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problem. This approach has also been discussed by George [ 131 in connection 
with some iterative imbedding algorithms. We shall first describe Hackney’s 
approach briefly, and then an efficient implementation of it will be presented 
using the symmetric marching technique. 

Inverting the partitioned matrix in (4) we obtain 

(5) 

and solving (5) for B,,w, gives 

B,,w, = vT - B,,w,. (6) 

Since the matrix B,, is positive definite, w. has been set equal to zero. A fast 
direct method can be used to solve the system 

to obtain Bzlwo as v,. Having got cr, the wr is then obtained by solving 

B,,w, = vT - i$. (8) 

The method thus requires Bzz, which means that we need p (the number 
of grid points on T) corresponding columns of the inverse of the coefficient 
matrix A. This method, therefore, requires solving p +2 systems of the form 
(3), and the solution of the p linear equations given by (8). 

We now describe the computational procedure for the efficient implemen- 
tation of the above technique using the SMT. 

Step 1: SMT and the Fast Generation of the Capacitance Matrix B,, 

(p x p). In order to generate the p columns of B,,, corresponding to p grid 
points on T, p calls of the SMT applied to every grid point in S will be 
required. For the kth (1~ k 6 p) call of the SMT, the following finite 
difference formulas will be used: 

ui,j+l =4ui,j-ui+l,j-ui_1,j-ui,j-1' (9) 
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This equation holds for all points belonging to D U Q U T-{ kth grid point on 
T}. Also 

Ui,j+l=4ui,j-~i-l,j-~i+~,j-Ui,j~~-1 (10) 

for the kth grid point on T. 
The error propagation equation corresponding to the formulas (9) and (10) 

will be [6] 

ei, j+l = 4e,, j - eipl, j - ei+l, j - j_l (11) 

for all points belonging to D U Q U T, where ei, j = ui, j - u:, j, and u,!, j 
denotes a provisional value for ui, ., Using the formulas (9), (lo), and (ll), the 
SMT as described in [6] is apphe .d on the rectangle S, and the components of 
the kth column of the matrix B,, are then the solution components corre- 
sponding to the p grid points on T. 

It is to be noted that the error propagation equation (11) remains fixed for 
all the p calls of SMT, and thus the influence coefficient matrix [6] is to be 
computed only once and then employed for all subsequent calls of SMT. The 
major computational effort in SMT is the construction of the influence 
coefficient matrix; once this matrix is constructed and its LU decomposition 
stored, the subsequent calls of SMT will require very little extra computa- 
tional effort. 

Step 2; Construction of the Vector 5, (p X 1). The finite difference 
formulas for the SMT to construct ST are given by 

ui,j+l =4ui,j- ffi-l,j- ui+l,j- Ui,j-l+h2gi,j for all points in D 

and 

ui,j+l =4ui,j-Ui_i,j-Ui+i,j-Ui,j_i for all points in T U Q. (13) 

Again the error propagation equation for this case will be the same as 
Equation (ll), and consequently the influence coefficient matrix of step 1 will 
be employed. Thus the construction of the vector i$-, like the SMT solution 
components corresponding to the p grid points on T, requires little computa- 
tional effort. 
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Step 3: Computation of the Vector wr (p X 1). Having computed the 

vector iir in step 2, the vector wr is obtained by solving the system of p 
linear equations 

BzzwT = vT - ST 

using Gaussian elimination. 

Step 4: Computation of the Final Solution in the Region D. This final 
call of SMT will require the following finite difference formulas: 

ui, j+l =4ui j-Ui_1,j-ffi+l,j-Ui,j_l+h2gi,j for all points in D 

(15) 

and 

ui,j+l = 4ui,j - ui_i,j- ui+i,j - ui,j_i- wr for all points in T. 

06) 

Once again the error propagation equation for this case will be the same as 
(ll), and the influence coefficient matrix of step 1 will work here too. 

