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Abstract 
 

Browsing a digital video library can be very tedious 

especially with an ever expanding collection of 

multimedia material. We present a novel framework 

for extracting sub-window shots from MPEG encoded 

news video with the expectation that this will be 

another tool that can be used by retrieval systems. 

Sub-windows shots are also useful for tying in relevant 

material from multiple video sources. The system 

makes use of Macroblock parameters to extract visual 

features, which are then combined to identify possible 

sub-windows in individual frames. The identified sub-

widows are then filtered by a non-linear Spatial-

Temporal filter to produce sub-window shots. By 

working only on compressed domain information, this 

system avoids full frame decoding of MPEG sequences 

and hence achieves high speeds of up to 11 times real 

time.  

 

 

1. Introduction 
 

With the advent of cheaper and faster processing 

power and storage, there has been a wide-spread 

proliferation of digital multimedia material, including 

digital video. This has unfortunately meant that 

humans are increasingly being overwhelmed by digital 

content, and there is a need to be able to get relevant 

information quickly. 

Most digital video retrieval systems use shots as the 

basic unit in analyzing a video for browsing [1,2]. To 

this end, much work has already been reported in the 

literature for shot boundary detection. Shot analysis 

has been done in both the uncompressed domain and 

on MPEG compressed videos [3]. More recent work 

have focused on MPEG videos since they are very 

wide-spread and lend themselves easily to fast shot 

analysis. Parameters such as coding bit-rate [4], ratio 

of forward/backward references in B-frames [4-10], 

number of Intra-coded MacroBlocks (MBs) in P-

frames [9] can be analyzed for shot boundaries. In 

addition, statistics such as Discrete-Cosine-Transform 

(DCT) DC variances [5,9,10] and DCT DC images [3] 

have also been used. 

However, there has been no work reported on the 

detection of sub-window shots. In this paper, we 

define a sub-window shot as a rectangular area of 

interest that presents visually distinct material from its 

surroundings and is semantically independent from the 

rest of the frame. This is widely referred to as a 

“picture-in-picture” effect. Such shots frequently 

appear in news programs where the news anchor is 

either introducing another scene or presenting a field 

correspondent. Figure 1 shows an example of such a 

sub-window shot. 

 

 
Figure 1. An example of a sub-window shot 

 

Since such sub-windows may provide extra 

segmentation within the same news scene, it would be 

useful to include them for the purpose of news story 

segmentation [19]. In addition, it allows for more 

relevant comparison of visual material from multiple 

news video when performing video browsing [20]. 

This paper proposes a basic framework for the 

detection of rectangular sub-window shots in MPEG 

[11] domain. Only MPEG-1 [12] compression 

parameters will be used to ensure backward 

compatibility so that the framework described can be 

applied widely. The MPEG Development Classes 



implemented by Dongge et al. [13] was used to extract 

MPEG parameters needed in the analysis. 

Section 2 introduces the general outline of this 

framework. Section 3 briefly describes each of the 

main processing blocks. Experimental results are 

described and discussed in Section 4. Section 5 

concludes the paper. 

 

2. Framework outline and rationale 
 

Because the system is designed to work wholly in 

the MPEG domain with minimal decoding, the sub-

windows are found only to MB accuracy. We believe 

that this is sufficient for video browsing since there is 

no real need for pixel-accurate sub-windows. In 

addition, such boundaries lend themselves easily for 

trans-coding. 

Figure 2 shows the block diagram for the 

processing. 

 
Figure 2. Block diagram of MPEG Sub-window 

shot detection 

 

The input is the decoded MB information. In 

particular, the only parameters used are MB coding 

type, the reconstructed DCT coefficients, and the 

motion vectors. Hence, there is no need for the MPEG 

video to be fully decoded, and this allows for fast sub-

window shot detection. 

In this framework, the output is the location of the 

sub-window shot in space and time. It would be trivial 

to have the output as either separate MPEGs or key-

frames if desired. 

Essentially, the system makes use of local scene 

change at the MB level to first detect the possible 

presence of sub-windows. The detection is further 

refined using other features based on the following 

observations: 

• Sub-windows usually have very distinct borders. 
Hence, edge information plays a very important 

part in determining if an area of local scene 

change is actually part of a sub-window or 

otherwise. 

