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Abstract—The process by which new ideas, innovations, and
behaviors spread through a large social network can be thought of
as a networked interaction game: Each agent obtains information
from certain number of agents in his friendship neighborhood,
and adapts his idea or behavior to increase his benefit. In
this paper, we are interested in how opinions, about a certain
topic, form in social networks. We model opinions as continuous
scalars ranging from 0 to 1 with 1(0) representing extremely
positive(negative) opinion. Each agent has an initial opinion and
incurs some cost depending on the opinions of his neighbors, his
initial opinion, and his stubbornness about his initial opinion.
Agents iteratively update their opinions based on their own
initial opinions and observing the opinions of their neighbors.
The iterative update of an agent can be viewed as a myopic cost-
minimization response (i.e., the so-called best response) to the
others’ actions. We study whether an equilibrium can emerge
as a result of such local interactions and how such equilibrium
possibly depends on the network structure, initial opinions of
the agents, and the location of stubborn agents and the extent of
their stubbornness. We also study the convergence speed to such
equilibrium and characterize the convergence time as a function
of aforementioned factors. We also discuss the implications of
such results in a few well-known graphs including small-world
graphs.

I. INTRODUCTION

Rapid expansion of online social networks, such as friend-
ships and information networks, in recent years has raised an
interesting question: how do opinions form in a social net-
work? The opinion of each person is influenced by many fac-
tors such as his friends, news, political views, profession, etc.
Understanding such interactions and predicting how specific
opinions spread throughout social networks has triggered vast
research by economists, sociologist, psychologies, physicists,
etc.

We consider a social network consisting of n agents. We
model the social network as a graph G(V, E) where agents are
the vertices and edges indicate pairwise acquaintances. We
model opinions as continuous scalars ranging from 0 to 1
with 1(0) representing extremely positive(negative) opinion.
For example, such scalers could represent people opinions
about the economic situation of the country, ranging from 0
to 1, with an opinion 1 corresponding to perfect satisfaction
with the current economy and 0 representing an extremely
negative view towards the economy. Agents have some private
initial opinions and iteratively update their opinions based on
their own initial opinions and observing the opinions of their
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neighbors. We study whether an equilibrium can emerge as
a result of such local interactions and how such equilibrium
possibly depends on the graph structure and initial opinions
of the agents. In the interaction model, we also incorporate
stubbornness of agents with respect to their initial opinions and
investigate the dependency of the equilibrium on such stubborn
agents. Characterizing the convergence rate to the equilibrium
as a function of graph structure, location of stubborn agents
and their levels of stubbornness is another goal of the current
paper.

There has been an interesting line of research trying to
explain emergence of new phenomenon, such as spread of
innovations and new technologies, based on local interactions
among agents, e.g., [6], [8], [9], [23]. Roughly speaking,
a coordination game is played among the agents in which
adopting a common strategy has a higher payoff. Agents
behave according to a noisy version of the best-response
dynamics which drives the system to a particular equilibrium
in which all agents take the same action.

There is a rich and still growing literature on social learning
using a Bayesian perspective where individuals observe the
actions of others and update their beliefs iteratively about an
underlying state variable, e.g., [11], [12], [13]. There is also
opinion dynamics based on non-Bayesian models, e.g., those
in [1], [2], [3], [10], [14]. In particular, [14] investigates a
model in which agents meet and adopt the average of their
pre-meeting opinions. As reported in [14], it is significantly
more difficult to analyze social networks with several forceful
agents that do not change their opinions and requires a
different mathematical approach. Our model is closely related
to the non-Bayesian framework, this keeps the computations
tractable and can characterize the equilibrium in presence of
agents that are biased towards their initial opinions (the so-
called partially stubborn agents in our paper) or do not change
their opinions at all (the so-called fully stubborn agents in
our paper). The recent work [15] studies opinion dynamics
based on the so-called voter model where each agent holds a
binary 0-1 opinion and at each time a randomly chosen agent
adopts the opinion of one of his neighbors, and there are also
stubborn agents that do not change their states. Under such
model, [15] shows that the opinions converge in distribution
and characterizes the first and the second moments of this
distribution. In addition, our paper is also related to consensus
problems in which the question of interest is whether beliefs
(some scalar numbers) held by different agents will converge
to a common value, e.g., [16], [17], [18], [19].