3. MILDLY NONLINEAR ELLIPTIC EQUATIONS 

The application of fast direct methods to nonlinear elliptic equations has 
attracted little attention so far. A very special case of mildly nonlinear elliptic 
equations of the type - Au + cu = f, where c is a constant (Helmholtz’s 
equation) has however been considered by a few workers. For example, 
Proskurowski and Widlund [19] used a capacitance matrix approach to deal 
with such equations, and Hyman [18] has described a local inversion method 
(LIM). 

In this section, we shall consider the entension of the SMT to mildly 
nonlinear elliptic equations of the type 

%I + y/y = F(x, Y, u) (17) 

over a simply connected bounded region D whose boundary dD is piecewise 
regular, where the function F is continuous. We shall be concerned here with 
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the associated Dirichlet problem of finding u(x, y) which, for a given f(x, y) 
continuous on dD, satisfies: 

(i) u is defined and continuous on D u JD, 
(ii) u satisfies (17), and 

(iii) u = f on dD. 

To ensure the existence of unique solution for the above problem, it is further 
assumed that f(x, y) > 0. For the sake of brevity, we shall assume the region 
D here to be a unit square. The main idea of the method is to employ the 
SMT to carry out the iterations in the iterative scheme [14], based on solving 
a sequence of linear problems. The resulting analytical iteration formula, 
based on Pohozaev’s analytical method, for (17) gives 

AU’ n+1)-F,,(x,y,U(n))U(“+l)=F(x,y,u’”’)-F,,(x,y,u’“‘)u’“‘, 

n=0.1,2.... (18) 
The above iteration formula is also popularly known as quasilinearization [5]. 
Using the usual five point analogue for the Laplacian operator A, the 
discretized form of (18) gives 

= F( ih, jh, ujr;‘) - F,,( ih, jh, u;l;‘)u~l;‘, 

B<i,jdN-1, n=0,1,2, (19) 

The finite difference formula (19) can be rewritten as 

~i”i’;‘~= [4+ h2Ft,(ih, jh,,j;j’ )] tq” - u::;,‘,! - zP;,tl - u~~i+-l~ 

+ h’[F(ih,jh,~jr:)-F”(ih,jh,ulr:)ui~~] 

2gi,j<N-1, n=0,1,2 . . . . (20) 

The error propagation equation corresponding to the difference formula (20) 
takes the form 

ej”jl\)= [4+h2t;,,(ih, jh,zrl:j’)]e!l)+“-e,(:‘=:‘-e(71L:)-eI,;+:), 

2<i,j<n-1. (21) 

Each iteration in the iterative scheme (20) is carried out using SMT. 
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Convergence Criterion 
The approximate solution values inside the region at each stage of the 

iteration are used to compute the boundary values corresponding to the 
bottom and the top edge of the square. Then the computed boundary values 
are compared with the given boundary values to obtain the following stop- 
ping criterion: If 

]ui i-ci i]<e and ]~~,~-ti~,~j<~, i = 2,3 ,..., N- 1, 

then stop the iteration; here ui,i, ui,N are the given boundary values and 
uj i,ui M are the computed boundary values on the bottom and the top edge 
of’ the square respectively. 

4. TEST EXAMPLES AND NUMERICAL RESULTS 

To demonstrate the efficiency of the methods discussed, the following test 
examples have been solved: 

EXAMPLE 1. Au = 0, (x, y) E R [R is the region given in Figure l(a)]: 

u( X, y) = X2 - y2, (%y)E 8R. 

EXAMPLE 2. Au = 2(x + y), (x, y) E R: 

u(x, Y)=xYb+y), (GY)E-. 

EXAMPLE 3. Au = 0, (x, y) E S [S is the region given in Figure l(b)]: 

u(x, y) = X2 - y2, (x, Y)E a. 

EXAMPLE 4. Au = 2(x + y), (x, y) E S [Figure l(b)]: 

+, Y)=rY(x+Y)> (LYWS. 