• Sub-windows tend to have different color 
properties from areas outside it. Hence, the 

chrominance statistics of a suspected sub-

window and the area outside it would be 

important. 

• Sub-windows tend to have coherent borders in 
terms of chrominance. As above, the 

chrominance statistics of the border area of a 

suspected sub-window would be important. 

• Sub-window shots last for a significant amount 
of time (>2s) and are stationary in space. 

Therefore, spatial-temporal filtering is used to 

filter out spurious occurrences and to smooth out 

its spatial extent. 

 

3. Main processing blocks 
 

The framework depends on several distinct 

processing blocks to achieve the desired output. By 

organizing the system this way, it is possible to 

improve the framework rapidly by refining any of the 

processing blocks. 

 

3.1. Reconstruct DC luminance and 

chrominance images 
 

The DC Luminance image of the frame, with the 

same dimensions as that of the block layer, is 

reconstructed using a first-order approximation as 

described by Yeo et al. [3]. Because chrominance 

information will also be necessary, the DC 

Chrominance images are also reconstructed in the 

same way, but with the dimensions as that of the MB 

layer. 

 

3.2. Find localized scene change 
 

From the work reported in the literature on shot 

boundary detection [3-10], we derived the following 

rules for deciding that a MB is part of a local scene 

change: 

• If a MB is Intra coded, and the DC Luminance 
change from the MB of the same location in the 

forward referenced frame is greater than δDC. 
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• If a MB is forward-predicted or bi-directionally-
predicted, and the DC term of the correction in 

Luminance is greater than δDC. 
• If the current frame is a B-frame, and the MB is 
only backward-predicted, and the DC Luminance 

change from the MB of the same location in the 

forward referenced frame is greater than δDC.  
δDC is a threshold that is set to the minimum change in 
average intensity of a MB when its content changes. 

The set of localized scene change MBs produced at 

each frame n is denoted by L(n). 

This processing block produces many spurious 

localized scene change MBs, since it could be due to 

both actual local scene change as well as other un-

translational transformations that cannot be efficiently 

coded using motion compensation.  It may also be 

encoder dependent, since the coding decision for MBs 

in predicted frames is based largely on the need to 

reduce bit-rate and not necessarily on content change 

or localized movement. The DC Luminance value may 

also not be a good indication of the content of the area. 

Despite its many shortcomings, this block need only 

produce a coarse estimate of where localized scene 

change might be. The spatial-temporal filter at the last 

stage of the processing filters out most noise that 

originates here. 

 

3.3. Horizontal and vertical edge detection 
 

Accurate edge detection is the most important part 

of the whole process because the crucial difference 

between an actual sub-window shot and false positives 

has been observed to be the existence of a well-defined 

border around a region of localized scene change. In 

particular, we need to be able to detect horizontal and 

vertical edges accurately since rectangular sub-

windows are to be detected. 

The key problem here is detecting edges without 

uncompressing the MPEG; hence, only MB and block 

information are available. Having recognized this, 

there are two types of edges to be detected and they 

require different methods of detection. These are edges 

that occur on the boundaries of MB or blocks, and 

edges that occur within MB or blocks. 

Edges that occur on the boundaries can be detected 

using any textbook edge detection method on the DC 

Luminance and Chrominance images. The DC 

Chrominance images are used because in many cases, 

sub-windows in Chrominance images actually appear 

more distinct than in Luminance images. For our 

implementation, we used a zero-crossing detection of 

the second derivative approximated by a 3x3 8-

neighborhood Laplacian to determine the presence of 

edges, and thresholding with hysteresis of the gradient 

magnitude approximated by the Sobel operator to 

detect the horizontality or verticality of the edges [14]. 

There has been some research work on detecting 

edges in the compressed domain using DCT 

coefficients. Shen et al. [15] first reported on 

extracting edge information such as strength and 

location directly from compressed data by examining a 

few of the DCT AC coefficients. Li et al. [16] derived 

a series of rules based on linear ideal edge models to 

classify edges in a block of size 8x8. These rules only 

examine a subset of DCT AC coefficients. Lee et al. 