We use the following basic notations. xT denotes the
transpose of vector x. Given two functions f and g, f = O(g)
if supn |f(n)/g(n)| < ∞. f = Ω(g) if g = O(f). If both
f = O(g) and f = Ω(g), then f = Θ(g).

Due to page constraints, we have to omit proofs of the
results and some of the details but they are provided in the
complete version of the paper [31].

II. MODEL AND DEFINITIONS

Consider a social network with n agents, denoted by a graph
G(V, E) where agents are the vertices and edges indicate the
pairs of agents that have interactions. For each agent i, define
its neighborhood ∂i as the set of agents that node i interacts
with, i.e., ∂i := {j : (i, j) ∈ E}. Each agent i has an initial
opinion xi(0) ∈ [0, 1]. Let x(0) := [x1(0) · · ·xn(0)]T denote
the vector of initial opinions. We assume each agent i has a
cost function of the form

Ji(xi, x∂i) =
1

2

∑
j∈∂i

(xi − xj)2 +
1

2
Ki(xi − xi(0))2, (1)

that he tries to minimize where Ki ≥ 0 measures the stubborn-
ness of agent i regarding his initial opinion1. When none of
the agents are stubborn, correspondingly Ki’s are all zero, the
above formulation defines a coordination game with continu-
ous payoffs because any vector of opinions x = [x1 · · ·xn]T

with x1 = x2 = · · · = xn is a Nash equilibrium. Here,
we consider a synchronous version of the game between the
agents. At each time, every agent observes the opinions of his
neighbors and updates his opinion based on these observations
and also his own initial opinion in order to minimize his cost
function. It is easy to check that, for every agent i, the best-
response strategy is

xi(t+ 1) =
1

di +Ki

∑
j∈∂i

xj(t) +
Ki

di +Ki
xi(0), (2)

where di = |∂i| is the degree of node i in graph G. Define a
matrix An×n such that Aij = 1

di+Ki
for (i, j) ∈ E and zero

otherwise. Also define a diagonal matrix Bn×n with Bii =
Ki

di+Ki
for 1 ≤ i ≤ n. Thus, in the matrix form, the best-

response dynamics are given by

x(t+ 1) = Ax(t) +Bx(0). (3)

Iterating (3) shows that the vector of opinions at each time
t ≥ 0 is

x(t) = Atx(0) +

t−1∑
s=0

AsBx(0). (4)

In the rest of the paper, we investigate the existence of
equilibrium, x(∞) := limt→∞ x(t), under the dynamics (3)
in different social networks, with or without stubborn agents.
We also characterize the convergence time of the dynamics,
i.e., the amount of time that it takes for the agents’ opinions

1Although we have considered uniform weights for the neighbors, the
results in the paper hold under a more general setting when each agent puts
a weight wij for his neighbor j.

to get close to the equilibrium. The equilibrium behavior is
relevant only if the convergence time is reasonable [9].

Without loss of generality, assume that G is a connected
graph (otherwise, we can consider opinion dynamics sepa-
rately over each connected subgraph).

III. NO STUBBORN AGENTS

Convergence issues in the case of no stubborn agents is a
special case of consensus, and has been well studied. Here,
we briefly review this work to put our later results in context.

When there are no stubborn agents, A can be viewed as
a transition probability matrix of a random walk over G (see
[31] for all details). Then, it is not difficult to show that, in
non-bipartite social graphs, the best-response dynamics will
converge to the following unique equilibrium

xi(∞) =
1

2|E|

n∑
j=1

djxj(0); for all i ∈ V, (5)

i.e., agents will reach a consensus in equilibrium where the
impact of each agent on the equilibrium consensus is directly
proportional to its degree. Also it can be shown that the
error, e(t) := x(t) − x(∞), goes to zero geometrically, in
some appropriate norm, at a rate equal to the second largest
eigenvalue modulus of A. In the case that the social graph is
bipartite, e.g., a ring graph with an even number of agents
n, the best-response dynamics might not converge to an
equilibrium. In practice, not everyone completely ignores his
own previous opinion and might be slightly biased by his old
opinion. Hence, we can consider a noisy version of the best-
response dynamics as follows

x
(ε)
i (t+ 1) = (1− ε)

( 1

di

∑
j∈∂i

xj(t)
)

+ εxi(t), (6)

for some self-confidence ε > 02. Then, it can be shown that
the noisy best-response dynamics, in bipartite or non-bipartite
social graphs, will converge to the equilibrium (5) indepen-
dently of ε. Moreover, the convergence time is Θ

(
1

1−λ2(A)

)
,

as n grows, where λ2(A) is the second largest eigenvalue of
A.