EXAMPLE 5. Au = 0, (x, y) E D (Figure 2): 

u(x, y) = X2 - y2, (x,y)HWS. 
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EXAMPLE 6. Au = 2(x + y), (x, y) E D (Figure 2): 

u(x, Y) = XY(X + Y>, (x,y)HYJS. 

EXAMPLE 7. Au = e”, (x, y ) E D (D is the unit square): 

U(L Y) = 0, (x, Y) E do. 

EXAMPLE 8. Au = u2, (x, y) E D (unit square): 

u(x, Y) = 1, (X,Y)E do. 

The numerical results of these examples are presented in the Tables 1-8. 
We use the following abbreviations for convenience: 

a.e. 
m.e. 

t 

il:‘, 

(c) 

Average error 
Maximum error 
Run time (in seconds) 
SMT 
SMT solution refined to finer grids 
Roache method 

5. DISCUSSION AND CONCLUSION 

The computational results in Tables l-4 for Examples l-4 using method I 
show that the SMT works on grids with mesh size &, whereas Roache method 
works on grids with mesh size & and fails to converge on finer grids. Further, 
the solutions computed by SMT are of greater accuracy than with the Roache 
method. However, the computational time required in SMT is greater than in 
the Roache method. 

The solutions on finer grids with h = & and & have been computed by 
refining the SMT solution on a coarser grid by a mesh refinement technique 
[6,18]. This technique employs the SMT solutions on a crude mesh (say h = &) 
to obtain solutions on finer grids (say h = & and &, etc.) by using an 
appropriate interpolation scheme. As is apparent from the results, the refine- 
ment process does not increase the error beyond the SMT solution on coarser 
grid. 
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TABLE 1 

NUMERICAL RESULTS FOR EXAMPLE 1 

(4 a.e. 4.63-18 7.23-14 2.9Ea3 

m.e. 3.23-17 1.2~.13 6.0~-02 

t 0.076 0.445 3.671 

(b) a.e. 8.6~.14 2.13-14 

m.e. 1.4E-13 1.43-13 

t 0.546 0.825 

(cl a.e. 1.13-17 4.93-12 

m.e. 3.13-16 1.7E-11 

t 0.025 0.149 

Does not converge 

(a) a.e. 

m.e. 

t 

TABLE 2 

NUMERICAL RESULTS FOR EXAMPLE 2 

h=i & B &i 

1.33-18 3.83-14 1.6~43 

5.9E-17 5.6~.13 4.73-02 

0.085 0.454 3.685 

(b) a.e. 7.43-14 5.2~-14 

m.e. 5.8~.13 5.8~.13 

t 0.558 0.882 

(c) a.e. 6.43-17 1.63-12 

m.e. LOE-16 6.63-11 

t 0.027 0.152 

Does not converge 

TABLE 3 

NUMERICAL RESULTS FOR EXAMPLE 3 

(a) a.e. 2.33-18 1.23-15 7.9&8 

m.e. 1.7E-17 1.9E-14 1.1~96 

t 0.089 0.390 2.522 

03) a.e. 4.6~-15 4.8~-15 
m.e. 2.3~-14 2.3~-14 

t 0.501 0.782 

(cl a.e. 
m.e. 

t 

l.%16 2.23-10 

5.63-16 5.73-10 Does not converge 
0.030 0.151 
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TABLE 4 

NUMERICAL RESULTS FOR EXAMPLE 4 

h+ ik & & 

(a) a.e. 1.9r+18 1.43-15 6.53-08 d 
m.e. 1.73-16 1.5E-14 9.13-07 

t 0.088 0.376 2.531 

(b) a.e. 2.83-15 3.23-15 

m.e. 1.9E-14 1.93-14 

t 0.512 0.796 

(c) a.e. 2.2~.17 1.43-11 

m.e. 2.4~-16 3.63-11 

t 0.033 0.153 

Does not converge 

TABLE 5 

NUMERICAL RESULTS FOR EXAMPLES 5 AND 6” 

Example 

5 a.e. 

m.e. 

t 

SMT SMT with grid refinement 

h=& & B 

6.5~-15 8.2~-15 8.7~-15 

3.23-13 6.33-13 6.33-13 

3.428 3.564 3.835 

6 a.e. 5.33-10 8.93-10 9.33-10 
m.e. 2.6~-08 7.23-08 7.23-08 

t ” 1.015 1.145 1.264 

“Dimension of the capacitance matrix B,, is 24 X24. 

