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Abstract - We present a novel approach for joint optical
network provisioning and IP traffic engineering, in which
the IP and optical networks collaboratively optimize a
combined objective of network performance and lightpath
provisioning cost. We develop a framework for distributed
multi-layer optimization. Our framework is built upon the
IP-over-Optical (IPO) overlay model, where each network
domain has a limited view of the other. Our formulation al-
lows the two domains to communicate and coordinate their
decisions through minimal information exchange. Our so-
lution is based on a novel application of Generalized Ben-
der’s Decomposition, which divides a difficult global opti-
mization problem into tractable sub-problems, each solved
by a different domain. The procedure is iterative and con-
verges to the global optimum. We present case studies
to demonstrate the efficiency and applicability of our ap-
proach in various networking scenarios. Our work builds a
foundation for “multi-layer” grooming, which extends tra-
ditional grooming in the optical domain to data networks.
The data networks are active participants in the grooming
process with intelligent homing of data traffic to optical
gateways.

I. INTRODUCTION

We present a novel approach for joint optical network
provisioning and IP traffic engineering, in which the IP and
optical domains collaboratively optimize a combined ob-
jective of network performance and the cost of provision-
ing capacity. The context for this work is the rapid tran-
sitioning of the Internet transport infrastructure towards a
model of high-speed router networks that are directly in-
terconnected by reconfigurable optical core networks. The
work in this paper is premised on just such a model. This
IP over Optical (IPO) architecture, when coupled with the
emerging ASON/GMPLS (Automatically Switched Opti-
cal Network/Generalized Multi-Protocol Label Switching)
optical control plane, offers network operators opportu-
nities for dynamic multi-layer optimization that will give
significant savings in capital and operating expenses [3],
(4], [8], [12].
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A key conceptual contribution of the present work is the
notion of “multi-layer grooming”, which embraces both
the optical and IP layers, whereas conventional groom-
ing functions are confined to the former [7], [18], [22].
The traditional goal of grooming is the minimization of
stranded, i.e., unutilized, bandwidth in optical lightpaths.
This has also been viewed as optimal packing of the wave-
lengths. This goal is recognized in the present work. How-
ever, the goal here is broader and to achieve this goal we
make the data networks active participants in the groom-
ing process. Specifically, intelligent homing of data traffic
to optical gateways is an integral mechanism for achieving
our overall objectives. However, the homing gains must
be weighed against other performance factors in the data
networks, such as load balancing. Thus our overall ob-
jective stated above unavoidably combines performance in
the data as well as the optical networks. The objective re-
flects the value from carrying data traffic from source to
destination, as well as the cost of provisioned wavelengths
in the optical core.

However great are the potential benefits of converged
data-optical networks, the concept is only interesting if
the implementation is scalable and distributed. This paper
develops a framework for distributed implementation that
converges to the global optimum. The implementation is
premised on cooperation between the data and optical net-
works. More specifically, in each iteration these networks
perform local optimizations, which is followed by an ex-
change of the computational results. A key feature is that
the information exchanged is kept to a minimum. Yet the
iterations converge to the global optimum, i.e., the solu-
tion is as good as if all the networks were administered as
a single entity.

Our framework is enabled by GMPLS, which facilitates
the convergence of data and optical networks and supports
different levels of cooperation and information exchange.
At the opposite ends of the integration spectrum are the
Peer and Overlay models [3], [17]. In the Peer model, opti-
cal and IP nodes act as peers such that a single routing pro-
tocol instance runs over both the IP and optical domains.
Hence, the optical network elements become IP address-
able entities. The advantage of the Peer model is that the



entire network can be managed and traffic engineered as
if it is a single network; its drawback is that routing and
resource information need to be globally advertised.

In the Overlay model, IP/MPLS routers do not partici-
pate in the routing protocol instance that runs among the
optical nodes; in particular, the routers are unaware of the
topology of the optical domain. The optical network pri-
marily offers high bandwidth connectivity in the form of
lightpaths according to a client-server model. A standard
GMPLS user-network interface (UNI) based on RSVP-TE
([21]) has been developed at the IETF. The GMPLS UNI
enables signaling and information exchange between the
IP and the optical domains.

Our framework is built upon the Overlay model. This
choice is motivated by the observation that the optical and
data networks are typically operated as distinct organiza-
tions, either with separate owners or as separate divisions
within the same corporate entity. Such an organizational
structure is likely to be even more pervasive in the future
due to increasing disaggregation of vertically integrated
service providers and the emergence of new models, such
as the carrier’s carrier [2]. The Overlay model of this pa-
per reflects the implications of organizational separation
of the optical and individual data networks. We omit the
discussion on the Peer model due to space limitations, and
observe in passing that the solution procedure presented
here is an attractive candidate for numerically solving the
Peer model.

When building this framework, we address several im-
portant issues that lead to the following features. First, the
purpose of the framework is to enable the data and opti-
cal networks to cooperatively optimize a given objective,
which is broadly defined to be the surplus of the utility
from carrying end-to-end traffic demand over the cost of
optical lightpath provisioning. A nonlinear utility func-
tion is used to measure the value of carrying data traffic
from source to destination. We do not confine ourselves
to any specific form of the utility function, except for re-
quiring that it is concave and monotonically increasing in
the amount of traffic carried. We capture several scenar-
ios in the problem formulation, including random traffic
demands with known distributions and price-demand rela-
tionships. Consequently, our framework allows many dif-
ferent forms of nonlinear utility functions.