Example 1. In this example, we make a comparison between
two extreme interaction scenarios, namely, ring graph and
complete graph with n nodes. The complete graph represents
situation when all agents can communicate with each other
with no constrains, while in the ring graph, each agent can
only communicate with his two nearest neighbors. In both
cases the (noisy) best-response dynamics converge to the
average of initial opinions. It is easy to see that λ2(A) is

1
n−1 for the complete graph and cos( 2π

n ) ≈ 1 − π
n2 for

the ring. Hence, while both of the graphs have the same
equilibrium, convergence in the complete graph is much faster
than convergence in the ring, in fact, O(1) vs. O(n2).

2Here, we assume all agents have the same self-confidence but the argument
can be adapted for different self-confidences as well.



There is a rich literature on approximating λ2(A) of the
random walk A over different types of graphs, e.g., see
Chapter 2 of [5] for a survey. Intuitively, the convergence
time is deteriorated by the highly connected component of
the graph which is loosely connected to the rest of the
network (captured by the notion of conductance, or the edge
isoperimetric function of the graph). Thus, we do not proceed
in this direction further and in the next section, we study the
more interesting case of social networks with stubborn agents.

IV. IMPACT OF STUBBORN AGENTS

A. Existence and characterization of equilibrium

Consider a connected social network G(V, E) in which at
least one of the agents is stubborn, i.e., Ki > 0 for at least
one i ∈ V . Then A is an irreducible sub-stochastic matrix
with the row-sum of at least one row less than one. Let
ρ1(A) := maxi |λi(A)| denote the spectral radius of A. It
is well-known that ρ1(A) of a sub-stochastic matrix A is less
than one, and hence, limt→∞At = 0. Therefore, by Perron-
Ferobenius theorem, the largest eigenvalue should be positive,
real 1 > λ1 > 0 and ρ1(A) = λ1. Hence, in this case, based
on (4), the equilibrium exists and is equal to

x(∞) := lim
t→∞

x(t) =

∞∑
s=0

AsBx(0) = (I −A)−1Bx(0). (7)

Therefore, since Bii = 0 for all non-stubborn agents i, the
initial opinions of non-stubborn agents will vanish eventually
and have no effect on the equilibrium (7).

The matrix form (7) does not give any insight on how the
equilibrium depends on the graph structure and the stubborn
agents. Next, we describe the equilibrium in terms of explicit
quantities that depend on the graph structure, location of
stubborn agents and their levels of stubbornness.

Let S ⊆ V be the set of stubborn agents and |S| ≥ 1. Any
agent i in S is either fully stubborn, meaning its corresponding
Ki = ∞, or it is partially stubborn, meaning 0 < Ki < ∞.
Hence, S = SF ∪ SP where SF is the set of fully stubborn
agents and SP is the set of partially stubborn agents. Next,
we construct a weighted graph Ĝ(V̂, Ê) as follows. Assign
weight 1 to all the edges of G. Connect a new vertex ui to
each i ∈ SP and assign a weight Ki to the corresponding
edge. Let V̂ := V ∪ {ui : i ∈ SP } and Ê := E ∪ {(i, ui) :
i ∈ SP }. Also let wij denote the weight of edge (i, j) ∈ Ê .
Then Ĝ(V̂, Ê) is a weighted graph with weights wij = 1 for
all (i, j) ∈ E (the edges of G) and wiui = Ki for all i ∈ SP .
Let u(SP ) = {ui : i ∈ SP }. Define wi :=

∑
j:(i,j)∈Ê wij as

the weighted degree of vertex i ∈ V̂ . It should be clear that

wi =

 di +Ki for i ∈ SP ,
di for i ∈ V\SP ,
Kj for i = uj , j ∈ SP .

(8)

Consider the random walk Y (t) over Ĝ where the probability
of transition from vertex i to vertex j is Pij =

wij
wi

. Assume the
walk starts from some initial vertex Y (0) = i ∈ V . For any j ∈
V̂ , define τj := inf{t ≥ 0 : Y (t) = j}, as the first hitting time

to vertex j. Also define τ :=
∧
j∈SF∪u(SP ) τj as the first time

that the random walk hits any of the vertices in SF ∪ u(SP ).
The following Lemma characterizes the equilibrium.

