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ABSTRACT 
 
In this paper, we propose a lossy-to-lossless watermarking 
scheme for JPEG2000/J2K images. The watermarking is 
incorporated into the procedure of J2K coding in a way 
that the final watermark coded J2K bitstream can still 
maintain lossless-to-lossy scalability. To recover the 
original image, the J2K decoder does not need to extract 
the embedded watermark. This is achieved by dividing the 
magnitude bits of the wavelet coefficients into two 
portions, controlled by the watermarking survival rate 
(WSR). The upper portion is used to embed watermarks, 
while the lower portion is modified to compensate for the 
distortion introduced by the watermarks in the upper 
portion. Watermark detection can be done either from the 
upper portion or from the lower portion, based on a 
presetting threshold. Experimental results show that the 
J2K coded watermarked images still nearly follow the 
rate-distortion curve optimized for their original J2K 
images. 
 

1. INTRODUCTION 
 
Digital watermarking has been well studied in recent 
years for applications such as ownership rights protection, 
content integrity verification, etc. Basically, a watermark 
can be embedded into an image either in a lossy or 
lossless way. Lossy watermarking means that the 
embedded watermark impairs the image quality 
permanently, i.e., it is impossible to recover the original 
image after watermarking [1, 2, 3]. In contrast, lossless 
watermarking allows recovery of the original image after 
watermark extraction [4, 5]. Lossy watermark is usually 
more robust than lossless watermark because it explores 
embedding watermarks around edges or other 
perceptually important parts in the image.  
    Inspired by the newly issued image standard J2K [6] 
which integrates lossless and lossy compression into one 
single bitstream, our objective in this paper is to study a 
new watermarking scheme which is able to scale from 
lossy to lossless level. Thus the watermarked J2K bit-
stream still owns this unique property. The whole 

watermarked bit-stream is coded in a lossless manner. If it 
is transcoded (e.g., truncated or parsed in J2K), the 
watermark can still be detected from this derived J2K 
bitstream as long as its transcoded bit-rate is larger than 
the WSR which is pre-defined at the watermark 
embedding site.  
     The WSR is actually used to specify the robustness of 
the watermark and control the visual quality of 
watermarked J2K images. The concept of WSR aims to 
make the watermarking tunable. Such a requirement is 
very important for security in a pervasive environment 
which contains many heterogeneous devices with varying 
computing resources and connected through different 
channels. Therefore, in such an environment, traditional 
security solutions which only provide yes/no answer 
cannot work well because different devices and channels 
may have different required security levels due to their 
limited computing power or their targeted applications. 
For example, sending a thumb-size gray-level image to a 
small portable device demands less security than sending 
a full-size color image to a desktop computer. Note that 
similar concepts have been proposed for other 
multimedia-related streaming applications [7, 8].  
    In this paper, we propose a lossy-to-lossless scalable 
watermarking scheme for J2K image, which satisfy the 
following requirements: 

 After embedding watermark, the scheme generates a 
single watermarked J2K bitstream that supports 
lossy-to-lossless decoding. 

 The watermarked J2K image is nearly rate-distortion 
optimized, compared with normal J2K image. 

 To recover the original image, the J2K decoder does 
not need to extract the embedded watermark. 

    Our proposed scheme is motivated by the scalable 
lossy-to-lossless audio coder [9], where the most 
important information is coded in the core layer (i.e., 
AAC) and the residual error is compensated by the coded 
information in the enhancement layer. In our scheme, the 
magnitude bits of the wavelet coefficients are cut into two 
portions. The watermark is embedded into the upper 
portion (core), while the lower portion (residual) is 
modified to compensate for the distortion introduced in 
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the upper portion. Therefore, a decoder can recover the 
original image without the need to extract the watermark. 
The cutting point of the magnitude bits is controlled by a 
user specified WSR. Given the WSR, the cutting points of 
all wavelet coefficients can be accurately allocated by 
running EBCOT [6]. 
     This paper is organized as follows: Section 2 gives the 
system overview; Section 3 and Section 4 describe the 
detailed watermark embedding and extraction methods 
respectively. Experimental results are given in Section 5. 
Finally, Section 6 concludes the paper. 
 

2. SYSTEM OVERVIEW 
 
Fig. 1 illustrates watermark embedding in our proposed 
scheme. It is integrated with the J2K encoding process. 
Given the original image, the WSR and the watermark, 
we divide the magnitude bits of wavelet coefficients into 
two portions: core and residual. The watermark is 
embedded into the core portion, while the residual portion 
is modified to compensate for the distortion introduced by 
the watermark embedded in core portion. After that, the 
two portions are concatenated together and sent to J2K 
encoding, resulting in one single watermarked J2K 
bitstream that supports lossy-to-lossless decoding. 
     Watermark detection is the reverse process of 
watermark embedding. Similarly, the magnitude bits of 
wavelet coefficients are divided into two portions. We 
compute the correlation between the watermark and either 
the upper portion or the lower portion of the coefficients, 
which is then compared with a threshold to decide 
whether the watermark is present. In addition, a decoder 
can recover the original image without the need to extract 
the embedded watermark, as described in Section 4. 