Another notable feature of the framework is the signifi-
cant separation of scales in the data and optical networks.
The bandwidth of links in the data network are of con-
siderably lower capacity. A typical data network rate is
T1, DS3 or OC3, while in the optical core it is OC48
or OC 192. On the other hand, the number of routers
is typically orders of magnitude greater than the number

of optical cross-connects (OXC). The indivisibility of the
wavelength as a unit of provisionable bandwidth in the op-
tical transport network imposes integrality constraints on
the decision variables in the optimization problem. This
feature adds significantly to the difficulty of solving the
optimization problem.

Our framework implements a division of tasks that al-
lows each network to focus on its own domain. Decision-
making in the data networks aims to make the most ef-
ficient use of resources in the optical network by routing
and admission control. Decision-making in the optical net-
work is concerned with providing necessary resources to
transport traffic at minimum lightpath provisioning cost.
Nevertheless, the division of the tasks does not imply a
complete separation of decision-making. The framework
facilitates the communication and coordination between
different networks to maximize the global objective func-
tion. For instance, the optical network has the implied task
of inducing the data network to home traffic in such a man-
ner that facilitates efficient packing of wavelengths.

Finally, service providers incur an implied “cost” asso-
ciated with information transfer between the data and op-
tical networks. In the case when the two networks are or-
ganizationally separate, the cost may be in strategic terms,
i.e., loss of competitive advantage, as for example, with
the transfer of infrastructure capacity information. An-
other cost to the service provider is the operating expense
for collecting and transferring detailed information on the
network. For this reason, while information exchange in
our scheme is sufficient for achieving global optimality,
communications between the networks are kept at a mini-
mum.

The mathematical foundation of our framework is Gen-
eralized Bender’s Decomposition. Bender’s method is
well-known for mixed integer linear programming. It has
also been proposed previously for the solution of nonlin-
ear programming problems with continuous variables. The
Generalized Bender’s Decomposition presented in this pa-
per combines a nonlinear objective function with integer
variables. Also of note is the mapping of the decomposi-
tion into a cooperative and iterative internetworking solu-
tion procedure. In each iteration, each data network passes
the net and marginal values of the proposed provisioned
lightpath bandwidths to the optical network. The optical
network passes information on the proposed provisioned
lightpath bandwidth to the data networks. The procedure is
proven to converge to the global optimum in a finite num-
ber of iterations. Moreover, each iteration refines an upper
and a lower bound on the global solution. The procedure
terminates when the two bounds coincide.

The treatment in this paper is restricted to the case of



a single pattern of end-to-end traffic demands. Neverthe-
less, we recognize that in reality network traffic patterns
are constantly changing. Our framework can be extended
to accommodate the latter, starting from decomposing the
problem according to scale. For relatively small scale
changes, the corresponding network response is only at the
data networks. That is, the routing and admission control
at the data networks are affected, while the reprovisioning
of wavelengths to optical pipes is not necessitated. How-
ever, sufficiently large changes in traffic patterns will jus-
tify the need for undertaking the relatively heavy load of
re-calculating the optical provisioning process and with it,
of course, the data network traffic engineering solution as
well. An important element of this strategy is the design
of automatic thresholds that trigger the latter on the basis
of on-line measurements. Such procedures are outside the
scope of this paper. However, as the results from the case
study in Section V-B shows, the insights from this study
are useful and the tools these generate will be essential in-
gredients of such procedures.

Interaction between different network domains has been
discussed in other contexts (e.g., [9], [16] ). The main
distinction of our work is that we focus on cooperative
rather than selfish behavior. We model and analyze cross-
layer network cooperation instead of interactions of mul-
tiple data networks within the same layer. The techniques
developed here are quite likely to be effective for a broad
range of applications.

In Section II we describe the data and optical networks
under consideration. In Section III we formulate the opti-
mization model. In Section IV we discuss a novel applica-
tion of Generalized Bender’s Decomposition. We present
sample results from case studies in Section V and conclude
in Section VI.

II. INTERNETWORKING MODEL

The network under consideration is composed of an op-
tical core connected to multiple data subnetworks. The lat-
ter are indexed by j = 1, ..., J. Let V; be the set of nodes
in data network j and V), be the set of all optical nodes.
Data networks interconnect with the optical core at a set of
gateway nodes V, where

Ve = U (V;N V).
The link set of the network is L, i.e.,
L=L1U..ULFUL,,

where £;(j = 1,2,...J) is the set of data links in subnet
j and L, is the set of optical links. £;(j = 1,2,...,J) are
pairwise mutually exclusive, as are £, and £L; for all 5.

Traffic has its sources and destinations in nodes of the
data networks, and it is carried by the composite network.
A traffic-carrying route is typically composed of a se-
quence of data, optical and data network links, in that or-
der. Usually there are many routes from source to destina-
tion; however, from policy and technical restrictions only a
subset of these routes may be eligible to carry traffic. The
collection of eligible routes between a (source,destination)
node pair is defined to be the admissible route set for the
pair.

