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Abstract

Compression ratio and computational complexity are two
major factors for a successful image coder. By exploring
the Laplacian distribution of the wavelet coefficients, a new
bit plane entropy coder is proposed in this paper. Com-
pared with the state-of-the-art JPEG2000 entropy coder
(EBCOT), the proposed coder achieves a 0.75% better loss-
less performance for 5 level 5/3 wavelet decomposition at
block size 64×64 and 2.56% at block size 16×16. Ex-
perimental results also show PSNR improvements of about
0.13dB at 1bpp and 0.25dB at 2bpp on average for lossy
compression. However, the gain in coding performance is
not based on increasing computational complexity but in-
stead a reduction by using a static arithmetic coder which
avoids complicated adaptive procedure.

1. Introduction
In recent years, wavelet based embedded image coder is
quite attractive in modern multimedia applications. Wavelet
transform, bit plane coding and other techniques make em-
bedded image coders practical, which not only provide ef-
ficient compression performance, distortion scalability, res-
olution scalability, but also other attractive features such as
region of interest and random access.

Embedded zerotree wavelet coding (EZW) proposed by
Shapiro [1], set partitioning in hierarchical trees (SPIHT)
proposed by Said and Pearlman [2] and embedded block
coding with optimal truncation (EBCOT) proposed by
Taubman [3] are such successful examples of embedded im-
age coders. EBCOT, with the best coding performance and
other rich features, now serves as the entropy coder for the
state-of-the-art image coding standard JPEG2000 [4][5].

EBCOT is an independently block coded, context based
adaptive bit plane coder, which has two Tiers. In Tier
1, spatial correlation of the wavelet coefficients are finely
modeled for each subband and each bit in the bit-plane
is adaptively coded by one of the three fractional coding
passes, significant propagation pass, magnitude refinement
pass and clean up coding pass in a raster order. After all the
coefficients have been compressed, in Tier 2, the Post Com-

pression Rate Distortion Optimization algorithm (PCRD) is
applied to organize each code block bitstream in an opti-
mal way to minimize the distortion subject to the bit rate
constraints and thus generate the output bitstream [4].

In scalable image coding, coding efficiency of the low-
resolution blocks appear particularly important especially
for low bit rate coding. However, in EBCOT, these blocks
often have relatively fewer coefficients and a context adap-
tive coder (MQ coder) sometimes ends coding before it
adapts to the local properties. Whilst, for these higher
energy blocks, lower order bit planes are often uniformly
distributed, wherein experimental results show that a con-
text adaptive coder sometimes causes expansion rather than
compression. Although EBCOT has the bypass mode called
lazy coding which directly outputs raw bits of the lower bit
planes, it has no systematic way to tell from which bit plane
a lazy coding is more efficient. So, in spite of that EBCOT
is quite a delicate context adaptive entropy coder, it is still
inefficient in certain cases and such complex context adap-
tivity for some bit planes may seem unnecessary. Thus, re-
garding the fact that reduction of complexity often has more
practical impact than a modest increase in compression ratio
in some applications, it would be interesting to seek a coder
which can achieve comparable compression ratio while re-
ducing the complexity as much as possible.

In this paper, we present the Context-based Bit Plane
Golomb Coder (CB-BPGC). Our experimental results show
that instead of using the MQ coder, a static arithmetic coder
combined with certain techniques is also quite promising on
coding performance considering the lower complexity. The
new algorithm explores coding based on the prior knowl-
edge of wavelet coefficients distribution properties. It is
well known that wavelet coefficients in the HL, LH and HH
subbands are nearly Laplacian distributed [4]. Hence, by
combining context modeling techniques with the embedded
coding algorithm called Bit-Plane Golomb Coding (BPGC)
[6], which is suitable for a Laplacian distributed source, a
coder with modest coding efficiency is presented, without
using the MQ coder but instead, a static arithmetic coder
with much lower complexity.

