
A Framework for Sub-Window Shot Detection

Chuohao Yeo
1
, Yong-Wei Zhu

2
, Qibin Sun

3
, Shih-Fu Chang

4

1,2,3
Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore

4
Department of Electrical Engineering, Columbia University

{zuohao}@eecs.berkeley.edu, {ywzhu,qibin}@i2r.a-star.edu.sg, {sfchang}@ee.columbia.edu

Abstract

Browsing a digital video library can be very tedious

especially with an ever expanding collection of

multimedia material. We present a novel framework

for extracting sub-window shots from MPEG encoded

news video with the expectation that this will be

another tool that can be used by retrieval systems.

Sub-windows shots are also useful for tying in relevant

material from multiple video sources. The system

makes use of Macroblock parameters to extract visual

features, which are then combined to identify possible

sub-windows in individual frames. The identified sub-

widows are then filtered by a non-linear Spatial-

Temporal filter to produce sub-window shots. By

working only on compressed domain information, this

system avoids full frame decoding of MPEG sequences

and hence achieves high speeds of up to 11 times real

time.

1. Introduction

With the advent of cheaper and faster processing

power and storage, there has been a wide-spread

proliferation of digital multimedia material, including

digital video. This has unfortunately meant that

humans are increasingly being overwhelmed by digital

content, and there is a need to be able to get relevant

information quickly.

Most digital video retrieval systems use shots as the

basic unit in analyzing a video for browsing [1,2]. To

this end, much work has already been reported in the

literature for shot boundary detection. Shot analysis

has been done in both the uncompressed domain and

on MPEG compressed videos [3]. More recent work

have focused on MPEG videos since they are very

wide-spread and lend themselves easily to fast shot

analysis. Parameters such as coding bit-rate [4], ratio

of forward/backward references in B-frames [4-10],

number of Intra-coded MacroBlocks (MBs) in P-

frames [9] can be analyzed for shot boundaries. In

addition, statistics such as Discrete-Cosine-Transform

(DCT) DC variances [5,9,10] and DCT DC images [3]

have also been used.

However, there has been no work reported on the

detection of sub-window shots. In this paper, we

define a sub-window shot as a rectangular area of

interest that presents visually distinct material from its

surroundings and is semantically independent from the

rest of the frame. This is widely referred to as a

“picture-in-picture” effect. Such shots frequently

appear in news programs where the news anchor is

either introducing another scene or presenting a field

correspondent. Figure 1 shows an example of such a

sub-window shot.

Figure 1. An example of a sub-window shot

Since such sub-windows may provide extra

segmentation within the same news scene, it would be

useful to include them for the purpose of news story

segmentation [19]. In addition, it allows for more

relevant comparison of visual material from multiple

news video when performing video browsing [20].

This paper proposes a basic framework for the

detection of rectangular sub-window shots in MPEG

[11] domain. Only MPEG-1 [12] compression

parameters will be used to ensure backward

compatibility so that the framework described can be

applied widely. The MPEG Development Classes

implemented by Dongge et al. [13] was used to extract

MPEG parameters needed in the analysis.

Section 2 introduces the general outline of this

framework. Section 3 briefly describes each of the

main processing blocks. Experimental results are

described and discussed in Section 4. Section 5

concludes the paper.

2. Framework outline and rationale

Because the system is designed to work wholly in

the MPEG domain with minimal decoding, the sub-

windows are found only to MB accuracy. We believe

that this is sufficient for video browsing since there is

no real need for pixel-accurate sub-windows. In

addition, such boundaries lend themselves easily for

trans-coding.

Figure 2 shows the block diagram for the

processing.

Figure 2. Block diagram of MPEG Sub-window

shot detection

The input is the decoded MB information. In

particular, the only parameters used are MB coding

type, the reconstructed DCT coefficients, and the

motion vectors. Hence, there is no need for the MPEG

video to be fully decoded, and this allows for fast sub-

window shot detection.

In this framework, the output is the location of the

sub-window shot in space and time. It would be trivial

to have the output as either separate MPEGs or key-

frames if desired.

