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ABSTRACT

In this paper, we investigate the prospect of using bicoherence 

features for blind image splicing detection. Image splicing is an 

essential operation for digital photomontaging, which in turn is a 

technique for creating image forgery. We examine the properties 

of bicoherence features on a data set, which contains image 

blocks of diverse image properties. We then demonstrate the 

limitation of the baseline bicoherence features for image splicing 

detection. Our investigation has led to two suggestions for 

improving the performance of the bicoherence features, i.e., 

estimating the bicoherence features of the authentic counterpart 

and incorporating features that characterize the variance of the 

feature performance. The features derived from the suggestions 

are evaluated with Support Vector Machine (SVM) classification 

and shown to improve the image splicing detection accuracy 

from 62% to about 70%. 

1. INTRODUCTION 

Photomontage refers to a paste-up produced by sticking together 

photographic images. In olden days, creating a good composite 

photograph required sophisticated skills of darkroom masking or 

multiple exposures of a photograph negative. In today’s digital 

age, however, the creation of photomontage is made simple by 

the cut-and-paste tools of the popular image processing software 

such as Photoshop. With such an ease of creating good digital 

photomontages, we could no longer take image authenticity for 

granted especially when it comes to legal photographic evidence 

[1] and electronic financial documents. Therefore, we need a 

reliable and objective way to examine image authenticity. 

Lack of internal consistency, such as inconsistencies in 

object perspective, in an image is sometimes a telltale sign of 

photomontage [1]. However, unless the inconsistencies are 

obvious, this technique can be subjective. Furthermore, forgers 

can always take heed of any possible internal inconsistencies.  

Although image acquisition device with digital watermarking 

features could be a boon for image authentication, presently 

there still is not a fully secured authentication watermarking 

algorithm, which can defy all forms of hacking, and the 

hardware system has to secure from unauthorized watermark 

embedding. Equally important are the issues such as the need for 

both the watermark embedder and detector to use a common 

algorithm and the consequence of digital watermarks degrading 

image quality.  

On the premise that human speech signal is highly Gaussian 

in nature [2], a passive approach was proposed [3] to detect the 

high level of non-gaussianity in spliced human speech using 

bicoherence features. Unlike human speech signal, the premise 

of high guassianity does not hold for image signal. It was shown 

[4] that bispectrum and trispectrum of natural images have a 

concentration of high values in regions where frequency 

components are aligned in orientation, due to image features of 

zero or one intrinsic dimensionality such as uniform planes or 

straight edges. As images originally have high value in higher 

order spectrum, detecting image splicing based on the same 

principle of increased non-gaussianity would be a very low 

signal-to-noise problem, not to mention the possible complex 

interaction between splicing and the non-linear image features. 

Recently, a new system for detecting image manipulation 

based on a statistical model for ‘natural’ images in the wavelet 

domain is reported [5]. Image splicing is one kind of image 

tampering the system takes on; however, no further detail about 

the technical approach is provided in the article. 

Image splicing is defined as a simple joining of image 

regions. We currently do not address the combined effects of 

image splicing and other post-processing operations. Creation of 

digital photomontage always involves image splicing although 

users could apply post-processing such as airbrush style edge 

softening, which can potentially be detected by other techniques 

[5]. In fact, photomontages with merely image splicing, as in 

Figure 1, can look deceivingly authentic and each of them only 

took a professional graphic designer 10-15 minutes to produce. 

Figure 1: Spliced images that look authentic subjectively 

In this paper, we pursue the prospect of grayscale image 

splicing detection using bicoherence features. We first examine 

the properties of the proposed bicoherence features [3] in 

relation to image splicing and demonstrate the insufficiency of 

the features. We then propose two new methods on improving 

the performance of the bicoherence features for image splicing 

detection. Lastly, we evaluate the methods using SVM 

classification experiments over a diverse data set of 1845 image 

blocks. More details about this work are included in [6]. 