This paper is organized as follows. The implementation
detail of the proposed algorithm are introduced in Section 2;
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in Section 3, we compare the coding performance and com-
plexity of our algorithm with the EBCOT coder; conclusion
remarks are then presented in Section 4.

2. Proposed CB-BPGC Entropy Coder
Bit-Plane Golomb Coding (BPGC), an embedded coding
strategy for a source with Laplacian distribution, is first pre-
sented by R.Yu in [6]. It is now successfully implemented
in the Advanced Audio Zip (AAZ) and the latest MPEG-4
Audio Scalable Lossless Coding (SLS) Standard [7]. We
start this section with a brief review of that algorithm, fol-
lowed by the details of implementing it together with the
context modeling techniques for scalable image coding.

2.1. Bit-Plane Golomb Coding
Consider a Laplacian distributed source X , which has the
probability density function given by,

fX(x) = e−|x|
√

2/σ2
/
√

2σ2 (1)

where the magnitude of each sample Xi(i=1,2...N) is binary
represented by bit planes. If we constrain the source X with
an independent and identically Laplacian distribution, the
probability of the bit bj,i in bit plane Bj can be simply de-
scribed as,

pj = pr(bj,i = 1) = 1− (1 + θ2j

)−1
j=m,m−1...0 (2)

where m is the most significant bit plane. The Laplacian
distribution parameter θ can be estimated by the number of
samples N and the absolute sum of the samples A: θ =
e−
√

2/σ2 ≈ e−N/A. The approximate probability pj for
bit-plane Bj can be further obtained as follows:

QL
j =

{
1/(1 + 22j−L

) j ≥ L
1/2 j < L

(3)

L = minL′ ∈ Z|2L′+1N ≥ A (4)

In that simple way, for a block of samples, with the calcu-
lated N and A, BPGC models the approximate probabilities
of the bits in bit planes. The parameter L, which is called
the lazy bit plane parameter (lzbp), indicates from which bit
plane BPGC enters to the lazy bit planes where bits ’0’ and
’1’ are uniformly distributed, and also specifies the skew
probability of bits in the non-lazy bit planes (the most sig-
nificant bit plane m to the L bit plane) according to the bit
plane distance D2L: j − L. When coded, bits in the lazy
bit planes are directly outputted to the bitstream and the ap-
proximate probability of bits in the non-lazy bit planes can
be easily obtained from (3) and then fed to the binary static
arithmetic coder [6].

2.2. Context Modeling
In audio scalable coding, the good performance of BPGC is
based on the constraint that the coding source is indepen-
dent and identically distributed (i.i.d.) and the fact that the

audio signal is a 1-D signal which has low correlation cod-
ing samples. However, image wavelet coefficients are heav-
ily spatial correlated and that is why many image coders
adopt an adaptive arithmetic coding procedure, while the
static probability model used in BPGC would surely lose
some efficiency. For a given bit plane, although we can get
the approximate bit probability from the parameter D2L, the
real probability of the bit is quite different, which is signifi-
cantly affected by the neighborhood coefficients. For exam-
ple, it is more likely for the current bit to be ’1’ when most
of the nearby coefficients are ’1’. But fortunately, BPGC
can be easily combined with the image context modeling
techniques, by which we can get probabilities of the bits
different from each other according to their contexts.

Table 1: D2L Contexts

Ctxt.No. 0 1 2 3 4 5 6
D2L ≤ −3 -2 -1 0 1 2 ≥ 3

Figure 1: CB-BPGC bit plane coding example

Hence, the main contexts which affect the probabilities
are D2L and neighborhood contexts ctxt. A detailed de-
scription of the 7 D2L contexts is listed in Table 1 and an
example of bit plane coding relating to this D2L concept is
given in Fig.1. D2L context 0 is for the lazy bit planes. For
the neighborhood contexts, part of the contexts in EBCOT is
adopted [4]. 9 contexts are modeled for coefficients which
are about to be significant in the current bit plane and 3 con-
texts for the samples already significant in previous coded
bit planes, while sign bits are outputted without any com-
pression to reduce the coding complexity where 5 sign con-
texts are used in EBCOT. Codebooks for the probilities can
be trained offline and pre-saved for different contexts.