A. Data Network Model
Let

Sj ={0:0 = (v1,v2),v1,v2 € V;}

be the set of all (source,destination) node pairs in subnet
j (7 =1,...,J). Note that we exclude cases where sources
and destinations are in different data networks. The sym-
bol for a node pair o does not indicate the data network to
which the node pair belongs, but the context should make
it clear. For each 0 € Sj, R;(o) is the admissible route
set. Each route » € R (o) contains a subset of data net-
work links I € L, and possibly an optical segment. The
data networks have no knowledge of the optical network’s
internal structure. Therefore, the entire optical segment is
treated as a single optical pipe that connects the (ingress,
egress) gateway nodes pairs. Define

G={c:¢=(s1,%),51,% € Vo}

as the set all gateway node pairs. We say ¢ € r if route r
enters and exits the optical core at node pair ¢. We assume
for any route 7, |r U G| < 1, i.e., a route enters the optical
core at most once.

Let g, be the total bandwidth provisioned to carry traf-
fic between the node pair ¢ and z, be the bandwidth provi-
sioned on route 7 € R (o). Then the following constraints
apply for end-to-end (E2E) routing:

Yo = Z Ty, 0€S8;,i=12,..,J
reR; (o)

)

Furthermore, denote the capacity of data link [ € £; by g
and bandwidth between the gateway pair ¢ provisioned to
data subnet j by w, ;, then

ooz < g

reR;:ler

Z T4 <

TER; CET

leLl,j=1,2..J.

se€g,j=12,..J (2

w(,ja

In this paper, ¢; are given parameters. The size of optical
pipes, wy j, are controlled by the optical core, as explained
in the following subsection.



We end this subsection by noting that in the following
discussions it is convenient to express the two systems of
inequalities in (2) in matrix form:

A;Z; < G, Bji; < j, 3)

where 7; = (zr, 7 € R;), §; = (q, | € L), and W; =
(we,j, < € G).

B. Optical Network Model

The optical core decides on w j, the amount of band-
width between gateway node pair ¢ to be allocated to the
data network j. Assume that the core treats all traffic be-
tween gateway pairs ¢ uniformly, i.e., obliviously of their
source-destination node pairs in the data subnets. Then for
the optical core,

J
W, = Z W j
j=1

is the end-to-end demand that is identified with an optical
pipe connecting the node pair . It is realized by bandwidth
provisioned in possibly multiple paths, where paths (ab-
breviated from lightpaths) in the optical network are anal-
ogous to routes in the data networks. We define P(<) to
be the set of candidate paths between node pair ¢ and let
Xp(p € P(s)) be the bandwidth provisioned on path p. It
follows that

> xp =W 4)

peEP(s)

Denote the number of wavelengths deployed on link /
by z;, and b as bandwidth per wavelength. We omit the
straightforward generalization that allows b to depend on
[. Thus #z; is a non-negative integer, and bz; is the aggre-
gate bandwidth available on the optical link /. The sum of
bandwidths provisioned on all paths that use link / cannot
exceed the link capacity, i.e.,

> xp < bz, L€ L, (5)
p:l€p

Let ¢; be the cost of deploying each wavelength on link /.
Thus, if z; wavelengths are deployed, the deployment cost
for link [ is ¢;2;.

In the above formulation, while the bandwidth avail-
ability implied by the number of wavelengths deployed
on each link is a key feature, the identities of the wave-
lengths are not tracked from link to link. This is done de-
liberately. First, the methodology introduced in Section
II-C, on “routing constraints in the optical network” is suf-
ficiently general to allow the latter feature to be taken into
account if necessary. Second, this issue is related to wave-
length conversion on which a great deal has been written

and much is already known. Introducing this topic on an
already over-extended paper would place an unreasonable
burden on the reader.

C. Routing Constraints in the Optical Network

Equations (4) and (5) are conditions that have to be sat-
isfied by the gateway-to-gateway(G2G) routing. In gen-
eral, the routing may be subject to other constraints im-
plied by the diverse capabilities of the optical nodes to
groom (i.e., unpack/pack between lower-rate and higher-
rate data streams) and switch traffic. These capabilities de-
pend on the presence of sophisticated electronics and come
at considerable cost. Nodes at the gateways to the optical
network are more likely to have these capabilities than in-
ternal nodes. We will consider several configurations in
a unified framework. At one extreme, every optical node
has these capabilities. In this case, traffic can be arbitrarily
split at all nodes and routed on different paths between a
pair of optical nodes. At the other extreme, no node has
these capabilities and the gateway has to select one path
from the candidates in the admissible set to carry all traf-
fic to the destination. An interesting intermediate case is
where the gateway nodes have the capabilities to split and
switch traffic, while the internal nodes do not.

To reflect these instances of constraints in a unified for-
mulation, let (W) be the set of all wavelength configu-
rations, {z,1 € Lo}, each of which makes W realizable.
The set Q(W) is the collection of all non-negative vectors
that satisfy three conditions. These conditions include (4)
and (5); additionally, another set of defining conditions of
Q(W) arises in case the use of a path excludes the use of
others. This exclusion property can be given as a condi-
tion on the paths’ indicator functions (a path’s indicator
function takes value 1 if the path is used and 0 otherwise).

> x> 0) <1, (6)

peP’

where P’ can be any collection of paths in which the use
of one path excludes the use of any other path.