Essentially, the system makes use of local scene

change at the MB level to first detect the possible

presence of sub-windows. The detection is further

refined using other features based on the following

observations:

• Sub-windows usually have very distinct borders.
Hence, edge information plays a very important

part in determining if an area of local scene

change is actually part of a sub-window or

otherwise.

• Sub-windows tend to have different color
properties from areas outside it. Hence, the

chrominance statistics of a suspected sub-

window and the area outside it would be

important.

• Sub-windows tend to have coherent borders in
terms of chrominance. As above, the

chrominance statistics of the border area of a

suspected sub-window would be important.

• Sub-window shots last for a significant amount
of time (>2s) and are stationary in space.

Therefore, spatial-temporal filtering is used to

filter out spurious occurrences and to smooth out

its spatial extent.

3. Main processing blocks

The framework depends on several distinct

processing blocks to achieve the desired output. By

organizing the system this way, it is possible to

improve the framework rapidly by refining any of the

processing blocks.

3.1. Reconstruct DC luminance and

chrominance images

The DC Luminance image of the frame, with the

same dimensions as that of the block layer, is

reconstructed using a first-order approximation as

described by Yeo et al. [3]. Because chrominance

information will also be necessary, the DC

Chrominance images are also reconstructed in the

same way, but with the dimensions as that of the MB

layer.

3.2. Find localized scene change

From the work reported in the literature on shot

boundary detection [3-10], we derived the following

rules for deciding that a MB is part of a local scene

change:

• If a MB is Intra coded, and the DC Luminance
change from the MB of the same location in the

forward referenced frame is greater than δDC.

MPEG decoded MB data

Find

localized

scene

change

(MB level)

Find candidate

sub-windows

Find

horizontal

and vertical

edges

Reconstruct

DC

Luminance

and

Chromi-

nance

Spatial-Temporal

Filter

Suspected Rectangular Sub-window shots

• If a MB is forward-predicted or bi-directionally-
predicted, and the DC term of the correction in

Luminance is greater than δDC.
• If the current frame is a B-frame, and the MB is
only backward-predicted, and the DC Luminance

change from the MB of the same location in the

forward referenced frame is greater than δDC.
δDC is a threshold that is set to the minimum change in
average intensity of a MB when its content changes.

The set of localized scene change MBs produced at

each frame n is denoted by L(n).

This processing block produces many spurious

localized scene change MBs, since it could be due to

both actual local scene change as well as other un-

translational transformations that cannot be efficiently

coded using motion compensation. It may also be

encoder dependent, since the coding decision for MBs

in predicted frames is based largely on the need to

reduce bit-rate and not necessarily on content change

or localized movement. The DC Luminance value may

also not be a good indication of the content of the area.

Despite its many shortcomings, this block need only

produce a coarse estimate of where localized scene

change might be. The spatial-temporal filter at the last

stage of the processing filters out most noise that

originates here.

3.3. Horizontal and vertical edge detection

Accurate edge detection is the most important part

of the whole process because the crucial difference

between an actual sub-window shot and false positives

has been observed to be the existence of a well-defined

border around a region of localized scene change. In

particular, we need to be able to detect horizontal and

vertical edges accurately since rectangular sub-

windows are to be detected.

The key problem here is detecting edges without

uncompressing the MPEG; hence, only MB and block

information are available. Having recognized this,

there are two types of edges to be detected and they

require different methods of detection. These are edges

that occur on the boundaries of MB or blocks, and

edges that occur within MB or blocks.

Edges that occur on the boundaries can be detected

using any textbook edge detection method on the DC

Luminance and Chrominance images. The DC

Chrominance images are used because in many cases,

sub-windows in Chrominance images actually appear

more distinct than in Luminance images. For our

implementation, we used a zero-crossing detection of

the second derivative approximated by a 3x3 8-

neighborhood Laplacian to determine the presence of

edges, and thresholding with hysteresis of the gradient

magnitude approximated by the Sobel operator to

detect the horizontality or verticality of the edges [14].

There has been some research work on detecting

edges in the compressed domain using DCT

coefficients. Shen et al. [15] first reported on

extracting edge information such as strength and

location directly from compressed data by examining a

few of the DCT AC coefficients. Li et al. [16] derived

a series of rules based on linear ideal edge models to

classify edges in a block of size 8x8. These rules only

examine a subset of DCT AC coefficients. Lee et al.