2.3. Context-based BPGC Algorithm
By incorporating the image context modeling techniques,
we extend the BPGC algorithm to Context-based BPGC
(CB-BPGC) to loosen the i.i.d. constraint of BPGC. CB-
BPGC uses the same Post Compression Rate Distortion Op-
timization algorithm in EBCOT Tier 2 to pack the bitstream
after the embedded coding is done. For the embedded cod-
ing part, Fig.2 illustrates the encoding process for the coef-
ficient blocks in CB-BPGC.

As shown in Fig.2, after calculating the lazy bit plane
parameter lzbp, some block classification is done in order
to model the local coefficients properties in a better way.
Observation shows that blocks with L < 0 (LOWE blocks),
which are low entropy high frequency subband blocks, have
quite a different D2L and ctxt related bits probabilities to



Figure 2: CB-BPGC encoding a block

those blocks with L ≥ 0 (SIG blocks). In addition, for that
SIG blocks, three different classes appear with distinct bits
probabilities. Fig.3 gives an example. The three 64×64
blocks in the figure have the same m = 6 and L = 3, but
the left one is smooth, the middle one seems more textual
and the right one contains obvious edge. If each block is
divided to smaller 8×8 sub-blocks (number in the sub-block
area submx,y indicates the most significant bit plane in the
current sub-block), we can see that the smooth block has a
smaller σ, the textual block has a median σ and the edge
block has a larger σ, where σ is the standard deviation of
subm array (subm is the mean value),

σ =
√

1
N − 1

∑
x,y

(submx,y − subm)2 (5)

We can then trained the thresholds of the parameter σ to
classify the three blocks. Blocks with the same class share
the same codebook mentioned in last subsection.

Figure 3: Block classification example: m = 6, L = 3
(block size: 64×64, divided into 8×8 sub blocks, numbers
in the sub blocks are the most significant bit planes of the
current sub blocks.)

After classification, CB-BPGC applys fractional bit
plane coding passes, bitplane by bitplane, to get a finer
embedded bitstream. A static binary arithmetic coder then
compresses all the bits with the look-up probability from
the codebook.

3. Experimental Results
The proposed coder is implemented with the well known
Java implementation of JPEG2000 (JJ2000)[8]. A number
of JPEG2000 grayscale images (10 typical JPEG2000 test
images such as cafe, fruits, etc) are evaluated for both loss-
less and lossy performance.

Table 2 shows the results of lossless coding perfor-
mance of 5 level wavelet decomposition at different types
of block size for reversible 5/3 wavelet filter specified in
the JPEG2000 starndard. The numbers of bit per pixel for
each compressed image by the EBCOT coder and the pro-
posed CB-BPGC are listed and the positive numbers in the
Perc. columns indicate the percentage of CB-BPGC better
than EBCOT while the negative ones are inverse. The av-
erage coding results show that CB-BPGC is more efficient
in compression than EBCOT, especially for those images
which are hard to compress, e.g. baboon and cafe, where an
adaptive coding procedure probably fails to learn the com-
plicated texture-like bit planes well. The compression re-
sults of the non-lazy bit planes for levels 0-4 coefficients of
image cafe in Fig.4 give a detailed example for this. The
lazy bit planes performance in Fig.4 also shows that it is
more efficient to output the raw bits in the lazy bit planes
instead of adaptive coding. In addition, EBCOT loses more
efficiency in the case of smaller code block size, e.g. when
code block size is 16×16, CB-BPGC is average 2.56% bet-
ter for the 5/3 wavelet transform (Table 2).