For example, in the first of the two aforementioned ex-
treme examples, Q(W) is defined as the collection of Z
that are feasible for both (4) and (5), i.e., there is no need
for any exclusion condition (6). In contrast, in the second
extreme case, Q(W) is restricted by an exclusion condi-
tion,

> >0 =1, @

pEP(S)

which indicates that only one path (from the admissible
route set) can be used between a gateway node pair. Now
consider the example in which only gateway nodes have



Fig. 1. An Example of Routing Constraints

grooming and switching capabilities, so that traffic may be
split at the ingress gateway, but not at any internal node.
Then the definition of Q () is determined by (4), (5), and
the exclusion condition which applies on subsets of all ad-
missible routes that have a common initial link. For exam-
ple, consider the gateway pair (A, C) in Figure 1. In the
figure, A and C are gateway nodes and E is an internal
optical network node. Suppose P(A,C) has three paths
A-FE—-F—-CA-FE—-D-C,A—-—B—-C. Be-
cause the internal node E has no grooming capability, the
usages of routes A — E — F —Cand A— E—-D —C
are mutually exclusive. Therefore, the following exclusion
condition applies

>

pEP(A,C|E)

1{xp > 0) <1, ®)

where P(A,C|E) ={A— E—F—-C/,A— E—D-C}

In conclusion, the concept of Q(W) is versatile and al-
lows quite general routing constraints, including mutual
exclusion, to be modeled. Howeyver, it should be noted
that additional exclusion conditions in Q(W) require the
introduction of binary variables that makes the subsequent
optimization problem more burdensome.

Table I gives the key variables that have been introduced
in this section.

TABLE 1
KEY ROUTING VARIABLES

Traffic Demand Route/Path Provisioned
Sets Capacity on
Rte./Path
E2E Yo R;(0) T,
G2G Wi P(s) Xp

ITI. OPTIMIZATION PROBLEM FORMULATIONS

In this section, we formulate various optimization prob-
lems, which have in common the objective of maximizing
the surplus of total utility over the deployment cost in the
optical transport network. We give various choices for the

utility function, which in all cases reflects the value of car-
rying traffic. The deployment cost is proportional to the
number of wavelengths deployed on the optical links.

A. Utility Functions, Traffic Demand Characterizations

The total utility is the sum of the utility for each data net-
work, where the utility U} (%;) is a function of provisioned
bandwidth §; = (y,, 0 € S;), (j = 1,2,...,J) (see (1)).
Our model accommodates various traffic demand charac-
terizations, as well as utility functions.

1. Suppose that a “traffic matrix” specifies demand be-
tween source-destination pairs, i.e.,

D; = (D,, 0 €8;), )

where D, is the deterministic traffic demand between the
node pair o € §;. In this model the carried traffic for node
pair o is the minimum of provisioned bandwidth, ¥, , and
the traffic demand D,. Since it is waste of resource to
provision bandwidth beyond the demand, we require

Yo < Do, UESja

which implies that the carried traffic equals the provi-
sioned bandwidth. The utility for the j** data network is

Ui(§5) = D Tolos
o€S;

(10)

which is the weighted sum of carried traffic between
source-destination pairs. We may interpret 7, as the rev-
enue per unit of demand carried between node pair o, in
which case (10) gives the total revenue.
2. We may also adopt the concurrent flow problem formu-
lation, induce fairness among source-destination pairs, and
let v
CG(Q}):=§gg;j§i-

QY

3. Demands D, may also be given as a set of random
variables characterized by their distribution functions [20],
1.e.,

F,(d) = Pr(D, < d). (12)
In this case, we define the utility function to be
. Yo _
Uj(yj) = Z 7"'0[/0 OdFa(g) —"_yO'FO'(yO')]’ (13)

o€S;

where F,(d) = 1 — F,(d), the bracketed term is the ex-
pected carried traffic for node pair o and U; (%) is the ex-
pected total revenue. See [14] for details and properties.

4. Price-demand relationship may also be incorporated
into the model. Let the price p,(y,) be a decreasing func-
tion of the carried traffic y, and define the utility to be



the revenue, which is the product of price and demand,
summed over all node pairs, i.e.,

Uj(gj) = Z yapa(ya)'

o€S;

(14)

It is required that p, (y, ) is such that y,p,(y,) is a mono-
tonically increasing, concave function of y,. An impor-
tant example of price-demand relation that has been exten-
sively used is the constant elasticity demand function,

po = Agy, e, (15)

where €, > 1 is the constant price elasticity of demand.

5. With a little variation, we can also use the formula-
tion to address the problem of minimizing aggregate de-
lays subject to the condition that all demand is carried (as-
suming the problem is feasible). In this case, y,, which is
given exogenously, is demand that must be carried. This
condition is expressed as

Z Lr = Yo,
reR; (o)

If each link is approximated by a M /M /1 queue, then the
aggregate delay in data networking is

>
leL; q — Er:lEr Ly

It is desirable to have a smaller value of the above quantity.
Correspondingly,

Ui(Z) = ) !

)
lEﬁj Er:ler Tr —qp

which is a monotonically increasing and concave function
of z,.. We also require

Z zr < q vVl € L.
r:ler

B. The Optimization Problem

The global optimization problem can be formulated as

J
pomax, D UF) = Y aat  (6)
J=1 leLo
subject to
Z Ty = Yo 0€S8;,75=12,..J,
r€ER;(0)
Yo oz < q lel;, j=1,2.,1]
reR;:ler
Z zr < wej <€G,7=12,..,J
r€ER; :cET
{z, 1€ Ly} € QW), 7 integral, (17)

-

where (W) is defined in Section II-C. The utility func-
tion U} (.) in (16) is monotonically increasing and concave.

-

The necessary condition for Z € Q(W) is the existence of
Xp > 0 (p € P(s) such that

Do =

J
W, = ng,j cEeQG.

pEP(s) Jj=1
xp = by L€L, (18)
p:lép

Additional conditions reflecting optical routing constraints
may also need to be satisfied, as discussed in Section II-C.
Note the nonlinear objective function and integer variables
in the formulation of the optimization problem.