Lemma 1. The best-response dynamics converge to a unique
equilibrium where the opinion of each agent is a convex
combination of the initial opinions of the stubborn agents.
Based on the random walk over the graph Ĝ,

xi(∞) =
∑
j∈SP

Pi(τ = τuj )xj(0) +
∑
j∈SF

Pi(τ = τj)xj(0), (9)

for all 1 ≤ i ≤ n, where Pi(τ = τk), k ∈ SF ∪ u(SP ), is the
probability that the random walk hits vertex k first, among
vertices in SF ∪ u(SP ), given the random walk starts from
vertex i.

Note that limKi→∞ Pi(τ = τui) = 1 for any partially
stubborn agent i ∈ SP . This intuitively makes sense because
as an agent i becomes more stubborn, his opinion will get
closer to his own opinion and behaves similarly to a fully
stubborn agent. It should be clear that when there is only
one stubborn agent or there are multiple stubborn agents with
identical initial opinions, eventually the opinion of every agent
will converge to the same opinion as the initial opinion of the
stubborn agents.

Alternatively, the equilibrium has an interesting electrical
network interpretation as follows.

Lemma 2. Consider G as an electrical network where the
conductance of each edge is 1 and each stubborn agent i is a
voltage source of xi(0) volts with an internal conductance
Ki. Fully stubborn agents are ideal voltage sources with
infinite internal conductance (zero internal resistance). Then,
under the best-response dynamics, the opinion of each agent
at equilibrium is just its voltage in the electrical network.

We illustrate the use of the above lemma through the
following example.

Example 2. Consider a one-dimensional social graph, where
agents are located on integers 1 ≤ i ≤ n. Assume nodes 1
and n are stubborn with initial opinions x1(0) and xn(0),
and stubbornness parameters K1 > 0 and Kn > 0. Using the
electrical network model, the current is the same over all edges
and equal to I = (x1(0)− xn(0))( 1

K1
+ 1

Kn
+ n− 1)−1, and

thus the voltage of each node i is vi = x1(0)− I( 1
K1

+ i−1),
for 1 ≤ i ≤ n. Hence,

xi(∞) = (1− αi)x1(0) + αixn(0),

where αi :=
K−1

1 +i−1

K−1
1 +K−1

n +n−1
.

B. Convergence time

Let e(t) := x(t) − x(∞) be the error vector. Trivially
ei(t) = 0 for all fully stubborn agents i ∈ SF , so we
focus on ẽ(t) := [ei(t) : i ∈ V\SF ]T . For any real
vector space Rm, m > 0, define a convenient scalar prod-
uct 〈z, y〉π :=

∑m
i=1 ziyiπi and its corresponding norm

‖z‖π :=
(∑m

i=1 z
2
i πi
)1/2

. The following lemma states that



convergence to the equilibrium (7) is geometric with a rate
equal to the largest eigenvalue of A.

Lemma 3. Let π̃ = [wiZ : i ∈ V\SF ]T , for wi as in (8), and Z
be the normalizing constant such that

∑
i∈V\SF π̃i = 1. Then,

‖ẽ(t)‖π̃ ≤ (λA)t‖ẽ(0)‖π̃, (10)

where λA is the largest eigenvalue of A.3

Defining the convergence time as τ(ν) := inf{t ≥ 0 :
‖ẽ(t)‖π̃ ≤ ν}, for some fixed 0 < ν � 1, shows that
τ(ν) = Θ

(
1

1−λA

)
as n grows. Let T := 1

1−λA . With a little
abuse of terminology, we also call T the convergence time.

The exact characterization of λA in social networks with
very large number of users and many stubborn agents is
difficult, hence, we will derive appropriate upper-bounds and
lower-bounds that depend on the graph structure, the location
of stubborn agents and their levels of stubbornness.

Consider the weighted graph Ĝ(V̂, Ê). A path γij from a
vertex i to another vertex j in Ĝ is a collection of oriented
edges {(i, i1), (i1, i2), · · · , (im, j)} that connects i to j and
does not intersect itself. For any vertex i ∈ V\SF , consider a
path γi from i to the set SF ∪ u(SP ), i.e., γi = γij for some
j ∈ SF ∪ u(SP ).

Proceeding along the lines of Diaconis-Stroock [21], we
get the following bound that yields an upper-bound on the
convergence time.