[17] uses DCT edge features comprising of horizontal

and vertical DCT coefficients and thresholds them to

determine the presence and orientation of edges.

In our work, we only need to determine the

presence of horizontal or vertical edges, but with high

confidence. Hence, we used the idea as presented by

Liang et al. [16], but modified it to suit our purposes.

Denoting the intensity of a 8x8 image block by ()yxf , ,

and its 2-D DCT by ()vuF , , where 0≤x,y,u,v≤7, we

have:

() () () () () ()
∑∑
= =

 +

 +
=

7

0

7

0 16

12
cos

16

12
cos,

4

1
,

x y

vyux
yxfvCuCvuF

ππ

where

()

=

=
=

1,2,..7for 1

0for
2

1

ω

ω
ωC

The normalized 2-D DCT, ()vuF , , is defined by:

() ()
() ()vCuC

vuF
vuF

,
, =

The horizontal, vertical and texture feature subsets are

given by
{ }
{ }
{ })2,2(),1,1(

)0,4(),0,3(),0,2(),0,1(

)4,0(),3,0(),2,0(),1,0(

=

=

=

T

V

H

respectively. Hence, the subset of 2-D DCT

coefficients that will be examined is given by:
TVHB ∪∪=

An 8x8 image block will be classified as having a

horizontal edge if the following conditions hold:

a) () () BvuvuFF ∈∀

=),(,max1,0

b) () α>1,0F

c) () () TVvuFvuF ∪∈∀<),(1,0, β

where α and β are free parameters. Here, α = 70, and

β = 0.2. In a similar fashion, an 8x8 image block will

be classified as having a vertical edge if:

a) () () BvuvuFF ∈∀

=),(,max0,1

b) () α>0,1F

c) () () THvuFvuF ∪∈∀<),(0,1, β

The thresholding is done in recognition of the fact

that in typical images, edges can be viewed as

idealized edge with additive noise. Hence, α serves the

purpose of only allowing significant edge differences

so as to differentiate it from just random disturbances.

β is set to a value above 0 because typical edges will

not be perfectly horizontal or vertical, hence, some

tolerance is needed. A larger α leads to more

significant edges being found, while a smaller β leads

to edges being found with higher confidence.

3.4. Candidate sub-windows search

An exhaustive search is done to consider all

possible windows of a target size. While this operation

is ()()ncalculatio feature4 Ο×Ο N computationally, the fact

that the search is carried out in MB space together with

judicious pruning makes the search more tractable.

For each considered sub-window, the following

features are computed:

1) EdgeScore, the percentage of correct edges (i.e.

vertical edge along vertical border, horizontal

edge along horizontal border) along perimeter.

2) ContentScore, the percentage of sub-window

area with MBs that are in S(n), where S(n) is the

set of MBs that are likely to be part of a sub-

window shot in frame n. This set is updated by

the equation:
() () ()nLnWnS ∪−= 1

where W(n-1) is the set of a certain fraction of

MBs that are part of a declared candidate sub-

window shot in the previous frame.

3) Area, the percentage of frame area that the sub-

window occupies

4) AR, the aspect ratio (width/height)

5) Cdiff(I,O), the distance between the histograms

of the inside area I and corresponding outside

area O (of equal size to I) as shown in figure

3(a), where
() ())(),(, 1 OHIHdOICdiff L=

where H(I) is a 6x6 bin histogram of the area of

the interest on its two color components, Cr and

Cb. The bins are selected so that each bin would

have approximately equal counts under the

assumption that Cr and Cb were both distributed

normally with mean 128 and a standard

deviation of 16. dL1(H1,H2) is the L1-norm

between the histograms H1 and H2, and is given

by:

() ∑ −=
l

llL HHHHd 212,11

A total of 8 distances are computed,

corresponding to Cdiff(UL,0), Cdiff(UL,1),

Cdiff(UR,2), Cdiff(UR,3), Cdiff(LR,4),

Cdiff(LR,5), Cdiff(LL,6) and Cdiff(LL,7). This

distances will help determine if the sub-window

is a distinct entity, or is a part of the surrounding

background.