C. Introduction to Generalized Bender’s Decomposition

In the following, we follow Schrijver [19] and Geof-
frion [6] to introduce Generalized Bender’s Decomposi-
tion. Schrijver’s treatment is for the mixed integer lin-
ear programming problem and Geoffrion’s is for nonlinear
programming problems with continuous variables. How-
ever, our problem involves both integer variables and a
nonlinear objective function. The development here is a
synthesis of the two approaches.

Consider the following canonical optimization problem,

max{U(§) — Z|Mj<Z, 7 € Z}
Y,z

19)

where U(y) is a concave and monotonically increasing
function of 4/, M is a constant matrix, and Z is a finite set
of integral vectors to which 2 is restricted. The problem
can be decomposed as follows:

max{G(?) — ¢z, Z € Z}, (20)
z
where
G(7) = max{U(9)| M7 < ). 1)
g
We shall refer to the problems in (20) and (21) as master
and slave, respectively. In general G(Z%) is only given im-
plicitly, so that (20) cannot be solved directly. Generalized
Bender’s Decomposition is an approach to deal with this
problem. In this approach a sequence of slave problems
is solved for different values of Z. The solutions to these
problems are used to construct Bender’s cuts that define
approximations to G(Z).
Let 2 (k = 1,2,..., K) be a set of given values in Z.
Suppose g maximizes (21) for Z = Zj. Then (y, 2x) k =
1,2, .., K is a feasible solution to (19). Therefore,

(22)

?_}_fK{U(yk) — CZk}



gives a lower bound to the solution of the original problem,
and moreover the bound is non-decreasing in K.
Furthermore, by the duality theorem of convex program-
ming,
G(2) < U@G) +Xe(Z — M), VZ€Z,  (23)

where Xk denote the vector of Lagrange multipliers asso-
ciated with constraints Mg < 7. Let

T = U(fk) — Ne M. (24)
A Bender’s cut is defined as
G(Z) <Tp+ X2 k=12 .. K. (25)

An upper bound to the solution of the original problem
(19) is obtained by solving the following surrogate prob-
lem

max{y — &7y < T, k=1,2..,K, Z€ Z}.  (26)
02y

The upper bound decreases as K increases since increas-

ing the number of Bender’s cuts reduces the feasible region

of the solution.

Generalized Bender’s Decomposition is an iterative pro-
cess. In each iteration, a new instance of the slave problem
is solved. This solution is used to construct a new Bender’s
cut that augments the set of previous cuts. Each expansion
of the set of cuts defines a refinement to the approxima-
tion of G(Z) for which the corresponding master problem
is next solved. The process continues until the decreas-
ing upper bound and the increasing lower bound coincide,
which then defines the optimal solution.

Geoffrion has shown in [6] Theorem 2.4 that if Z is in
a finite discrete set and U() is concave and defined on a
convex, compact set, then the procedure is guaranteed to
terminate in a finite number of iterations.

D. A Simple Example

To illustrate how Generalized Bender’s Decomposition
applies to data-optical internetworking, consider the sim-
ple case of a single optical link and no data links. The
optical link connects a pair of nodes. Then the problem in

(19) is reduced to
ng}zl.x{U(y) — cz|y < bz, zintegral} (27)

and the master and slave problems in (20) and (21) are

max {G(z)—cz} (28)
z integral
and
G(z) = max{U )y < bz}, 29)

respectively. Both G(z) and cz are illustrated in Figure 2.
Note that G(z) is explicitly shown in the figure, while in
reality it is defined implicitly. The problem in (27) is to
find z that maximizes the vertical distance between G(z)
and cz.

We assume that there exists a sufficiently large value
Ymax such that

Uly) <Ufory > 0and U(y) = U if y > ymax,

i.e., once the provisioned capacity is sufficiently large,
adding new capacity will not improve the utility.
The procedure is as follows. First, let z; be some value

greater than ymax/ b. Solving (29) with z = z; gives a
solution that
= oUu
Y1 = 21, U(yl) == U, and Al = % — O

From (24) and (25), the first Bender’s cut is

G(Z) S Pl = U,

which is the (dashed) horizontal line in Figure 2. Next the
surrogate problem,

Ipyaé)({y —cz|y <T'1, z integral },

is solved to give the solution z = 0. Solving (29) with this
value gives

y2 =0, U(y2) =0, and A9 > 0,
and the second cut
G(z) < Agbz,

which is also shown in the figure. Solving the surrogate
problem again with both cuts enforced

n%azx{fy —cz|ly <T'1,v < Aobz, z integral },

gives z3, shown in Figure 2, which generates a third cut,
I's + A3bz.

Notice in the figure that as the number of cuts increases,
the approximation to G(Z) becomes increasingly refined.
As previously stated, this process continues until the upper
and lower bounds converge.