[17] uses DCT edge features comprising of horizontal 

and vertical DCT coefficients and thresholds them to 

determine the presence and orientation of edges. 

In our work, we only need to determine the 

presence of horizontal or vertical edges, but with high 

confidence. Hence, we used the idea as presented by 

Liang et al. [16], but modified it to suit our purposes. 

Denoting the intensity of a 8x8 image block by ( )yxf , , 

and its 2-D DCT by ( )vuF , , where 0≤x,y,u,v≤7, we 

have: 
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respectively. Hence, the subset of 2-D DCT 

coefficients that will be examined is given by: 
TVHB ∪∪=  

An 8x8 image block will be classified as having a 

horizontal edge if the following conditions hold: 

a) ( ) ( ) BvuvuFF ∈∀




= ),(,max1,0  

b) ( ) α>1,0F  

c) ( ) ( ) TVvuFvuF ∪∈∀< ),(1,0, β  

where α and β are free parameters. Here, α = 70, and 

β = 0.2. In a similar fashion, an 8x8 image block will 

be classified as having a vertical edge if: 

a) ( ) ( ) BvuvuFF ∈∀




= ),(,max0,1  

b) ( ) α>0,1F  

c) ( ) ( ) THvuFvuF ∪∈∀< ),(0,1, β  



The thresholding is done in recognition of the fact 

that in typical images, edges can be viewed as 

idealized edge with additive noise. Hence, α serves the 

purpose of only allowing significant edge differences 

so as to differentiate it from just random disturbances. 

β is set to a value above 0 because typical edges will 

not be perfectly horizontal or vertical, hence, some 

tolerance is needed. A larger α  leads to more 

significant edges being found, while a smaller β  leads 

to edges being found with higher confidence. 

 

3.4. Candidate sub-windows search 
 

An exhaustive search is done to consider all 

possible windows of a target size. While this operation 

is ( )( )ncalculatio feature4 Ο×Ο N  computationally, the fact 

that the search is carried out in MB space together with 

judicious pruning makes the search more tractable. 

For each considered sub-window, the following 

features are computed: 

1) EdgeScore, the percentage of correct edges (i.e. 

vertical edge along vertical border, horizontal 

edge along horizontal border) along perimeter. 

2) ContentScore, the percentage of sub-window 

area with MBs that are in S(n), where S(n) is the 

set of MBs that are likely to be part of a sub-

window shot in frame n. This set is updated by 

the equation: 
( ) ( ) ( )nLnWnS ∪−= 1  

where W(n-1) is the set of a certain fraction of 

MBs that are part of a declared candidate sub-

window shot in the previous frame.  

3) Area, the percentage of frame area that the sub-

window occupies 

4) AR, the aspect ratio (width/height) 

5) Cdiff(I,O), the distance between the histograms 

of the inside area I and corresponding outside 

area O (of equal size to I) as shown in figure 

3(a), where 
( ) ( ))(),(, 1 OHIHdOICdiff L=   

where H(I) is a 6x6 bin histogram of the area of 

the interest on its two color components, Cr and 

Cb. The bins are selected so that each bin would 

have approximately equal counts under the 

assumption that Cr and Cb were both distributed 

normally with mean 128 and a standard 

deviation of 16. dL1(H1,H2) is the L1-norm 

between the histograms H1 and H2, and is given 

by: 

( ) ∑ −=
l

llL HHHHd 212,11  

A total of 8 distances are computed, 

corresponding to Cdiff(UL,0), Cdiff(UL,1), 

Cdiff(UR,2), Cdiff(UR,3), Cdiff(LR,4), 

Cdiff(LR,5), Cdiff(LL,6) and Cdiff(LL,7). This 

distances will help determine if the sub-window 

is a distinct entity, or is a part of the surrounding 

background. 

6) BorderCoherence, the maximum percentage of 

border MBs that are within a continuous 4x4 

box within a 16x16 equal-width bin histogram 

of the border MB on its two color components. 

As shown in figure 3(b), both the outside border 

and inside border are considered, and the larger 

score will be used. 

 
Figure 3. Areas of interest for chrominance 

analysis. The bold outlined box indicates the 

candidate sub-window under investigation. (a) Each 

quadrant is compared with its 2 neighboring areas. 

(b) Both the inside and outside borders are 

examined for coherence. 