“The capacitance matrix for Example 6 is identical to that of 

Example 5, and the time given is the time for solving the addi- 

tional problem. 

(X>Y> 

(0.25,0.25) 
(0.25,0.50) 
(0.25,0.75) 
(0.50,0.25) 
(050,050) 
(0.50,0.75) 
(0.75,0.25) 
(0.75,0.75) 

TABLE 6 

NUMERICAL RESULTS FOR EXAMPLE 7 USING SMT” 

9x9 

t = 0.277 
17x17 33x33 

1.497 6.831 

-0.042678 - 0.0431431 

-0.0539161 - 0.0544334 

-0.0426783 ~ 0.0431431 

-0.0539161 ~ 0.0544334 

- 0.0690317 - 0.0696881 

- 0.0539161 - 0.0544334 

- 0.0426003 - 0.0431431 

-0.0426783 - 0.0431431 

- 0.0432147 

~ 0.0544946 

- 0.0432147 

- 0.0544946 

- 0.0697525 

~ 0.0544946 

- 0.0532147 

- 0.0432147 

“E = 1.oE-09, ?I = 2. 
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TABLE 7 
NUMERICAL RESULTS FOR EXAMPLE 8” 

9x9 17x 17 33x33 
(X> Y) t = 0.241 1.335 6.429 

(0.25,0.25) 0.959132 0.958668 0.958633 
(025,050) 0.948564 0.948050 0.948044 
(0.25,0.75) 0.959132 0.958668 0.958633 
(0.50,0.25) 0.948564 0.948050 0.948043 
(0.50,0.50) 0.934377 0.933729 0.933747 
(0.50,0.75) 0.948564 0.948050 0.948043 
(0.75,0.25) 0.959132 0.958668 0.959633 
(0.75,0.50) 0.948564 0.948050 0.948044 
(0.75,0.75) 0.959132 0.958668 0.958633 

dE = l.oE-09, n = 2. 

TABLE 8 
NUMERICAL RESULTS FOR EXAMPLES 7 AND 8” 

Example 7 Example 8 

SMT alone Refining 17 X 17 SMT alone Refining 17 X 17 
(33 x 33)” SMT solution’ (33 x 33)” SMT solutionC 

(X> Y) t = 6.831 2.379 6.429 2.203 

(0.125,O. 125) - 0.0175591 - 0.0174726 0.983029 0.983093 
(0.125,0.25) - 0.0270531 - 0.0269682 0.973999 0.974041 
(0.125,0.375) - 0.0318986 - 0.0318194 0.969445 0.969466 
(0.25,0.125) - 0.0270531 - 0.0269682 0.973999 0.974041 
(0.25,0.25) - 0.0432626 - 0.0431431 0.958633 0.958668 
(0.25,0.375) - 0.0518685 - 0.0517392 0.950559 0.95Oli74 
(0.375,0.125) - 9.0318986 - 0.0318194 0.963766 0.969466 
(0.375,0.25) - 0.0518685 - 0.0517392 0.950559 0.950574 
(0.375,0.375) - 0.0627321 - 0.0625793 0.940383 0.940381 

“E = l.oEa)9. 

‘In = 2. 
“n = 3. 

From the results given in Table 5 for Examples 5 and 6 using method II, it 
is evident that the method works well on grids with mesh size h = &, and the 
refinement technique to obtain solutions on finer grids (h = $, &) does not 
increase the error beyond the SMT solution on the coarser grid. The computa- 
tional time required for the construction and factorization of the capacitance 
matrix was 2.464 seconds. Since the capacitance matrix depends only upon 
the geometry of the region and not on the boundary data, these matrices for 
Examples 5 and 6 turn out to be identical. Thus the time given for obtaining 
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the solution for Example 6 is the time required for solving an additional 
problem, excluding the time required for the construction and the LU 
decomposition of the capacitance matrix. 