IV. DISTRIBUTED INTERNETWORKING PROCEDURE

We now explain how we obtain a distributed internet-
working solution procedure based on Generalized Ben-
der’s Decomposition. Each data network j (7 = 1,2..., J)
makes admission and routing decisions based on informa-
tion from the optical network on capacities provisioned on
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Fig. 2. Illustration of Generalized Bender’s Decomposition for
a Simple Example

optical pipes. A parsimonious representation of the result
is transferred to the optical network, which uses it to make
decisions on the provisioning of wavelengths on optical
links and bandwidth on optical pipes. In this procedure,
the master problem in the decomposition to the optimiza-
tion problem in (16) and (17) is

J
max Z{Gj(wj)—l-/_\'j'zﬁj—é'é'\é'e Q(W), Zintegral}.
2, W
) ]:1
(30)
For each data network 5 = 1,2,...,J, there is a corre-
sponding slave problem
G () = {max{U; ()
Tj.9;
\A; @ < g, BTy < dj,ye= >, =z}, BD
TER;(0)

where A; and B; are defined in (3). Decision-making in
the optical and data networks is associated with solving the
master and slave problems, respectively. The procedure is
iterative with information exchange (to be described be-
low) at each iteration between each data network and the
optical network. Figure 3 shows a schematic of this proce-
dure.

A. Data Network Optimizations

The slave problem (31) is solved by the j** data net-
work for fixed value of ;. This optimization maximizes
the utility, U;(%;), from carrying traffic, with respect to
admission control (%) and routing (), based on the fixed
capacity of data network links (¢;) and the capacity of the
optical pipes (w;). The latter information is transferred
from the optical network.

Recall that U;(;) is a concave increasing function of
/7, so (31) is a concave maximization problem and can be

Optimization by Data Network j (j=1,2,..., J)
Maximize Utilityj
with respect to routing & admission control
subject to capacity & routing constraints

net and marginal value of bandwidth provisioned

lightpath bandwidth on each lightpath

Optical Core Network Optimization
J
Maximize [JZletilityj — bandwidth cost]

with respect to lightpath configuration

Fig. 3. Schematic of the Distributed Internetworking Procedure

transformed into
min{max{U;(§;) + A;(w; — B;T;)
)\]‘ TjsYj

|~Aj-’i"j < q’ja Yo = Z xr}}a

reR; (o)

(32)

where Xj is the Lagrange multipliers associated with the
capacity constraints on the optical pipes, B;Z; < ;. By
the KKT optimality condition,

U; — U;-FXJ‘ (u_)'j _ Bjj;'j) = (U]* — Xij.i'j) + ijj (33)

where U;‘ is the optimal solution. We interpret A; . as the
marginal value of the optical pipe between gateway node
pair ¢, Aja; as the total value of optical pipes, and

Fj = U; — Xij.’fj

as the “net value” of the data network j, defined as the
surplus of the utility of the network over the “‘shadow cost”
of using the optical network pipes.

B. Optical Network Optimizations

The master problem (30) is solved by the optical net-
work; it incorporates information provided by all the data
networks. The information from the 5" network is on the
net (I';) and the marginal (Xj) values of the optical ca-
pacity to this data network. These values represent mini-
mal and necessary feedback from the data networks, based
on which the optical network optimizes its internal de-
sign problem for provisioning, without knowing details
of any data network’s topology, configurations, capacities
and traffic demands.



The optical network solves the master problem in the
form of

max (y — ¢%)
Y,Wj 2

J
S. t. v < Z(Fk,j + Xk,jwj) k=12,.. K.
j=1

J
ij’g =W, 7€ Q(W), Zintegral. (34)
j=1

C. Solution Procedure with Information Exchange

To summarize, the internetworking procedure has the
following steps.
1. Let K denote the iteration index. The optical network
starts from an initial provisioning solution, i.e., wave-
lengths on each link and bandwidth allocation to each path
in conformance with exclusion conditions, from which the
capacity of optical pipes are determined. Sizes of optical
pipes, W, are communicated to the data networks.
2. Data network j (j = 1,2,...,J) makes admission and
routing decisions to optimize its utility function for the
given size of optical pipes. The values of I'k ; and X K,j
that are obtained from this optimization are transferred to
the optical network. These values generate a new cut that
augments the set of cuts derived from all the previous iter-
ations. The augmented set is used by the optical network
for solving the master problem in the next iteration.
3. The optical network obtains a new provisioning solu-
tion by solving the problem in (34). The values j; that
are obtained from the optimization are transferred to data
network j(j = 1,2, ..., J).
4. Increment K = K + 1. Repeat steps 2 and 3 until the
termination condition for Generalized Bender’s Decompo-
sition stated in subsection (III-C) is satisfied.

V. CASE STUDIES

In this section, we present numerical case studies based
on the network topology shown in Figure 4. Circles de-
note data network nodes, squares denote gateway nodes,
and ovals denote switching nodes inside the optical net-
work. Bandwidth on each data link is fixed. The links
that connect data and optical nodes have 20 units of capac-
ity and other links that connect data nodes have 10 units.
Wavelength deployment cost is assumed to be 5, 10 or 15,
depending on the location of the optical link. Each wave-
length carries 40 units of capacity.

A. Case 1: Convergence

In the first example, we consider one data network con-
nected to the optical core. The utility for the service

Fig. 4. Network Diagram

provider, U, (Y, ), is defined to be the revenue y,p,, where
Yo and p, are the volume and the unit price for carried de-
mand for each node pair o, respectively. In general, p,
is a decreasing function of y,. Here we assume that the
relationship is characterized by the well-known function,

Yo = AoDy (35)

where the parameter e is the constant price elasticity of de-
mand and is set at 1.5. It reflects the rate of traffic demand
change with respect to price change. A, are scalars that
parameterize the potential demand volume, and their val-
ues are randomly generated in the range between 10 and
70. The total utility is the sum of revenue over all node
pairs,

Z Us(ys) = Z YoPo = Z Aflf/e ;71/6-

Figure 5 shows the performance of the procedure de-
scribed in Section IV for this example. At each iteration
we obtain an upper bound on the optimal solution and a
feasible solution. The figure shows rapid convergence of
the two values. In the following we normalize by divid-
ing the difference between the upper bound and the fea-
sible solution by the former. This normalized difference
is 62% initially, and drops to less than 5% after the first
ten iterations. The observed convergence indicates that the
iteration converges to the global optimal solution.