6) BorderCoherence, the maximum percentage of

border MBs that are within a continuous 4x4

box within a 16x16 equal-width bin histogram

of the border MB on its two color components.

As shown in figure 3(b), both the outside border

and inside border are considered, and the larger

score will be used.

Figure 3. Areas of interest for chrominance

analysis. The bold outlined box indicates the

candidate sub-window under investigation. (a) Each

quadrant is compared with its 2 neighboring areas.

(b) Both the inside and outside borders are

examined for coherence.

7) Uniformity, the maximum percentage of MBs

that are in a bin of a 6x6 bin histogram of the

candidate sub-window MBs on its two color

components. The bins are similar to the ones

used to calculate Cdiff(I,O). A desirable sub-

window should have a low Uniformity score.

Histograms are used to model the distribution of

color components of MBs because they have been

shown to have good indexing capabilities [18].

However, care has to be taken when applying it

because of the small number of MBs involved. Hence,

to compare difference in computing Cdiff(I,O), a small

histogram size is used, while to check coherence in

computing BorderCoherence, a larger histogram size is

used.

A candidate sub-window is declared if the features

fall into a pre-determined sub-space. Overlaps are

resolved by picking the sub-window with the best

EdgeScore followed by Area.

At the same time, the number of localized MB

scene change is tracked. If the fraction of local scene

change is greater than δGLOBAL, then it is also
considered a global scene change. In this case, it is

necessary that all sub-windows be purged, and this

message will be passed along to the spatial-temporal

filter.

UL UR

LL LR

1

0

2

3

4

5 6

7

Outside border

Inside border

(a) (b)

3.5. Spatial-temporal filtering

The objectives of the filter are:

• To filter out candidate sub-windows which are
isolated in time, since these are probably noise.

• To obtain smoothed dimensions of the sub-
window shot, since they are usually stationary in

space for the duration of the shot.

A non-linear spatial temporal filter is used and

implemented by the following algorithm:

1) For all candidate sub-windows identified in a

frame, check to see if it overlaps with any sub-

window being tracked. If there is an overlap of

more than δOVERLAP, go to step 3. Once all
candidate sub-windows are considered, go to step

4.

2) If there is no overlap, register the sub-window in

the list of sub-window shots being tracked.

Repeat step 1 for other candidate sub-windows.

3) If there is an overlap, update the following

parameters of the tracked sub-window:

• Maximum temporal extent
• Maximum spatial extent
• Frequency of MB belonging to this
candidate sub-window

Repeat step 1 for other candidate sub-windows.

4) Check the list of sub-window shots being

tracked. If there is no overlap with any candidate

sub-windows from the current frame, then the

tracked sub-window has ended. The best fit

window is the smallest rectangular window that

encompasses all the MBs that appear for more

than 50% of the shot duration. Check to see if it

is valid using the following rules:

• Temporal extent is greater than time δTIME.
• Aspect ratio of the best-fit window is valid
• Area of the best-fit window is valid

Then, purge this shot from the list of sub-window

shots being tracked.

There are two parameters in this filter, δOVERLAP and
δTIME. δOVERLAP controls how much a window can shift
around; the higher its value, the more static the

window has to be for it to be considered to be the one

and the same window. It is set to 65%. δTIME is the
shortest interval possible for a sub-window shot, and it

is set to 1s for the experiment. The higher its value, the

longer the window has to be around for it to be

considered as a sub-window shot.

4. Experimental results and performance

To test the effectiveness of the proposed

framework, the algorithm was used on four

compressed MPEG sequences. The experimental setup,

results and timing performance are reported in the

following subsections.

4.1. Experimental setup

Four different news sequences were recorded and

encoded in MPEG-1. Their descriptions are provided

in Table 1.

Ground truth was obtained by viewing the news

video and taking note of the temporal and spatial

extent of each rectangular sub-window shot.