Lemma 4. Consider the weighted graph Ĝ. Given a set of
paths {γi : i ∈ V\SF }, from V\SF to SF ∪ u(SP ), let
|γi|w :=

∑
(s,t)∈γi

1
wst

. Then, T ≤ 2 max(x,y)∈Ê ξ(x, y),

where, for each edge (x, y) ∈ Ê ,

ξ(x, y) :=
∑

i:γi3(x,y)

wi|γi|w.

It is also possible to proceed along the lines of Sinclair [22].
This gives a different bound stated in the following lemma.

Lemma 5. Consider the weighted graph Ĝ(V̂, Ê). Given a set
of paths {γi : i ∈ V\SF } from V\SF to SF ∪u(SP ), we have
T ≤ 2 max(x,y)∈Ê η(x, y), where, for each edge (x, y) ∈ Ê ,

η(x, y) :=
1

wxy

∑
i:γi3(x,y)

wi|γi|.

Intuitively, both ξ(x, y) and η(x, y) are measures of conges-
tion over the edge (x, y) due to paths that pass through (x, y).
See [31] for examples of applications of the above bounds in
complete and ring graphs and performance comparison with
numerical values.

An upper bound on 1− λA, and thus a lower-bound on the
convergence time T , is given by the following lemma.

Lemma 6. Consider the weighted graph Ĝ(V̂, Ê), then

1− λA ≤ min
U⊆V\SF

ψ(U ; Ĝ), (11)

3In Euclidian norm, ‖e(t)‖2 ≤ (λA)t
√

wmax
wmin

‖e(0)‖2, where wmax :=

maxi∈V\SF wi and wmin := mini∈V\SF wi.

where ψ(U ; Ĝ) :=
∑
i∈U,j/∈U wij∑
i∈U wi

. The minimum is achieved for
some connected subgraph with vertex set U .

It is worth emphasizing that the above bounds are quite
general and hold for social networks with any finite size and
any set of stubborn agents. Next, to gain more insight into
factors dominating the convergence speed, we consider the
special class of shortest paths in social networks with large
number of agents.

C. Canonical bounds via shortest paths

Let γ = {γi : i ∈ V\SF } be the set of shortest paths from
vertices V\SF to a the set SF ∪u(SP ), so, in fact, for each i ∈
V\SF , γi = γij for some j ∈ SF ∪u(SP ). Let Γj ⊆ V\SF be
the set of nodes connected to j ∈ SF ∪u(SP ) via the shortest
paths. We use |γ| := maxi∈V\SF |γi| to denote the maximum
length of any shortest path and |Γ| := maxj∈SF∪u(SP ) |Γj | to
denote the maximum number of nodes connected to any node
in SF ∪ u(SP ) via shortest paths.

Using Lemma 5, for each partially stubborn agent j ∈ SP ,

η(j, uj) =
1

Kj
(Kj + dj +

∑
i∈Γj

di|γi|) ≤ 1 +
d̂+ |γ||Γ|d̃
Kmin

,

where d̃ := maxi∈V\S di is the maximum degree of non-
stubborn agents, d̂ := maxi∈S di is the maximum degree
of stubborn agents, and Kmin := minj∈SP Kj is the min-
imum stubbornness. Hence, the congestion is dominated by
some edge (j, uj), j ∈ SP , only if the stubbornness Kj is
sufficiently small. All the paths that pass through an internal
edge (x, y) ∈ E are connected to the same j ∈ SF ∪ u(SP ),
or equivalently to the same stubborn agent. So for each
(x, y) ∈ E , η(x, y) =

∑
i:γi3(x,y) di|γi| ≤ |γ|Bd̃, where

B := max
(x,y)∈E

|{i : γi 3 (x, y)}|, (12)

is the bottleneck constant, i.e., the maximum number of short-
est paths that pass through any edge of the social network G. It
is clear that |Γ|/d̂ ≤ B ≤ |Γ| because B is at least equal to the
number of paths that pass through an edge directly connected
to a stubborn agent. Therefore, for Kmin ≤ K∗ := d̂+|γ||Γ|d̃

|γ|Bd̃−1
,

η is dominated by congestion over some edge (j, uj), j ∈ SP ,
and in this regime

T ≤ 2

(
1 +

d̂+ |γ||Γ|d̃
Kmin

)
. (13)

For Kmin > K∗, η is dominated by an edge of the social
network which is the bottleneck, and in this regime

T ≤ 2|γ|Bd̃. (14)

Dependence on |γ|, in both regimes, intuitively makes sense
as it represents the minimum time required to reach any node
in the network from stubborn agents. It is worth pointing out
that adding more fully stubborn agents, with not necessarily
equal initial opinions, or increasing the stubbornness of the
agents makes the convergence faster.



