. 
4. Stop until the predefined criterion reaches, i.e. the 

maximal iterative number or the relative increment of 
objective function is less than the threshold. Otherwise, 
go to (2).  



Table 2 Detailed description of classifiers 

ID Feature Classifier ID Feature Classifier
1 GCC SVM 5 GLCM SVM 
2 HSV SVM 6 GCC LDF 
3 LAB SVM 7 HSV LDF 
4 RGB SVM 8 GLCM LDF 
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Figure 4 Performance comparison between the ISM and the 
benchmark system on the evaluation set (X-axis: the concept 
ID. Y-Axis: the AP value. Red bar: system ISM1. White bar: 
system SVM1.) 

4.1 Comparison with SVM 
The benchmark system is based on the SVM discriminative model 
fusion. It has been demonstrated successful in TRECVID. In the 
first experiment, we build the benchmark system, SVM1, by only 
combining the concept-specific classifiers, i.e. 8 classifiers, for 
detecting a particular concept, and do not consider the effects of 
other concepts. We carefully tune the SVM configuration, i.e. the 
kernel type and parameters of the kernel, for each concept on the 
validation set. Then the configuration having the highest AP value 
on the validation set is used to train the final SVM model and the 
learned SVM fusion model is evaluated on the evaluation set.  

Correspondingly, we also train an ISM-based system, ISM1, 
where each classifier is treated as one modality. The ISM is tuned 
as follows: first we train the ISM using 3 difference mode 
numbers, i.e. 2, 4 and 8, for each modality and 10 iterations to 
select the mode number having the highest AP value on the 
validation set. Then the ISM with the selected mode number is 
trained in 30 iterations. Each iteration generates an ISM model, 
from which the model having the highest AP value on the 
validation set is chosen for testing on the evaluation set. All other 
constant parameters, e.g. η ,α , in the ISM learning algorithm are 
empirically set based on one concept. Then they are used for all 
other concepts. These experiment results are shown in Figure 4.  

The MAP value of ISM fusion is 0.239 over 39 concepts on the 
evaluation set. Comparing with 0.223, the MAP value of the 
SVM-based fusion, we have obtained a relative improvement of 
7.2%. The ISM system outperforms the SVM system among 27 
out of 39 concepts. Both systems are better than the performance 
of the best individual detector. In our experiment, the best 
individual detector is observed for the SVM system trained on the 
HSV feature. Its MAP value is 0.201. 

4.2 Effect of Inter-concept Association 
The second experiment evaluates the effect of the inter-concept 
association. The association strength between the concepts is 
estimated from the training samples and calculated according to 
Eq. (7). The 312 classifier outputs are used, each detector being 
treated as one modality. As comparison, the benchmark system is 
still the SVM-based fusion model trained on a 312-dimensional 
feature vector. Both systems are tuned using the same way to the 
above experiment. The two systems are denoted as SVM2 and 
ISM2, respectively. Figure 5 illustrates the AP values for all 
concepts. 
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Figure 5 Effect of inter-concept association on the 
performance for the ISM and SVM systems on the evaluation 
set (X-axis: the concept ID. Y-Axis: the AP value. Red bar: 
ISM2 system. White bar: SVM2 system.) 