Table 1. Details of News Sequences
No. Description Number of sub-

windows shots

Length

(hh:mm:ss)

1. Channel 5 News 22 00:27:37

2. Channel U News 6 00:33:24

3. Straits Times News 10 00:17:23

4. CNA News 71 02:32:43

Total: 109 03:51:07

The sequences were divided into 2 groups.

Sequences 1-3 were used as training data to fine-tune

the free parameters in the algorithm as described in

Section 3. Sequence 4 was used as testing data to

observe how well the algorithm can apply to untrained

data.

4.2. Experimental results

Table 2 summarises the results of the experiment

for each sequence, while table 3 groups the results for

training and testing data.

Table 2. Results for individual sequences
No. Hits False

Positives

Recall

(%)

Precision

(%)

1. 22(/22) 2(/24) 100 92

2. 4(/6) 6(/10) 67 40

3. 5(/10) 4(/9) 50 56

4. 16(/71) 43(/59) 23 27

Table 3. Results for individual data sets
Data set Hits False

Positives

Recall (%) Precision

(%)

Training

Data
31(/38) 12(/43) 82 72

Test

Data
16(/71) 43(/59) 23 27

The framework shows reasonably good

performance for the training data. Unfortunately, it

does not manage to do as well for the test data, which

suggests that the parameters for the algorithm may

have to be selected adaptively. Figure 4 gives

examples of hits, false positives and misses.

(a) Straits Times News

(b) Big sub-window

(c) Advertisement with

message frame

(d) Computer screen

(e) Sub-window with low

contrast

(f) Two adjacent sub-

windows with thin

boundaries

Figure 4. Examples of hits (a-b), false positives (c-d)

and misses (e-f). Notice how the algorithm always

finds very distinct rectangles. Most misses are sub-

windows either low contrast between itself and the

surrounding, or adjacent sub-windows which are

largely similar in content.

Most of the false detections capture distinct

rectangular regions such as computer screens, weather

reports, doors, windows, signs and logos. While some

of this may arguably be sub-windows (like computer

screens and weather reports), some analysis of the

content can try to distinguish between natural images

and synthetic images. This in turn suggests that a more

precise definition of “sub-window shot” is required.

The misses usually occur due to the lack of definite

visual cues such as distinct boundaries and high

contrast between the sub-window and its surrounding

area. This is due to the shortcomings of the edge

detection which is constrained to doing its work in the

compressed domain. The results should be much better

if more accurate and precise detection of horizontal

and vertical borders was possible.

Finally, it should be recognized that all these was

done in the compressed domain, and down only to the

MB level. Much information is not accessible since the

video is not full frame decoded. Hence, many sub-

windows which are visually obvious may not appear so

in the MB level.

As mentioned earlier, parameters for the algorithm

may have to be selected adaptively. This is due to the

fact that each broadcaster would have used different

production rules for their news video. One approach

for selecting parameters adaptively is to employ a

mechanism that recursively updates the parameters

based on the statistics available after processing each

frame. Another approach is to make use of machine

learning techniques and carry out supervised learning

of parameters for each set of production rules used by

a broadcaster. Then, an appropriate set of parameters

can be used for news video from each broadcaster.

4.3. Performance timings

Table 4 lists the runtimes for the algorithm for each

sequence on a P4 2.4GHz computer with 384 MB of

RAM. The machine is running Windows XP.

Table 4. Runtimes
No. Runtime (s) Speed-up

1. 151 11x

2. 229 9x

3. 101 10x

4. 999 9x

By working in the compressed domain, this

algorithm can achieve a speed of up to 11 times real

time with minimal optimisations.

5. Conclusions

Sub-window shot detection is yet another media

analysis tool that can be used in the segmentation of

news sequences either for video retrieval purposes or

for news video story segmentation. This paper has

shown a framework in which this task can be

accomplished. The framework contains independent

modules, each of which can be fine-tuned to improve

overall performance. This paper has also described an

implementation of the framework and possible

improvements to it.

6. Acknowledgements

We would like to express our gratitude to Li and

Sethi for providing public usage of their MDC toolkit.

We also acknowledge the use of news video produced

by MediaCorp and SPH Mediaworks.