D. Scaling laws in large social networks

For any social network, we can consider two cases: (i) All
the stubborn agents are partially stubborn (ii) At least, one of
the agents is fully stubborn. In both cases, the upper-bound on
the convergence time is given by (13) and (14) depending on
the levels of stubbornness of partially stubborn agents. In case
(ii), if all the stubborn agents are fully stubborn, the upper-
bound is given by (14).

To find a simple lower-bound, we consider the set U in
(11) to include all the nodes V\SF . This gives the following
lower-bound

T ≥
∑
j∈SP Kj + 2|E| −

∑
j∈SF dj∑

j∈SP Kj +
∑
j∈SF dj

. (15)

In investigating the scaling laws, the scaling of the number
of stubborn agents and their levels of stubbornness with n
could play an important role. Here, we study scaling laws in
graphs with a fixed number of stubborn agents and with fixed
levels of stubbornness, as the total number of agents n in the
network grows. Then, in any connected graph G, based on
(15), the smallest possible convergence time is T = Ω(|E|)
in the case (i) which could be as small as Ω(n), and T =

Ω( |E|∑
j∈SF

dj
) in the case (ii) which could be as small as Ω(1).

It is possible to combine the upperbounds (13) and (14) to
obtain the following (looser) upper-bound that holds for social
networks with any fixed number of (partially/fully) stubborn
agents and fixed levels of stubbornness

T = O(nδdmax). (16)

Here, dmax is the maximum degree of the social graph (could
possibly depend on n) and δ is the diameter of the graph.

Fastest convergence: It should be intuitively clear that a star
graph G, where a stubborn agent directly connected to n− 1
non-stubborn agents with no edges between the non-stubborn
agents, should have the fastest convergence. In fact, it is easy
to check that K∗ = Θ(n), hence, if the stubborn agent is
partially stubborn (case (i)), by (13), T = Θ(n), and if the
stubborn agent is fully stubborn (case (ii)), by (14), T = Θ(1),
both achieving the smallest possible lower-bounds.

Complete graph and Ring graph: In the complete graph,
with a fixed number of stubborn agents, d̃ = d̂ = n − 1,
|Γ| = Θ(n), |γ| = 2, B = 1, and K∗ = Θ(n). Hence, if at
least one of the agents is partially stubborn, by (13) and (15),
T = Θ(n2). If all the stubborn agents are fully stubborn, by
(14) and (15), T = Θ(n).

In the ring network, d̃ = d̂ = 2, |Γ| = Θ(n), |γ| = Θ(n),
B = Θ(n), and K∗ = Θ(1). Thus T = O(n2) and Ω(n) in
both cases (i) and (ii).

None of the graphs always has a faster convergence than
the other one. For example, in the case of one stubborn agent
with a fixed K1, and n large enough (larger than a constant
depending on the value of K1), the ring network has a faster
convergence than the complete graph, while for any fixed
n, and K1 large enough, the complete graph has a faster
convergence than the ring.

Erdos-Renyi random graphs, Expander graphs, and Trees:
Using the well-known results on the maximum degree and
the diameter of such graphs, we can find appropriate bounds
on the convergence time of such graphs based on (15) and
(16) (see [31] for all the results). Such graph models do not
capture many spatial and structural aspects of social networks
and, hence, are not a realistic model of social networks [24].
Motivated by the small-world phenomenon observed by Mil-
gram [25], Strogatz-Watts [26] and Kleinberg [27] proposed
models that illustrate how graphs with spatial structure can
have small diameters, thus, providing more realistic models of
social networks. Next, we consider a two-dimensional model,
proposed in [24], for simplicity but results are extendable to
the higher dimensional graphs as well.

Small-world graphs: Start with a social network as a grid√
n×
√
n of n nodes. Hence, nodes i and j are neighbors if

their l1 distance ‖i − j‖ = |xi − xj | + |yi − yj | is equal to
1. It follows from (16) that, in presence of a fixed number of
stubborn agents in a bounded degree graph, T = O(nδ), and
in the grid, δ = 2

√
n obviously, hence T = O(n

√
n). Note

that changing the location of the stubborn agents can change
the convergence time only by a constant and does not change
the order.