Figure 4: Cafe example
The average scalable compression performance of the

images in Table 2 (Daubechies 9/7, 5 level decomposition,
block size: 16×16) is listed in Fig.5, which shows that CB-
BPGC outperforms EBCOT in terms of PSNR except at
very low bit rates. The PSNR of CB-BPGC is more than
0.1dB for bitrate 1 bpp and about 0.25dB for bitrate 2bpp
on average. But for the low bit rate, it is probably because
the LL band coefficients is more like Rayleigh distribution
where BPGC cannot model them well and another reason
may be that we sacrifice some coding efficiency of the sign
bit by direct transmission to reduce complexity where in
low frequency subbands sign bits are compressible.

CB-BPGC is also lower complexity than JPEG2000. For
the grey scale images lossless and lossy encoding, on aver-
age about 11.04% and 9.02% of the JPEG2000 encoding
runtime are saved in CB-BPGC. By directly outputting the
sign bits and bits in the lazy bit planes we reduce some bur-



Table 2: Lossless compression results for reversible DWT 5/3 LeGall (in bit/pixel)

Image Size
64×64 32×32 16×16

J2K BPGC Perc. J2K BPGC Perc. J2K BPGC Perc.

baboon 500×480 6.166 6.020 2.36% 6.277 6.106 2.72% 6.626 6.412 3.22%
barb 720×576 6.249 6.143 1.69% 6.367 6.231 2.13% 6.728 6.553 2.61%
fruits 640×512 4.149 4.168 -0.46% 4.245 4.229 0.38% 4.538 4.451 1.91%
goldhill 720×576 4.645 4.609 0.78% 4.741 4.674 1.42% 5.058 4.937 2.39%
lena 512×512 4.620 4.568 1.12% 4.714 4.629 1.82% 5.022 4.871 3.01%
monarch 768×512 3.845 3.894 -1.28% 3.944 3.940 0.08% 4.237 4.150 2.04%
woman 512×640 4.238 4.234 0.10% 4.329 4.306 0.54% 4.619 4.532 1.89%
café 1024×1280 5.673 5.570 1.80% 5.791 5.671 2.07% 6.148 5.966 2.95%
tool 1280×1024 4.402 4.414 -0.28% 4.509 4.473 0.79% 4.826 4.708 2.44%
actors 1280×1024 5.408 5.320 1.62% 5.522 5.409 2.05% 5.873 5.690 3.12%

average 4.957 4.894 0.75% 5.062 4.967 1.40% 5.390 5.227 2.56%

den of the block context modeling in CB-BPGC. As it is
shown in the Fig.4 cafe example, for the levels 0-4 code
blocks, 30.9% of the bit planes are lazy bit planes(D2L ≤
−3), which can be transmitted directly. We can further re-
duce it by letting more bit planes be lazy bit planes, for ex-
ample, bit planes with D2L ≤ −1, where 57.8% of the bit
planes in the Fig.4 cafe example can be directly outputted.
The experiment also shows that the average lossless coding
performance of the ten images is still better than EBCOT
by 0.73% and 2.49% for block size 64×64 and 16×16 re-
spectively. By sacrificing a little coding efficiency, com-
plexity is reduced on these bit planes. In addition, the sta-
tic arithmetic coder always has lower computational com-
plexity than an adaptive arithmetic coders by avoiding the
probability adaptive procedure. A recent research on com-
putational complexity comparison of arithmetic coding al-
gorithms [9] shows that with a present-day processor, en-
coding time of the static arithmetic coder is about 58.6%
of that of JPEG2000 MQ coder for binary coding. Since a
static arithmetic coder is used in CB-BPGC while EBCOT
used the adaptive MQ coder, further reduction of complex-
ity can be achieved.

Figure 5: Average PSNR performance

4. Conclusion
We proposed a new entropy coder, CB-BPGC, for image
scalable coding based on the statistical characteristics of

the wavelet coefficients. By combining the embedded bit
plane coder BPGC with the context modeling technique,
CB-BPGC outperforms EBCOT on both lossless and lossy
compression performance. Besides, computational com-
plexity in CB-BPGC is also reduced compared to EBCOT.
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