 

Fig. 1. Diagram of watermark embedding 
 

3. WATERMARK EMBEDDING 
 
We assume the watermark is a random noise sequence of 
real numbers Wwi ∈ , where Mi ,,2,1 K= , and M  
is the length of the watermark sequence. It is normal 
distributed with zero mean and unit variance. We adopt 
the spread spectrum watermarking technique, though 
other watermarking techniques may also be applicable.  

     Firstly, using 5x3 reversible wavelet transform [6], we 
decompose the original image N times to obtain multi-
resolution representations or subbands of the image: HLn, 
LHn, HHn and LLN ( Nn ,,2,1 K= ). HLn and LHn 
subands are used to embed watermarks. 
     Secondly, WSR is used to search for the optimized 
truncation points by running the J2K EBCOT process [6]. 
For the same WSR value, the corresponding truncation 
point might be different for different codeblocks. If 
necessary, the truncation point is adjusted to stay at the bit 
plane boundary. After that, the truncation point is used as 
the dividing point to split magnitude bits of wavelet 
coefficients. All magnitude bits above the truncation point 
form the upper portion (U bits), while the rest form the 
lower portion (L bits). In particular, each wavelet 
coefficient iI is divided into two numbers iu and id  such 
that 

i
L

ii duI +×= 2 ,   )()()( iii dsignusignIsign ==  

     Thirdly, we compute the value i∂  that should be 

added to iu  in order to embed the watermark.  
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where α  is a fixed scaling factor between 0 and 1 (α = 
0.2 in our experiment). By using iu , a visual masking 

factor is implicitly utilized. For instance, for larger 
coefficients, the watermark will be embedded with more 
energy to enhance watermark robustness without 
degrading perceptual quality. However, adding i∂  to iu  

may cause overflow or change of sign for iu , which may 
affect the J2K coding efficiency. So, we need to shape it 
to a new value i∂′  that does not cause any overflow or 

change of sign. The i∂′  is an integer with the largest 
magnitude that satisfies the following conditions: 
     ii ∂≤∂′ , )()( ii signsign ∂′=∂ , 

     12 −≤∂′+ U
iiu , )()( iii Isignusign =∂′+ , 

     122 −≤×∂′− +λLL
iid , )()2( i

L
ii Isigndsign =×∂′−  

Once the value of i∂′  is decided, we can embed the 

watermark iw  to iu  and obtain iii uu ∂′+=' . On the 
other hand, the introduced distortion is compensated by 
modifying id , such that L

iii dd 2' ×∂′−= . After that, 
'
iu  has U magnitude bits and '

id  has λ+L  magnitude 

bits, where λ  is the number of extra bits to accommodate 
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overflow of '
id . Lastly, the sign bit of iI , U magnitude 

bits of '
iu  and λ+L  magnitude bits of '

id  are 

concatenated as one coefficient ''' 2 i
L

ii duI +×= +λ , 
which is then sent to EBCOT for encoding. The final 
output is the J2K coded watermarked image. 

 
4. WATERMARK DETECTION 

 
Given a watermarked J2K image, the detector still needs 
two other inputs for the watermark detection: WSR and 
the watermark. WSR is used to determine the dividing 
point for each coefficient from the J2K decoding process, 
for recovering the original image and correctly correlating 
watermarks.  
     Assume we have obtained the sign-magnitude 
representation of each coefficient *

iI , it is then divided 

into two numbers *
iu and *

id such that 
*** 2 i

L
ii duI +×= +λ  and 

)()()( ***
iii dsignusignIsign == . Then we calculate 

the correlation z between *
iu and iw  as follows 

∑
=

×=
M

i
ii wu

M
z

1

*1  

By comparing the correlation z  with a predefined 
threshold zThr  [10], the detector can decide whether the 
watermark sequence W is present in the image.  
     The above discussion is for watermark detection, 
where only *

iu is used (the watermark detection from *
id  

can be derived in a similar way). To recover the original 
image, we have to use both *

iu  and *
id . Suppose there is 

no introduced distortion, i.e., *
iu = '

iu  and *
id = '