Figure 6 shows the configuration of the optical network
in the final solution. One wavelength (with capacity 40) is
installed on all optical links except the link between nodes
D and T. As can be seen in the figure, these capacities are
used to configure optical lightpath between nine out of the
ten gateway pairs. The bottom figure shows the size of
each lightpath that is communicated to the IP network. The
top figure shows internal routing of these paths that is kept
within the optical domain. The lightpaths are shown as
dashed lines in the figure, and the accompanying numbers

(36)
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Fig. 6. Optical Network Configuration. The bottom figure
shows the lightpath size that is communicated to the IP net-
work; the top figure shows the internal routing of lightpaths.

indicate the capacity of the lightpaths. Note that band-
width provisioning is not unique. It is possible to provi-
sion bandwidth to the path connecting gateway pair (C,E)
on both routes C-T-S-E and C-D-S-E, instead of provision-
ing all bandwidth on the latter as in the displayed solution.
The new provisioning arrangement reduces the burden on
the heavily loaded link S-D and spreads the load on links
S-T and T-C, which have the same capacity as link S-D
but carry less traffic. However, doing so will requires traf-
fic splitting at node S, which may complicate the manage-
ment of the optical network. In our scheme, the optical
network deals with this tradeoff without burdening the data
network.

We use the above procedure to conduct experiments to
identify changes in optical network configuration as wave-
length capacity increases and cost of unit bandwidth de-
creases. We start from the base case and scale capacity per
wavelength by a factor of k1 and cost per wavelength by a
factor k2. We let ko/k1 < 1 to reflect economy of scale,
i.e., the cost per unit of bandwidth decreases as bandwidth
per wavelength increases. Capacity on each lightpath for
different values of k1, ko is shown in Table II. In the base
case (k1 = ko = 1), many lightpaths are configured in the
optical core. As ki, ko increase, the core bandwidth has
to be deployed in increasingly large bundles. As a result,
only a small number of paths are provisioned, reflecting a
higher degree of capacity concentration in the core.

G2G—pair k‘l =1 k‘l =1.5 kl =2 kl =3

ko=1|ko=12|ky=15]ky=2
(A,C) 15.4 25.6 30 50
(A,D) 14.1 20.3 50 42
(A.E) 10.5 14.1 0 0
(B,C) 1.9 5.0 0 0
(B.D) 6.4 9.1 0 0
(B,E) 2.2 0 0 0
(C,D) 5.8 14.2 15.7 0
(CE) 11.5 0 0 0
(D,E) 15.8 0 0 0

TABLE 1T

CHANGE OF OPTICAL NETWORK CONFIGURATION WITH
WAVELENGTH GRANULARITY

B. Case 2: Random Demands and Shadow Costs

In the solution described earlier, shadow costs of opti-
cal pipes, X, are critical quantities that indicate marginal
values of the optical bandwidth to the data networks. The
passing of these values by a data network to the optical
core coordinates separate optimizations performed by the
two networks. Note that the concept of shadow costs has
been widely adopted in distributed network management
and utility maximization that involve optimal scheduling,
routing, and admission decisions [10], [11]. The approach
developed below presents a novel use of shadow costs for
capacity deployment and inter-network coordinations.

In this case study we demonstrate that the shadow cost
not only provides the basis for optimizing wavelength
deployment and bandwidth provisioning in the optical
network, but can also determine when re-optimizations
should take place. We first solve a base case that opti-
mizes the optical network configuration for some given



demands. We keep this configuration fixed while imposing
various changes of the traffic demand to the data network.
The question is whether the optical network needs to be re-
configured to accommodate these changes. We show that
shadow costs provide an excellent indicator to answer this
question. Specifically, if changes in demand cause large
changes in shadow costs, then re-optimization is in order.
Otherwise, the changed demand can be adequately accom-
modated by the existing optical network configuration.

We consider one data network and use the same topol-
ogy as in the previous example. However, we switch to dif-
ferent demand characterizations and utility function from
the preceding case in Section V-A. We let the demand vol-
ume between a node pair o be random and characterized
by the following truncated Gaussian distribution

d o—(z—1o)*/2s;
F,(d) =Pr{D, <d :/ ——dz, (37
@ =Pe(D,<d} = [ T dn, ()
for d > 0. The normalizing constant,
E o a
H, = Bric-1) _ _ _p (38)

77- - b
2 7 V2s,

and Erfe() =1 — Erf(), where p, and s, are the mean
and standard deviation of the untruncated normal distribu-
tion. Under certain conditions, e.g., when the ratio of y, to
s¢ is sufficiently large, these values are also good approx-
imations to the mean and standard deviation of the above
truncated distribution. The utility to be maximized is the
expected revenue, given by (also see (13)),

U(’g) - z WUE[min(yaa DU)]
= Z WU[/Oya HdFo'(e) + yO'FO'(yU)]a

where 7, is the revenue per unit of traffic carried between
node pair 0. We generate values of ug,, s,, and 7, by
letting

o =0+ 0K, 5o =5+0,, 7p =T+ 7. (39)

where (i, §, 7 are given constants, and 0¥, 65, §7 are val-
ues generated randomly to reflect differences in demand
distribution and unit revenue between different node pairs.