 

7) Uniformity, the maximum percentage of MBs 

that are in a bin of a 6x6 bin histogram of the 

candidate sub-window MBs on its two color 

components. The bins are similar to the ones 

used to calculate Cdiff(I,O). A desirable sub-

window should have a low Uniformity score. 

Histograms are used to model the distribution of 

color components of MBs because they have been 

shown to have good indexing capabilities [18]. 

However, care has to be taken when applying it 

because of the small number of MBs involved. Hence, 

to compare difference in computing Cdiff(I,O), a small 

histogram size is used, while to check coherence in 

computing BorderCoherence, a larger histogram size is 

used. 

A candidate sub-window is declared if the features 

fall into a pre-determined sub-space. Overlaps are 

resolved by picking the sub-window with the best 

EdgeScore followed by Area. 

At the same time, the number of localized MB 

scene change is tracked. If the fraction of local scene 

change is greater than δGLOBAL, then it is also 
considered a global scene change. In this case, it is 

necessary that all sub-windows be purged, and this 

message will be passed along to the spatial-temporal 

filter. 
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3.5. Spatial-temporal filtering 
 

The objectives of the filter are: 

• To filter out candidate sub-windows which are 
isolated in time, since these are probably noise. 

• To obtain smoothed dimensions of the sub-
window shot, since they are usually stationary in 

space for the duration of the shot. 

A non-linear spatial temporal filter is used and 

implemented by the following algorithm: 

1) For all candidate sub-windows identified in a 

frame, check to see if it overlaps with any sub-

window being tracked. If there is an overlap of 

more than δOVERLAP, go to step 3. Once all 
candidate sub-windows are considered, go to step 

4. 

2) If there is no overlap, register the sub-window in 

the list of sub-window shots being tracked. 

Repeat step 1 for other candidate sub-windows. 

3) If there is an overlap, update the following 

parameters of the tracked sub-window: 

• Maximum temporal extent 
• Maximum spatial extent 
• Frequency of MB belonging to this 
candidate sub-window 

Repeat step 1 for other candidate sub-windows. 

4) Check the list of sub-window shots being 

tracked. If there is no overlap with any candidate 

sub-windows from the current frame, then the 

tracked sub-window has ended. The best fit 

window is the smallest rectangular window that 

encompasses all the MBs that appear for more 

than 50% of the shot duration. Check to see if it 

is valid using the following rules: 

• Temporal extent is greater than time δTIME. 
• Aspect ratio of the best-fit window is valid 
• Area of the best-fit window is valid 

Then, purge this shot from the list of sub-window 

shots being tracked.  

There are two parameters in this filter, δOVERLAP and 
δTIME.  δOVERLAP controls how much a window can shift 
around; the higher its value, the more static the 

window has to be for it to be considered to be the one 

and the same window. It is set to 65%. δTIME is the 
shortest interval possible for a sub-window shot, and it 

is set to 1s for the experiment. The higher its value, the 

longer the window has to be around for it to be 

considered as a sub-window shot. 

 

4. Experimental results and performance 
 

To test the effectiveness of the proposed 

framework, the algorithm was used on four 

compressed MPEG sequences. The experimental setup, 

results and timing performance are reported in the 

following subsections. 

 

4.1. Experimental setup 
 

Four different news sequences were recorded and 

encoded in MPEG-1. Their descriptions are provided 

in Table 1. 

Ground truth was obtained by viewing the news 

video and taking note of the temporal and spatial 

extent of each rectangular sub-window shot.  

 

Table 1. Details of News Sequences 
No. Description Number of sub-

windows shots 

Length 

(hh:mm:ss) 

1. Channel 5 News 22 00:27:37 

2. Channel U News 6 00:33:24 

3. Straits Times News 10 00:17:23 

4. CNA News 71 02:32:43 

Total: 109 03:51:07 

 

The sequences were divided into 2 groups. 

Sequences 1-3 were used as training data to fine-tune 

the free parameters in the algorithm as described in 

Section 3. Sequence 4 was used as testing data to 

observe how well the algorithm can apply to untrained 

data. 

 

4.2. Experimental results 
 

Table 2 summarises the results of the experiment 

for each sequence, while table 3 groups the results for 

training and testing data. 