2. BICOHERENCE 

Bicoherence is a normalized bispectrum, i.e., the third order 

correlation of three harmonically related Fourier frequencies of a 

signal, X( ) [7]: 
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When the harmonically related frequencies and their phase are 

of the same type of relation, i.e., when there exists (ω1, φ1), (ω2,

φ2) and (ω1+ω2, φ1+φ2) for X( ), b(ω1,ω2) will have a high 

magnitude value and we call such phenomena quadratic phase 

coupling (QPC). As such, the average bicoherence magnitude 

would increase as the amount of QPC grows. Besides that, 

bicoherence is insensitive to signal gaussianity and bispectrum is 

often used as a measure of signal non-gaussianity [8]. 

2.1. Bicoherence Features 

Motivated by the effectiveness of the bicoherence features used 

for human-speech splicing detection [3], similar features are 

extracted from a bicoherence with 

• Mean of magnitude: M = | |–1 |b( 1, 2)|

• Negative phase entropy: P= n p( n)log p( n)

where

={( 1, 2)| 1=(2 m1)/M, 2=(2 m2)/M, m1, m2= 0,…,.M-1}

p( n)= | |–1 1( (b( 1, 2)) n) , 1(·)=indicator function

n={ |- +(2 n)/N < - +2 (n+1)/N}, n=0,…, N-1

2.2. Estimation of Bicoherence Features 

With limited data sample size, instead of computing 2-D 

bicoherence features from an image, 1-D bicoherence features 

can be computed from Nv vertical and Nh horizontal image slices 

of an image and then combined as follows: 
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In order to reduce the estimation variance, the 1-D bicoherence 

of an image slice is computed by averaging segment estimates: 
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We use segments of 64 samples in length with an overlap of 32 

samples with adjacent segments. For lesser frequency leakage 

and better frequency resolution, each segment of length 64 is 

multiplied with a Hanning window and then zero-padded from 

the end before computing 128-point DFT of the segment.

In Fackrell et al. [9], it is suggested that N data segments 

should be used in the averaging procedure for estimating a N-

point DFT bispectrum of a stochastic signal. Overall, we use 768 

segments to generate features for a 128x128-pixel image block. 

3. IMAGE DATA SET 

Our data set [10] is collected with sample diversity in mind. It 

has 933 authentic and 912 spliced image blocks of size 128 x 

128 pixels. The image blocks are extracted from images in 

CalPhotos image set [11]. As the images are contributions from 

photographers, in our case, they can be considered as authentic 

i.e., not digital photomontages.

The authentic category consists of image blocks of an 

entirely homogenous textured or smooth region and those having 

an object boundary separating two textured regions, two smooth 

regions, or a textured regions and a smooth region. The location 

and the orientation of the boundaries are random.

The spliced category has the same subcategories as the 

authentic one. For the spliced subcategories with object 

boundaries, image blocks are obtained from images with spliced 

objects; hence, the splicing region interface coincides with an 

arbitrary-shape object boundary. Whereas for the spliced 

subcategories with an entirely homogenous texture or smooth 

region, image blocks are obtained from those in the 

corresponding authentic subcategories by copying a vertical or a 

horizontal strip of 20 pixels wide from one location to another 

location within a same image. 

4. PROPERTIES OF BICOHERENCE FEATURES 

We are interested in investigating the performance of 

bicoherence features in detecting spliced images on the three 

object interface types for which such performance varies over, 

i.e. smooth-smooth, textured-textured, and smooth-textured. 

Figure 2 shows the scatter plot of the bicoherence magnitude 

feature (fM) of the authentic and spliced image blocks with a 

particular object interface type. The plots also show how well 

the edge percentage (y-axis) captures the characteristics of 

different interface types. The edge pixels are obtained using 

Canny edge detector. The edge percentage is computed by 

counting the edge pixels within each block. As the plots for 

bicoherence phase feature (fP) are qualitatively similar, they are 

omitted due to space constraints.  