id , the 

recovered coefficient iI ′′  can be computed as follows,  
''** 22 i

L
ii

L
ii duduI +×=+×=′′  

  )2(2)( L
ii

L
ii du ×∂′−+×∂′+=  

  ii
L

i Idu =+×= 2  
     Note that WSR is used to recover the original image 
and correctly correlate the watermarks by accurately 
allocating the dividing points for each coefficient. 
Therefore, whether we can get the exact same dividing 
points as those done at the embedding site plays a key role 
in our scheme. We observed that actually EBCOT works 
very well in accurately allocating the dividing points by 
testing various types of images, assuming no distortion is 
introduced into the coded watermarked bitstream. Even if 
there was an exception where EBCOT failed in accurately 
allocating those points, we could solve this problem by 

inserting some special markers (>0xFF8F) into the 
bitstream to flag them. For the cases where some 
distortion exist, i.e., *

iu ≠ '
iu  and *

id ≠ '
id , though we 

cannot recover the original image, the watermark can still 
be detected. In addition, the watermark embedded in 
upper portion and lower portion can still cancel each other 
to a certain extent, thereby achieving better image quality. 
 

5. EXPERIMENTAL RESULTS 
 
In order to evaluate the proposed scheme, we have 
implemented the scheme and measured PSNR, detection 
response and file size of the watermarked J2K image.  
    Firstly, we test the compatibility of our scheme with the 
standard J2K decoder, i.e., using the standard J2K 
decoder to decode our coded watermarked J2K image. Fig. 
2 shows the original “Café” image (gray level, 1024x1280 
pixels, 8 bits/pixel) and that decoded by a standard J2K 
decoder. The image is decomposed into 4 resolution 
levels, and Subband HL2 is used for watermark 
embedding. The measured PSNR is about 40dB.  
     Fig. 3 compares the PSNR of the normal J2K image 
and the watermarked J2K images (WSR = 1.5bpp and 
3.5bpp) when they are truncated to different rates. It 
shows that the PSNR curve of the watermarked images 
closely follows that of the normal J2K images. The only 
exception is at the point when truncation rate approaches 
the WSR, where the image quality is lower than the 
normal J2K image. This is due to the absence of 
compensation from the lower portion, as all compensated 
bit planes have been completely truncated. Therefore, the 
watermarked J2K image is nearly rate-distortion 
optimized, as compared with the normal J2K images. 
    Fig. 4 compares the detection response (or correlation 
value) of the watermarked J2K images (WSR = 1.5bpp 
and 3.5bpp) when they are truncated to different rates. 
When the truncation bit rate is greater than 0.2, the 
detection response is always above the corresponding 
threshold, which indicates the presence of the claimed 
watermark. When the truncation rate is very small 
(<0.2bpp), the detection response drops drastically, 
thereby being unable to detect the watermark. Another 
interesting point is that, the detection response for 
watermark with WSR=1.5bpp drops much slower than 
that with WSR = 3.5bpp. That is to say, a watermark 
embedded with a smaller WSR is more robust. 
    Fig. 5 shows the detection responses when the 
watermarked image is detected against 200 different 
watermark sequences, one of which (50th) was indeed 
embedded in the image. As seen from the graph, it can 
effectively detect the right watermark using the computed 
threshold value. The detection response when WSR= 
1.5bpp is smaller than that when WSR=3.5bpp. This is 
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because iu  is smaller when WSR is smaller, thus, the 
watermark is embedded with less energy, resulting in 
smaller detection response. 
     Fig. 6 compares the size of the normal J2K image and 
the size of the watermarked J2K images with different 
WSRs. Our experiment shows that the size of 
watermarked J2K images is about 2%~4% larger than the 
size of the normal J2K images. 
 

5. CONCLUSION 
 
In this paper, we have presented a lossy-to-lossless 
watermarking scheme for J2K images. Our contribution 
includes: 1.) Generating a single J2K coded watermarked 
bitstream that supports lossy-to-lossless decoding; 2.) The 
original image can be recovered without the need to 
extract the watermark. 3.) Quality of protection and 
watermark robustness level is quantitatively controlled by 
a parameter called the watermark survival rate (WSR). 
Our experiments confirmed that the watermarked J2K 
image is nearly rate-distortion optimized, the decoder can 
recover the original image, the watermark can be detected 
effectively, and it is robust against code stream truncation. 
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(a) Original image (b) watermarked image, WSR=1.5bpp  
Fig. 2 Original and Wmk image decoded by standard decoder Fig. 3 Image PSNR Vs. Truncation Rate 
 

            
Fig. 4 Correlation Vs. Truncation Rates Fig. 5 Correlation Vs. different 

watermarked sequences 

 

Fig. 6 Original J2K file size Vs. 
watermarked J2K file size for various 
WSRs 
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