The numerical results for Examples 7 and 8 are given in Tables 6 and 7 
respectively. These results show that the SMT works well on a 33 x 33 grid. 
The effectiveness of the mesh refinement technique has been demonstrated 
again through the numerical results presented in Table 8. The numerical 
experiments show that the computational time required in solving the prob- 
lem by SMT alone is considerably greater than the time taken in first 
computing the solution on a coarser grid (17 X 17) and then refining it to a 
33 X33 grid. Moreover, the accuracy of the solutions by SMT alone and that 
of SMT and mesh refinement is comparable. 

In conclusion, the adaptability of the SMT to irregular regions has been 
successfully shown through methods I and II. Method I has been shown to 
cover all irregular geometries, with the exception of a region with a hole. 
Method II, based on a capacitance matrix, has been shown to cover an 
arbitrary irregular bounded region. The dependence of the capacitance matrix 
only on the geometry of the region and not on the boundary data makes 
method II especially attractive and efficient when several problems with 
different boundary data in the same geometry are to be solved. The SMT in 
conjunction with quasilinearization has also been shown to work well for 
mildly nonlinear elliptic equations. The economical use of the SMT would be 
to compute the solution on coarser grid by SMT and obtain the solution on 
finer grids by mesh refinement. 
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ABSTRACT 

Four different versions of the discrete W transform (DWT) are introduced. The 
DWT may be decomposed into the discrete cosine transform (DCT) and the discrete 
sine transform (DST). Eight versions of both DCT and DST are introduced for the 
decomposition of the DWT. The relationship among different versions of DWT and 
their relation with the discrete Fourier transform (DFT) are given. Convolution 
theorems represented by different versions of the DWT are derived. 

1. INTRODUCTION 

The W transform is a real approach to harmonic analysis [l-3]. It is a 
conventional assumption in harmonic analysis that the harmonics should be 
the multiples of a fundamental frequency. However, this assumption is not a 
necessity. A fraction, or a fraction of a multiple, of the fundamental frequency 
may also be taken as a harmonic [2,3]. Wang has shown that a data sequence 
may not only be composed of its integer harmonics, but also of its fractional 
harmonics [3]. However, integer harmonics, which are multiplies of the 
fundamental frequency, and half integer’ harmonics, which are odd multiples 
of the fundamental frequency divided by 2, are preferred. In these two cases, 
the properties of symmetry and antisymmetry of a sequence may be used, and 
the W transform may always be decomposed into the discrete cosine trans- 
form (DCT) and the discrete sine transform (DST). Furthermore, fast al- 
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gorithms may be found more easily for these two types of harmonics than for 
any other type of harmonics. For these reasons, we shall be concerned only 
with integer harmonics and half-integer harmonics. 

There are four versions of the DWT to be introduced in this paper. All of 
them are different approaches to harmonic analysis from the discrete Fourier 
transform (DFT); it will be shown that they relate closely to each other and to 
the DFT. 

In the last decade, the DCT and DST have been of interest mainly in the 
area of image coding [ll]. Since the orthogonal transform was introduced into 
image coding and bandwidth reduction by Andrews and Pratt [4-71, several 
versions of the DCT and DST have been introduced and their performance in 
bandwidth reduction has been examined [B-12]. However, no attempt has 
been made to use them as implementations of harmonic analysis. Therefore, 
another purpose of this paper is to give a common frame for all versions of the 
DCT and the DST. It will be shown that eight versions of both DCT and 
DST are naturally associated with the four versions of the DWT, and all 
versions of the DCT and DST, as well as the DWT, play important roles in 
harmonic analysis. 