Now assume that each node creates q shortcuts to other
nodes in the network. A node i chooses another node j as
the destination of the shortcut with probability ‖i−j‖−α∑

k 6=i ‖i−k‖−α
,

for some parameter α > 0. Parameter α determines the
distribution of the shortcuts as large values of α produce
mostly local shortcuts and small values of α increase the
chance of long-range shortcuts. In particular, q = 1 and
α = 0 recovers the Strogatz-Watts model where the shortcuts
are selected uniformly at random. It is shown in [28] that
for α < 2, the graph is an expander with high probability.
Hence, using the inequality between the diameter and the
spectral gap [29], its diameter is of the order of O(log n) with
high probability. It can be shown that, under the small-world
network model, the maximum degree dmax = O(log n) with
high probability. Hence, putting everything together, using the
upper-bound (16), we get T = O(n log2 n). This differs from
the smallest possible convergence time in case (i) by a factor
of log2 n but far from Ω(1) in case (ii).

V. DISCUSSION

We viewed opinion dynamics as a local interaction game
over a social network. When there are no stubborn agents,
the best-response dynamics converge to a common opinion
in which the impact of the initial opinion of each agent is
proportional to its degree. In the presence of stubborn agents,
agents do not reach a consensus but the dynamics converge to
an equilibrium in which the opinion of each agent is a convex
combination of the initial opinions of the stubborn agents.
The coefficients of such convex combination are related to
appropriately defined hitting probabilities of the random walk
over the social network’s graph. An alternative interpretation
is based on an electrical network model of the social network



where, at equilibrium, the opinion of each agent is simply its
voltage in the electrical network.

The bounds on the convergence time in the paper can be
interpreted in terms of location and stubbornness levels of
stubborn agents, and graph properties such as diameter, de-
grees, and the so-called bottleneck constant (12). The bounds
provide relatively tight orders for the convergence time in
the case of a fixed number of partially stubborn agents (case
(i)) but there might be a gap between the lower-bound and
the upper-bound when some of the stubborn agents are fully
stubborn (case (ii)). Tightening the bounds in case (ii) remains
as a future work.

At this point, we discuss the implication of our results in
applications where limited advertising budget is to be used
to convince a few agents to adopt, for example, a certain
opinion about a product/topic. The goal is the optimal selection
of such agents to trigger a faster spread of the advertised
opinion throughout the social network. This, in turn, implies
that, over a finite time, more agents will be biased towards
the advertised opinion. Similar leader selection problems have
been discussed in [10], [7], [15] where the goal is to select
a set of M agents with fixed states to optimize the system
performance. The common methodology is to show that the
objective is a sub-modular set function and use the sub-
modular optimization framework to produce a greedy proce-
dure where agents are added according to a greedy sequence.
Although the greedy algorithm is useful, it does not answer
the question in its simplest form M = 1, and may involve the
inversion of typically large matrices [10] in social networks
with very large number of users.

Using the simple bound (14), the question is reduced to
where to place a fixed number of fully-stubborn agents in
order to minimize |γ|Bd̃. Recall that |γ| is the maximum
length of shortest paths from non-stubborn agents to stubborn
agents, B is the bottleneck constant defined in (12), and d̃
is the maximum degree of non-stubborn agents. Since em-
pirical graphs of social networks exhibit small-world network
characteristics, |γ| is already very small (it is less than the
diameter of the graph which is already a log n quantity),
and hence, Bd̃ is the dominating factor. It is believed that
degree distribution in many networks, such as social networks,
WWW induced graph, etc, follows a power-law distribution
[30]. Heuristically, when there are a few very high degree
nodes and most of the nodes are of low degrees, selecting the
high degree nodes, as stubborn agents, reduces d̃ dramatically
and also reduces B because many agents (the neighbors of the
stubborn agents) are now directly connected to the stubborn
agents. On the other hand, selecting the possibly low degree
nodes of bottleneck edges as stubborn agents reduces B but
this reduction is at most by a factor equal to low degrees
of such nodes. Therefore, in general, the high degree nodes
seem to be good candidates for placement of stubborn agents.
It will be certainly interesting to establish the validity of such
a heuristic more rigorously.
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