Figure 2: Bicoherence magnitude feature for different object 

interface types

Figure 3: Distribution of the bicoherence magnitude feature, 

fM, (left) and the phase feature, fP (right)

We observe that the performance of the bicoherence feature 

in distinguishing spliced images varies for different object 
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interface types, with textured-textured object interface type 

being the worst case. Figure 3 shows the distribution of the 

features for the authentic and spliced image categories. We can 

observe that the distributions of the two image block categories 

are greatly overlapped, although there are noticeable differences 

in the peak locations and the heavy tails. Hence, we would 

expect poor classification between the two categories if the 

features were to be used directly. 

5. METHODS FOR IMPROVING THE PERFORMANCE 

OF BICOHERENCE FEATURES 

Our investigation on the properties of bicoherence features for 

images leads to two methods for augmenting the performance of 

the bicoherence features in detecting image splicing: 

1. By estimating the bicoherence features of authentic images. 

2. By incorporating image features that capture the image 

characteristics on which the performance of the bicoherence 

features varies, e.g., edge pixel percentage feature (fE)

capture the characteristics of different object interface. 

5.1. Estimating Authentic Counterpart Bicoherence Features 

Assume that for every spliced image, there is a corresponding 

authentic counterpart, which is similar to the spliced image 

except that it is authentic. The rationale of the approach, 

formulated as below, is that if the bicoherence features of the 

authentic counterpart can be estimated well, the elevation in the 

bicoherence features due to splicing could be more detectable. 

ε
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where  I is a set of splicing-invariant features while S is a  set 

of features induced by splicing, s is a splicing indicator and  is 

the estimation error. In this formulation, g1 corresponds to an 

estimate of the bicoherence feature of the authentic counterpart, 

denoted as fAuthentic and g2 corresponds to the elevation of the 

bicoherence feature induced by splicing, denoted as fSplicing.

With fSplicing, splicing would be more detectable after the 

significant interference from the splicing-invariant component,

g1, is removed. fSplicing can be estimated with fBic– fAuthentic,

which we call prediction discrepancy. The fAuthentic estimation 

performance would be determined by two factors, i.e., how 

much we capture the splicing-invariant features and how well we 

map the splicing-invariant features to the bicoherence features.

A direct way to arrive at a good estimator is through an 

approximation of the authentic counterpart obtained by 

depriving an image of the splicing effect. As a means of 

‘cleaning’ an image of its splicing effect, we have chosen the 

texture decomposition method based on functional minimization 

[12], which has a good edge preserving property, for we have 

observed the sensitivity of the bicoherence features to edges.  

5.2. Texture Decomposition with Total Variation 

Minimization and a Model of Oscillating Function 

In functional representation, an image, f defined in R2, can 

be decomposed into two functions, u and v, within a total 

variation minimization framework with a formulation [12]:  

{ }vufvuuE
u

+=+∇=
Ω

,)(inf
*

λ

where the u component, a structure component of the image, is 

modeled as a function of bounded variation while the v

component, representing the fine texture or noise component of 

the image, is modeled as an oscillation function. ||·||* is the norm 

of the oscillating function space and  is a weight parameter for 

trading off variation regularization and image fidelity. 

The minimization problem can be reduced to a set of partial 

differential equations known as Euler-Lagrange equations and 

solved numerically with finite difference technique. As the 

structure component could contain arbitrarily high frequencies, 

conventional image decomposition by filtering could not attain 

such desired results. In this case, the structure component will 

serve as an approximation for the authentic counterpart, hence, 

the estimator for  fMAuthentic and  fPAuthentic are respectively 

structureAuthentic fMMf =ˆ  and 
structureAuthentic fPPf =ˆ .

Figure 4: Examples of texture decomposition 

For the linear prediction discrepancies between the bicoherence 

features of an image and those of its authentic counterpart, i.e., 

AuthenticMffMfM ˆα−=∆  and 
AuthenticPffPfP ˆβ−=∆ , the parameters 

and , without being assumed to be unity, are learnt by Fisher 

Linear Discriminant Analysis in the 2-D space (fM,
AuthenticMf̂ )

and (fP,
AuthenticPf̂ ) respectively, to obtain the subspace projection 

where the between-class variance is maximized relative to the 

within-class variance, for the authentic and spliced categories. 