In the base case,
p=05,58=2,and T =8, (40)

and 0%, 65, and 0] are assumed to be uniformly distributed
over [—0.5,0.5], [—0.5,0.5], and [0, 4], respectively. The
solution to the problem from our procedure is shown in
Table III. The table gives both the optimal number of
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link | # of wavelength || G2G-pair | bandwidth
A-S 4 (A,B) 0
B-T 1 (A, O0) 60
C-D 1 (A,D) 60
C-T 3 (A,E) 40
D-S 2 (B,O) 6
D-T 0 (B,D) 4
E-S 3 (B,E) 10
S-T 3 (C,D) 36
(C,E) 50
(D.E) 20
TABLE III

OPTIMAL CONFIGURATION OF THE OPTICAL CORE

wavelengths deployed on each link as well as the optimal
amount of bandwidth provisioned on each optical pipe.

Next we keep the configuration unchanged but allow de-
mands to deviate from the base case in the following three
different ways.

1. We increase the mean y, by 20% to 100% at 20% in-
crement to simulate a systematic increase of demands be-
tween all node pairs.

2. We increase s, by the same percentages so that the av-
erage volume of traffic demand between each node pair
does not change but the demand uncertainty increases.

3. We keep both jz and s fixed but enlarge the support for
0¥ by the same percentages as above. In this case, the
aggregate demand in the data network remains unchanged,
but the differences in mean demand between node pairs
increase.

For each scenario, we solve the data network optimiza-
tion problem (31) in Section IV (with the configuration of
the optical network fixed as before). Figure 7 shows the re-
sulting shadow costs A, averaged over all optical gateway
node pairs .

Recall that shadow costs reflect marginal values of
bandwidth of the optical pipes to the data network. The
figure shows that the shadow costs are quite sensitive to the
first type of demand change: when the demand increases
across all node pairs of the data network, then there is a
clear need for more optical bandwidth, which is reflected
in the increases of the shadow costs. Note the rate of the
shadow cost increase is approximately 7, which is quite
close to 7, the unit revenue per unit of carried demand
(by (39) and (40), 7, is in the neighbourhood of 8). This
indicates that an additional unit of optical bandwidth added
can be used to carry close to one unit of traffic and to earn
a unit of revenue. In the second case, the demand does not
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Fig. 7. Impact of Demand Change on Shadow Costs

increase on average, but the data network still needs more
bandwidth to handle increased demand uncertainty. Us-
ing bandwidth to back up uncertain demands is less prof-
itable than using it to carry new demand, which explains
why the increase of shadow costs is smaller than in the
first case. In the third case where the demand increases
between some node pairs and decreases between others,
the data network can absorb the fluctuation by adjusting
routing and admission control in its own domain without
requiring more changes in the provisioning of the optical
core. Consequently, shadow costs are much less sensitive
to this type of demand change, as is shown in the figure.

Intuitively, one would expect if the increases in shadow
costs increase are small, then there is little need to recon-
figure the optical core. This intuition is verified in Table
IV in which we show the total number of wavelengths the
comes from re-optimizing the problem with new demands.
The first row corresponds to the base case where the num-
ber of deployed wavelength is 17. The other rows show
the optimal wavelength deployment for different demand
changes. For instance, a 40% increase in mean demand
requires increasing the number of wavelength to 21. In
the case of increasing standard deviation, the threshold is
60%. Furthermore, the number of wavelengths need to be
increased to 23 when mean demand is increased beyond
80% while no such increase is needed in the other cases.
Comparing Figure 7 with Table IV, we see that there is
a strong correlation between the increase of shadow costs
and the need to add new wavelengths. Therefore, it is con-
ceivable that in a dynamic environment where the demand
is constantly changing, the optical core should keep com-
municating with the data network on these shadow costs,
and restart the aforementioned optimization process once
it detects a significant change.

% increase | mean | std. dev. | difference

0% 17 17 17

20% 17 17 17

40% 21 17 17

60% 21 21 17

80% 23 21 17

100% 23 21 17
TABLE IV

OPTIMAL NUMBER OF WAVELENGTHS FOR DEMAND

CHANGES

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented a framework for ef-
ficient multi-layer IP traffic engineering and optical net-
work configuration in the IP-over-Optical Overlay model.
Our framework accommodates various traffic demand for-
mulations and utility functions. We have shown that the
distributed implementation of the overlay model achieves
global optimum. Our approach is derived from the Gen-
eralized Bender’s Decomposition, where the sub-problems
(slave and master) correspond to separate decision-making
by the data and optical domains. The information ex-
change between the two domains is kept at a minimum and
may be mapped into standard communications through the
UNL

Our work introduces the concept of “multi-layer”
grooming, which broadens the traditional grooming in the
optical domain to data networks, where now the latter are
active participants in the grooming process with intelligent
homing of data traffic to optical gateways.

While the treatment in this paper is restricted to the
case of a single pattern of end-to-end traffic demands, our
framework can be extended to accommodate a dynamic
environment with changing demands. As we demonstrated
in the numerical case studies, shadow costs of optical paths
provide an excellent indicator as to when re-optimization
of the optical network is required. This result points to an
interesting direction for future work.
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