 

Table 2. Results for individual sequences 
No. Hits False 

Positives 

Recall 

(%) 

Precision 

(%) 

1. 22(/22) 2(/24) 100 92 

2. 4(/6) 6(/10) 67 40 

3. 5(/10) 4(/9) 50 56 

4. 16(/71) 43(/59) 23 27 

 

Table 3. Results for individual data sets 
Data set Hits False 

Positives 

Recall (%) Precision 

(%) 

Training 

Data 
31(/38) 12(/43) 82 72 

Test  

Data 
16(/71) 43(/59) 23 27 

 

The framework shows reasonably good 

performance for the training data. Unfortunately, it 

does not manage to do as well for the test data, which 

suggests that the parameters for the algorithm may 

have to be selected adaptively. Figure 4 gives 

examples of hits, false positives and misses. 

 



 
(a) Straits Times News 

 

 

 
(b) Big sub-window 

 

 
(c) Advertisement with 

message frame 

 

 
(d) Computer screen 

 

 
(e) Sub-window with low 

contrast 

 

 
(f) Two adjacent sub-

windows with thin 

boundaries 

 

Figure 4. Examples of hits (a-b), false positives (c-d) 

and misses (e-f). Notice how the algorithm always 

finds very distinct rectangles. Most misses are sub-

windows either low contrast between itself and the 

surrounding, or adjacent sub-windows which are 

largely similar in content. 

 

Most of the false detections capture distinct 

rectangular regions such as computer screens, weather 

reports, doors, windows, signs and logos. While some 

of this may arguably be sub-windows (like computer 

screens and weather reports), some analysis of the 

content can try to distinguish between natural images 

and synthetic images. This in turn suggests that a more 

precise definition of “sub-window shot” is required. 

The misses usually occur due to the lack of definite 

visual cues such as distinct boundaries and high 

contrast between the sub-window and its surrounding 

area. This is due to the shortcomings of the edge 

detection which is constrained to doing its work in the 

compressed domain. The results should be much better 

if more accurate and precise detection of horizontal 

and vertical borders was possible. 

Finally, it should be recognized that all these was 

done in the compressed domain, and down only to the 

MB level. Much information is not accessible since the 

video is not full frame decoded. Hence, many sub-

windows which are visually obvious may not appear so 

in the MB level. 

As mentioned earlier, parameters for the algorithm 

may have to be selected adaptively. This is due to the 

fact that each broadcaster would have used different 

production rules for their news video. One approach 

for selecting parameters adaptively is to employ a 

mechanism that recursively updates the parameters 

based on the statistics available after processing each 

frame. Another approach is to make use of machine 

learning techniques and carry out supervised learning 

of parameters for each set of production rules used by 

a broadcaster. Then, an appropriate set of parameters 

can be used for news video from each broadcaster. 

 

4.3. Performance timings 
 

Table 4 lists the runtimes for the algorithm for each 

sequence on a P4 2.4GHz computer with 384 MB of 

RAM. The machine is running Windows XP. 

 

 

Table 4. Runtimes 
No. Runtime (s) Speed-up 

1. 151 11x 

2. 229 9x 

3. 101 10x 

4. 999 9x 

 

By working in the compressed domain, this 

algorithm can achieve a speed of up to 11 times real 

time with minimal optimisations.  

 

5. Conclusions 
 

Sub-window shot detection is yet another media 

analysis tool that can be used in the segmentation of 

news sequences either for video retrieval purposes or 

for news video story segmentation. This paper has 

shown a framework in which this task can be 

accomplished. The framework contains independent 

modules, each of which can be fine-tuned to improve 

overall performance. This paper has also described an 

implementation of the framework and possible 

improvements to it. 

 

6. Acknowledgements 
 

We would like to express our gratitude to Li and 

Sethi for providing public usage of their MDC toolkit. 



We also acknowledge the use of news video produced 

by MediaCorp and SPH Mediaworks. 

 

7.  References 
 

[1] M. Yeung, B.L. Yeo and B. Liu, “Extracting Story 

Units from Long Programs for Video Browsing and 

Navigation”, IEEE International Conference on 

Multimedia Computing and Systems, pages 296-305, 

1996. 