We evaluate effectiveness of the estimator, as shown in 

Figure 5 using the prediction discrepancy for the magnitude and 

phase features. Our objective is to show that the new features 

( fM, fP) have a stronger discrimination power between 

authentic and spliced compared to the original features (fM, fP).

This objective is partially supported by observing the difference 

between Figure 5 and Figure 3 (In Figure 5, two distributions are 

more separable) 

Figure 5: Distribution of prediction discrepancy 

6. SVM CLASSIFICATION EXPERIMENTS

We herein evaluate the effectiveness of the features, which are 

derived from the proposed method, i.e., prediction discrepancy 

and edge percentage using our data set. SVM classifications with 

RBF kernel are performed with parameters chosen for ensuring 

no overfitting as verified by 10-fold cross-validation. Three 

statistics obtained from 100 runs of classification are used to 

evaluate the performance of feature sets: 
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where S and A represents Spliced and Authentic respectively and 

Ni
A|B denotes the number of samples B detected as A in the ith

run. The results of the experiment are shown below: 

Feature Set Maccuracy Mprecision Mrecall

Orig  0.6259 0.6354 0.5921 

Delta 0.6876 (+6.2 %) 0.6685 0.7477 

Orig+Delta 0.7028 (+7.7 %) 0.6725 0.7925 

Orig+Edge 0.7005 (+7.5 %) 0.6780 0.7667 

Delta+Edge 0.6885 (+6.3 %) 0.6431 0.8517 

Orig+Delta+Edge 0.7148 (+8.9 %) 0.6814 0.8098 

Note: Statistical t-tests for classification results using feature set 

{fM, fP} against all other results are performed. The null 

hypothesis (i.e., the mean of the two results are the same) is 

rejected at a 0.05 significance level for all tests. 

Below are the observations from the classification results: 

1. Prediction discrepancy features alone obtain 6.2 % 

improvement in Maccuracy over the original bicoherence 

features.

2. Edge percentage improves the performance of the 

bicoherence features by 7.5 % in Maccuracy.

3. Prediction discrepancy and edge percentage are redundant 

with respect to each other. 

4. The best performance (last row) obtained by incorporating 

all the proposed features is 71 % in Maccuracy, which is 8.9 % 

better than the baseline method (first row). 

The results are encouraging as it shows the initial promise of 

the authentic counterpart estimation. The third observation may 

be an indication that the prediction discrepancy features are less 

affected by image texturedness. Hence, if the estimation of the 

authentic counterpart bicoherence features can be further 

improved, it may help in the classification of the toughest case 

where the object interface type is textured-textured. 

The block level detection results can be combined in 

different ways to make global decision about the authenticity of 

a whole image or its sub-regions. For example, Figure 6 

illustrates the idea of localizing the suspected splicing boundary. 

7. CONCLUSIONS 

In this paper, we have shown the difficulties of image splicing 

detection using bicoherence features, despite the technique being 

effective on human speech signals. We have also empirically 

shown how the performances of the bicoherence features 

depending on the different object interface types. Two methods 

are proposed for improving the capability of the bicoherence 

features in detecting image splicing. The first exploits the 

dependence of the bicoherence features on the image content 

such as edge pixel density and the second offsets the splicing-

invariant component from bicoherence and thereby obtains 

better discriminative features. Finally, we observe improvements 

in SVM classification after the derived features are incorporated.

Figure 6: Spliced image blocks (marked with a red box) 

This is the first step of our effort in using bicoherence 

features for image splicing detection. We will next seek a model 

to get an insight on why bicoherence is sensitive to splicing, 

from which other effective features can be derived.  
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Feature Label Feature Name 

Orig magnitude and phase features { fM, fP } 

Delta Prediction discrepancy { fM, fP } 

Edge Edge percentage fE
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