7. References

[1] M. Yeung, B.L. Yeo and B. Liu, “Extracting Story

Units from Long Programs for Video Browsing and

Navigation”, IEEE International Conference on

Multimedia Computing and Systems, pages 296-305,

1996.

[2] D. Zhong, H. Zhang and S.F. Chang, “Clustering

Methods for Video Browsing and Annotation”, SPIE

Storage and Retrieval for Still Image and Video

Database IV, volume 2670, pages 239-246, 1996.

[3] B. Yeo and B. Liu, “Rapid scene analysis on

compressed video”, IEEE Transactions on Circuits

and Systems for Video Technology, volume 5, issue 6,

pages 533-544, 1995.

[4] J. Feng, K. Lo and H. Mehrpour, “Scene change

detection algorithm for MPEG video sequence”,

International Conference on Image Processing,

volume 2, pages 821-824, 1996

[5] M. Sugano, Y. Nakajima, H. Yanagihara, and A.

Yoneyama, “A fast scene change detection on MPEG

coding parameter domain”, International Conference

on Image Processing, volume 1, pages 888-892, 1998

[6] K. Tse, J. Wei and S. Panchanathan, “A scene

change detection algorithm for MPEG compressed

video sequences”, Canadian Conference on Electrical

and Computer Engineering, volume 2, pages 827-830,

1995

[7] J. Calic and E. Izquierdo, “Towards Real-Time

Shot Detection in the MPEG-Compressed Domain”,

Workshop on Image Analysis for Multimedia

Interactive Services, 2001

[8] J. Calic, S. Sav, E. Izquierdo, S. Marlow, N.

Murphy and N.E. O’Connor, “Temporal Video

Segmentation for Real-Time Key Frame Extaction”,

IEEE International Conference on Acoustics, Speech,

and Signal Processing, volume 4, pages 3632-3635,

2002.

 [9] T. Shin, J. Kim, H. Lee and J. Kim, “Hierarchical

scene change detection in an MPEG-2 compressed

video sequence”, IEEE International Symposium on

Circuits and Systems, volume 4, pages 253-256, 1998

[10] W.A.C. Fernando, C.N. Canagarajah and D.R.

Bull, “A unified approach to scene change detection in

uncompressed and compressed video”, IEEE

Transactions on Consumer Electronics, volume 46,

issue 3, pages 769-779, 2000

[11] D. Le Gall, “A video compression standard for

multimedia applications”, Communications of the

ACM, volume 34, number 4, pages 46-58, 1991.

[12] ISO/IEC, “Information Technology – Coding of

moving pictures and associated audio for digital

storage media at up to about 1.5 Mbits/s”, ISO/IEC

11172-1/2, 1993

 [13] D. Li and I.K. Sethi, “MDC: a software tool for

developing MPEG applications”, IEEE International

Conference on Multimedia Computing and Systems,

volume 1, pages 445-450, 1999.

[14] M. Sonka, V. Hlavac and R. Boyle, Image

Processing, Analysis and Machine Vision, PWS

Publishing, USA, 1999.

[15] B. Shen and I.K. Sethi, “Direct feature extraction

from compressed images”, Proceedings SPIE Storage

& Retrieval for Image and Video Databases IV,

volume 2670, pages 33-49, 1996.

[16] H. Li, G. Liu and Y. Li, “An effective approach to

edge classification from DCT domain”, IEEE

International Conference on Image Processing,

volume 1, pages 940-943, 2002.

[17] M. Lee, S. Nepal and U. Srinivasan, “Role of

Edge Detection in Video Semantics”, ACS

Conferences in Research and Practice in Information

Technology, volume 22, pages 59-68, 2003.

[18] M. Stricker and M. Swain, “The capacity and the

sensitivity of color histogram indexing”, Technical

Report 94-05, University of Chicago, Mar. 1994.

[19] W. Hsu and S. Chang, “A Statistical Framework

for Fusing Mid-level Perceptual Features in News

Story Segmentation”, IEEE International Conference

on Multimedia and Expo, volume 2, pages 413-416,

2003.

[20] S. Chang, “The Holy Grail of Content-Based

Media Analysis”, IEEE Multimedia Magazine, volume

9, issue 2, pages 6-10, 2002.