The version of the DWT depends on the symmetry type chosen for the 
sequences in the spatial (or temporal) domain and in the frequency domain. 
In Section 2, two symmetry types are described. Four versions of DWT are 
defined in Section 3. For convenience of discussion of the DWT, a special 
kind of function, the antiperiodic function, is defined and its properties are 
discussed in Section 4. Sections 5 and 6 contain some properties of the DWT. 
The relation among different versions of the DWT and between them and the 
DFT are discussed in Sections 7 and 8. In Section 9, eight versions of both 
DCT and DST are defined. The even-odd transform matrices introduced in 
Section 10 are just for the decomposition of the DWT matrices, which are 
given in Section 11. The convolution theorem represented by the DWT 
involves another type of convolution-antiperiodic convolution, which is 
defined in Section 12, and the convolution theorems represented by different 
versions of the DWT are given in Section 13. 

2. SYMMETRY AND ANTISYMMETRY OF A SEQUENCE 

A data sequence, whether it is finite or infinite, may be treated as samples 
taken from a continuous function. The symmetry or antisymmetry of a data 
sequence reflects the symmetry or antisymmetry of the function from which 
these samples are taken. However, the symmetry or antisymmetry of a data 
sequence depends on the choice of the symmetry center. If one of the 
sampling points is chosen to be the symmetry center, the symmetry or 
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antisymmetry of a data sequence will be referred to as odd symmetry or odd 
antisymmetry, and this symmetry type will be referred to as the odd 
symmetry type. For example, sequence x(n) is said to be odd symmetric if 

x( - n) = x(n), 

and it is said to be odd antisymmetric if 

x(-n)= -x(n). (2) 

In this symmetry type, all sampling points are integers. Discrete Fourier 
analysis is based on this symmetry type, and it has been investigated 
thoroughly. However, another symmetry type, which is called the even 
symmetry type, may sometimes be more convenient. If the midpoint between 
two adjacent sampling points is chosen to be the symmetry center, the 
symmetry or antisymmetry of a data sequence will be referred to as even 
symmetry or even antisymmetry, and this type of symmetry will be referred 
to as the even symmetry type. For example, x(n) is said to be even 
symmetric if 

x( - n - 1) = r(n), (3) 

and to be even antisymmetric if 

X(--n-l)= -+a). (4) 

In this symmetry type, the sampling points are half integers. 
There are two choices of symmetry type in both spatial (or temporal) and 

frequency domains. Therefore, there are four different combinations, which 
correspond to four different versions of the DWT. 

3. FOUR VERSIONS OF THE DISCRETE W TRANSFORM 

For a sequence of N data x(n), n = O,l,. . , N - 1, the following four 
sequences Xj( m), j = I, II, III, or IV, are called the discrete W transform 
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(5) 

(6) 

(7) 

2r - 1 N ’ (8) 

Let [ Wi,], j = I, II, III or IV, be the DWT matrices, the elements of which 
at m row and n column are 

(9) 

(11) 

(12) 

where m,n=O,l,..., N - 1. Roman numeral superscripts are used to denote 
the version number. The subscript N denotes the order of the matrix. 
Equations (5) through (8) then may be represented in terms of matrix 
multiplication: 

xi= [WiJx, j = I, II, III, or IV, (13) 

where x and X j are vector representations of sequences x(n) and X(m): 

x= [x(O) x(l) ... r(N-l)lT, (14) 

X=[X(O) X(1) ... X(N-l)]‘. (15) 



The Discrete W Transfinm 23 

The original data vector x may be obtained by multiplying the inverse 
discrete W matrix [WA] ~’ by the vector X j: 

x = [WLJ] -lx. 1’ j = I, II, III, or IV. (16) 

It is not difficult to prove that inverse W matrices are related to W 

matrices by the following equations: 

[wl<J -I= [WI:;], (17) 

[wL.r] -I= [w~;n], (18) 

[w,;?] -l= [w;r], (19) 

[w:“] -i= [w,;:]. (20) 

From Equations (17) through (20), the original sequence may be represented 

or 

(21) 

x(n)= ~~‘~l*~v~~~sin[~+(ni+l)(,+b)~]. (24) 
n, = 0 