[2] D. Zhong, H. Zhang and S.F. Chang, “Clustering 

Methods for Video Browsing and Annotation”, SPIE 

Storage and Retrieval for Still Image and Video 

Database IV, volume 2670, pages 239-246, 1996. 

[3] B. Yeo and B. Liu, “Rapid scene analysis on 

compressed video”, IEEE Transactions on Circuits 

and Systems for Video Technology, volume 5, issue 6, 

pages 533-544, 1995. 

[4] J. Feng, K. Lo and H. Mehrpour, “Scene change 

detection algorithm for MPEG video sequence”, 

International Conference on Image Processing, 

volume 2, pages 821-824, 1996  

[5] M. Sugano, Y. Nakajima, H. Yanagihara, and A. 

Yoneyama, “A fast scene change detection on MPEG 

coding parameter domain”, International Conference 

on Image Processing, volume 1, pages 888-892, 1998 

[6] K. Tse, J. Wei and S. Panchanathan, “A scene 

change detection algorithm for MPEG compressed 

video sequences”, Canadian Conference on Electrical 

and Computer Engineering, volume 2, pages 827-830, 

1995 

[7] J. Calic and E. Izquierdo, “Towards Real-Time 

Shot Detection in the MPEG-Compressed Domain”, 

Workshop on Image Analysis for Multimedia 

Interactive Services, 2001 

[8] J. Calic, S. Sav, E. Izquierdo, S. Marlow, N. 

Murphy and N.E. O’Connor, “Temporal Video 

Segmentation for Real-Time Key Frame Extaction”, 

IEEE International Conference on Acoustics, Speech, 

and Signal Processing, volume 4, pages 3632-3635, 

2002. 

 [9] T. Shin, J. Kim, H. Lee and J. Kim, “Hierarchical 

scene change detection in an MPEG-2 compressed 

video sequence”, IEEE International Symposium on 

Circuits and Systems, volume 4, pages 253-256, 1998 

[10] W.A.C. Fernando, C.N. Canagarajah and D.R. 

Bull, “A unified approach to scene change detection in 

uncompressed and compressed video”, IEEE 

Transactions on Consumer Electronics, volume 46, 

issue 3, pages 769-779, 2000 

[11] D. Le Gall, “A video compression standard for 

multimedia applications”, Communications of the 

ACM, volume 34, number 4, pages 46-58, 1991. 

[12] ISO/IEC, “Information Technology – Coding of 

moving pictures and associated audio for digital 

storage media at up to about 1.5 Mbits/s”, ISO/IEC 

11172-1/2, 1993 

 [13] D. Li and I.K. Sethi, “MDC: a software tool for 

developing MPEG applications”, IEEE International 

Conference on Multimedia Computing and Systems, 

volume 1, pages 445-450, 1999. 

[14] M. Sonka, V. Hlavac and R. Boyle, Image 

Processing, Analysis and Machine Vision, PWS 

Publishing, USA, 1999. 

[15] B. Shen and I.K. Sethi, “Direct feature extraction 

from compressed images”, Proceedings SPIE Storage 

& Retrieval for Image and Video Databases IV, 

volume 2670, pages 33-49, 1996. 

[16] H. Li, G. Liu and Y. Li, “An effective approach to 

edge classification from DCT domain”, IEEE 

International Conference on Image Processing, 

volume 1, pages 940-943, 2002. 

[17] M. Lee, S. Nepal and U. Srinivasan, “Role of 

Edge Detection in Video Semantics”, ACS 

Conferences in Research and Practice in Information 

Technology, volume 22, pages 59-68, 2003. 

[18] M. Stricker and M. Swain, “The capacity and the 

sensitivity of color histogram indexing”, Technical 

Report 94-05, University of Chicago, Mar. 1994. 

[19] W. Hsu and S. Chang, “A Statistical Framework 

for Fusing Mid-level Perceptual Features in News 

Story Segmentation”, IEEE International Conference 

on Multimedia and Expo, volume 2, pages 413-416, 

2003. 

[20] S. Chang, “The Holy Grail of Content-Based 

Media Analysis”, IEEE Multimedia Magazine, volume 

9, issue 2, pages 6-10, 2002. 

 