The MAP value of the SVM system, SVM2, on 39 concepts is 
only 0.204, which is worse than the SVM1 system with the MAP 
value 0.223. In contrast, the ISM system, ISM2, obtains 5.4% 
relative improvement of the MAP value when compared with the 
ISM1 system. Its MAP value reaches 0.252. The further analysis 
on each concept reveals that incorporating the inter-concept 
association has indeed enhanced the detection performance for 26 
out of 39 concepts. 
4.3 Effect of Grouping Detectors 
The above experiments treat each detector as one modality. Now 
we will study the effect of grouping some detectors into one 
modality. Here only the results on ISM are reported. We base on 
the ISM2 system and group some detectors into one modality. For 
simplicity, we will only study one grouping method, i.e. grouping 
8 detectors from the same concept into one modality. Thus there 
are 39 modalities to be used to train the third ISM system, ISM3. 
The comparison of AP values between the ISM3 system and the 
ISM2 system is depicted in Figure 6. The ISM3 system has the 
MAP value 0.236. It is worse than the ISM2 system with the MAP 
value 0.252. It suggests that this way of grouping detectors does 
not improve system performance. Among 39 concepts, the ISM3 
system only has 12 concepts which perform better than the ISM2. 
For some concepts, grouping greatly deteriorates the ranking 
performance, e.g. the concept court (ID=10) whose AP value is 
reduced to 0.064 from 0.244. Perhaps there are other grouping 
schemes that may perform better, which may not be easy to 
identify. The knowledge of detector correlation does not seem to 
be as powerful as that of the inter-concept association. 
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Figure 6 Effect of grouping detectors on the performance on 
the evaluation set for the ISM systems (X-axis: the concept ID. 
Y-Axis: the AP value. Red bar: ISM2 system. White bar: 
ISM3 system.) 

4.4 Analysis of Modality Distribution 
As discussed in Section 2, each modality has its distinct 
distribution characterized by a set of mode models in the ISM.  In 
the section, we study how the learned mode models fit the 
empirical estimation of the modality distribution from the training 
samples, and also empirically analyze and visualize the relation 
between the modes and the classes. The experiments of the ISM1 
system are chosen for illustration, where 8 modalities are used 
and each classifier is treated as one modality (see Table 2 for the 
IDs of the classifiers or modalities). Due to the limited space, we 
only select 2 modalities, i.e. Modality 1 (GCC feature based SVM) 
and Modality 6 (GCC feature based LDF) for the concept 
airplane. Its Modality has 2 modes in the ISM1 system. 

First, we compare the empirical histogram of modality values 
estimated from the training samples with the predicted histogram 
by the mode models. They are shown in Figure 7 for the Modality 
1 and Figure 8 for the Modality 6. It is found that the prediction 
performs better for the modality 6, i.e., the LDF output, than the 
Modality 1, i.e. SVM output. It may be that the SVM score has a 
much smaller variance than the LDF. In the future, we will seek 
other generative models to fit the different modality distribution. 
In addition, from Figure 7 and Figure 8, we observe that there is 
an obvious relation between the empirical histogram and the 
mode model. The two mode models respectively fit into two 
different kinds of empirical histograms. 

To build a link between the modes and the classes, we draw the 
empirical histograms of the modality values for the positive and 
negative class separately and depict them with the predicted 
histograms by the two mode models. The curves are illustrated in 
Figure 9 for Modality 1 and Figure 10 for Modality 6. Obviously, 
each mode can be highly correlated with one class. For example, 
in Figure 9, Mode 2 fits well with the negative class while Mode 
1 fits with the positive class. The similar case is found in Figure 
10. It means that for the Modality 1, its Mode 1 is discriminative 
for the positive class while the Mode 2 is discriminative for the 
negative class. Thus, the former should have higher weight for the 
positive class than that for the negative. The property is 
exemplified in Figure 11 through analyzing the mode weights. 
Similarly, we can draw conclusions for other modality modes.  
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Figure 7 Comparison between the empirical histogram (Blue 
curve marked with Empirical) and predicted histogram (Red 
curve marked with Predicted) by the mode models on the 
training set (Concept: airplane. Modality: 1. X-axis: the 
modality values. Y-axis: the probability of samples whose 
modality values are in the interval.) 
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Figure 8 Comparison between the empirical histogram (Blue 
curve marked with Empirical) and predicted histogram (Red 
curve marked with Predicted) by the mode models on the 
training set (Concept: airplane. Modality: 6. X-axis: the 
modality values. Y-axis: the probability of samples whose 
modality values are in the interval.) 
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Figure 9 Illustration of empirical histograms for the positive 
and negative classes and predicted histograms by the mode 
models, respectively, on the training set (Concept: airplane. 



Modality: 1. X-axis: the modality values. Y-axis: the 
probability of samples whose modality values are in the 
interval. Empirical_P: the empirical histogram of the positive 
class. Empirical_N: the empirical histogram of the negative 
class. Mode_1: the histogram predicted by the Mode 1. 
Mode_2: the histogram predicted by the Mode 2.) 
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Figure 10 Illustration of empirical histograms for the positive 
and negative classes and predicted histograms by the mode 
models, respectively, on the training set (Concept: airplane. 
Modality: 6. X-axis: the modality values. Y-axis: the 
probability of samples whose modality values are in the 
interval. Empirical_P: the empirical histogram of the positive 
class. Empirical_N: the empirical histogram of the negative 
class. Mode_1: the histogram predicted by the Mode 1. 
Mode_2: the histogram predicted by the Mode 2.) 

4.5 Analysis of Mode Weights 
Now we analyze the learned weights in the concept model of Eq. 
(5). These weights measure the contribution of the modes to the 
concept. If its absolute value is high, the mode should be 
important and discriminative for the concept. Otherwise, the mode 
contribution to predict the concept is small. Here two concepts, 
airplane and flag-us, are selected as examples. The ISM models 
used in the ISM1 are chosen for illustration. The weights are 
plotted in Figure 11 for airplane and Figure 12 for flag-us, 
respectively. In the selected ISM models, each modality has 2 
modes. Thus there are 16 weights. In the mode index in the 2 
figures, Mode 1 and 2 belong to one modality. Similarly, Mode 3 
and 4 are in another modality. The same rule is applied for others 
modes. 

From the two figures, the different patterns of mode weights are 
observed for the two classes. For the two modes in one modality, 
it is often seen that one mode has a high weight for the positive 
class while another has a high weight for the negative class. It 
implies that in each modality, some modes will dominate in the 
positive class while others dominate in the negative class. 
However, it is also found that the mode weights in a modality 
may be almost equal. For the concept airplane (see Figure 11), 
the weights of Mode 9 are zeros for both the negative and positive 
classes and are very close for Mode 10. Similarly, for the concept 
flag-us (see Figure 12), the weights of Mode 9 and 10 are also 

close to each other for both classes. That implies that the two 
modes have fewer discriminative information for prediction and 
the corresponding modality may have lower capacity to 
distinguish the positive class from the negative. 

We re-examine the corresponding detector performance of the 
modality and find that it is the SVM classifier using the GLCM 
feature. The AP value is 0.0015 for airplane. It performs worst in 
all 8 detectors for the concept. For flag-us, its AP value is 0.033 
ranked at the middle in all 8 detectors. The similar observation is 
found for other concepts. These findings may be used to predict 
and select the discriminative detectors for fusion.  
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Figure 11 Learned mode weights for the positive and the 
negative classes (Concept: airplane. X-axis: the mode ID. Y-
axis: the weight coefficient. Red bar: negative class. White bar: 
positive class.) 
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Figure 12 Learned mode weights for the positive and the 
negative classes (Concept: Flag-US. X-axis: the mode ID. Y-
axis: the weight coefficient. Red bar: negative class. White bar: 
positive class.) 

5. CONCLUSION 
In the paper, a framework, i.e. Integrated Statistical Model (ISM), 
is presented for combining rich evidences extracted from the 
domain knowledge of detectors, the intrinsic structure of modality 
distribution and inter-concept association. The ISM provides a 
unified framework for evidence fusion. Its efficiency and capacity 
are evaluated on semantic concept detection using the 
development dataset of TRECVID 2005. We compare the ISM 
fusion with the SVM-based discriminative fusion. Significant 
improvement is obtained. Through analyzing the histogram of 
modality values and the learned mode weights, we find that the 



modes characterize the structure of the modality distribution and 
they have different power to discriminate the positive class from 
the negative. However, we also find that the predicted histogram 
by the learned mode models does not fit well for some modalities. 
In future, we will exploit other generative models rather than the 
Gaussian distribution and study their efficiency.  
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