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ABSTRACT
We consider scheduling deadline-constrained packets in multihop

wireless networks. Packets with arbitrary deadlines and weights

arrive at and are destined to different nodes. The goal is to design

online admission, routing, and scheduling algorithms in order to

maximize the cumulative weight of packets that reach their desti-

nations within their deadlines. Under a general interference graph

model of the wireless network, we provide online algorithms that

are (𝛾, R)-competitive, i.e., they achieve at least 1/𝛾 fraction of the

value of the optimal offline algorithm, and do not exceed the ca-

pacity by more than a factor R ≥ 1. In particular, our algorithm

can achieve 𝛾 = 𝑂 (𝜓★
log(Δ𝜌𝐿)/R) when RC = Ω(𝜓★

log(Δ𝜌𝐿)),
where 𝜌 is the ratio of maximum weight to minimum weight of

packets, 𝐿 is the length of the longest route of packets, and C is

the minimum link capacity or the number of channels. Here, Δ
is the maximum degree and𝜓★

is the local clique cover number of
the interference graph. Our results translate directly to many net-

works of interest, for example, in one-hop interference networks,

𝜓★ = 2, and in the case of wired networks (no interference),𝜓★ = 1.

We further provide lower bounds that show that our results are

asymptotically optimal in many settings. Finally, we present ex-

tensive simulations that show our algorithms provide significant

improvement over the prior approaches.

CCS CONCEPTS
• Networks→ Network algorithms.

1 INTRODUCTION
Scheduling real-time traffic in communication networks has gained

significant importance due to emerging real-time applications, e.g.

in Internet of Things (IoT), vehicular networks, and other cyber-

physical systems, where time-sensitive packets need to be carried

across wired or wireless networks. Meeting the deadline require-

ments of these packets requires a departure from traditional sched-

ulers that only focus on throughput. Despite the recent advances in

scheduling real-time traffic in “single-hop” wireless networks [1–5]

and multihop “wired” networks [6–8], the multihop wireless set-

ting has remained notoriously difficult. In this setting, the space
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of decisions is considerably larger as it involves the path a packet

takes, the set of non-interfering links scheduled in the network at

any time, as well as the specific time slots the packet occupies for

transmission over the scheduled links. Scheduling a packet at a link

will impact the decisions at other links in future time. Moreover,

one often expects that not all packets are equally important. Con-

sidering different rewards (weights) among the packets makes the

problem even more complicated.

This paper makes important progress on scheduling deadline-

constrained packets in multihop wireless networks. The objective

is to maximize the total reward of the packets that reach their

destinations within their deadlines. We provide a framework for

designing online algorithms for this problem for general interference
graphs. We state the performance in terms of bi-criteria competitive

ratio: an online algorithm is (𝛾, R)-competitive if it achieves at least

1/𝛾 fraction of the reward of the optimal offline algorithm, and does

not exceed the network’s capacity by more than a factor R ≥ 1.

The obtained competitive ratios are stated as a function of the

parameters of the problem, namely, 𝜌 : the ratio of the maximum

weight to the minimum weight of packets, 𝐿: the length of the

longest route of packets in the network, and C: the minimum link

capacity or the number of channels. Our results further depend on

the properties of the interference graph of the wireless network,

such as Δ: the maximum number of interferers of any link, and 𝛽 :

the maximum number of links that can be activated out of a link

and its set of interfering links (a.k.a. interference degree).

1.1 Related Work
There is rich literature on online packet scheduling with deadlines,

however, it mainly pertains to single-hop wireless networks or

multihop wired networks.

Wireless Networks. The work on deadline-constrained sched-

uling in wireless networks has mostly focused on single-hop traffic,

e.g., [1–5]. In [3], for single-hop wireless networks, it is shown

that by using an 𝛼-approximation of the well-known Max Weight

Scheduling (MWS) policy, it is possible to obtain
𝛼

𝛼+1 of the “real-

time” capacity region. For example, a greedy scheduler is shown

to achieve
1

𝛽+1 fraction of the capacity region, where 𝛽 is the in-

terference degree of the graph. Moreover, it is shown in [2, 3] that

randomized algorithms can improve this ratio. The work on the

multihop wireless setting has been very limited. The problem has

been considered by [9], where the bandwidth is divided in C orthog-

onal channels, and the results are obtained under various limits for

the traffic and C. The multi-channel model assumed in our paper

is similar to the one in [9], however we consider the case of finite

C as opposed to C → ∞ in [9]. Further, our results concern the

worst-case packet sequences as opposed to the i.i.d. setting in [9].
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Wired Networks. In the single-hop setting, there is consider-

able work on single-link buffer management, e.g., [10, 11], where it

is possible to design online algorithms with constant approximation

ratios. For multihop traffic, the problem is significantly more chal-

lenging and has been studied in a sequence of papers [6–8, 12–15].

We highlight two papers [7, 8] that have the best theoretical guar-

antees. [7] considers the unweighted packets case, i.e., 𝜌 = 1, and

provides two online algorithms, one with resource augmentation

R > 1 (i.e., when the link capacity is increased by a factor of R), and

one without augmentation, with R = 1. Their algorithm for R = 1 is

asymptotically optimal as the minimum link capacity 𝐶min →∞,
as it becomes 𝑂 (log𝐿)-competitive, matching a previously known

lower bound by [6]. For R > 1, in the limit of Cmin → ∞, [7]
provides a competitiveness of 1 + 𝐿

𝑒R−1 , which is linear in 𝐿 for con-

stant R. Recently, [8] provided an algorithm called GLS-ADP that is

(Cmax𝐿
1

C
min )-competitive in the unweighted case (𝜌 = 1). This can

yield logarithmic competitiveness if Cmin = log𝐿, however clearly

for larger Cmax the bound deteriorates. In addition, [8] provides an

algorithm called GLS in the case of weighted packets with fixed

routes, which is (𝜌 (𝐿 + 1))-competitive.

Our algorithm draws inspiration from the primal-dual tech-

niques, e.g., [7, 16]. However, the optimization problem in our

setting is considerably harder than the one in wired networks due

to the presence of interference constraints among the links. In this

case, the set of scheduled links at any time should be an indepen-

dent set of the network’s interference graph. A direct LP relaxation

of the optimization problem in this case yields a solution which

turns out to be too loose. In this paper, we propose a tighter relax-

ation by adding constraints corresponding to the local clique covers
of the interference graph. Although there is vast literature on LP

relaxation of independent set constraints, we have not identified a

similar relaxation in the past work.

1.2 Main Contributions
Our main contributions can be summarized as follows.

Scheduling in Wireless Multihop Networks. We provide an

online algorithm for scheduling and routing deadline-constrained

packets in wireless multihop networks with general interference

graphs. Our algorithm relies on a new relaxation technique based on

local clique covers of the interference graph, followed by a primal-

dual technique to obtain an approximate solution to the relaxed

problem, and finally, a greedy technique to map the primal-dual so-

lution to the independent sets of the network’s interference graph.

Our results depend on the properties of the constructed local clique

cover, captured through two parameters 𝜉 and𝜓 . In particular, in an

interference graph with maximum degree Δ, our algorithm yields

competitiveness 𝛾 = 𝑂 (𝜓 log(𝜉𝜌𝐿)/R) if RC = Ω(𝜓 log(𝜉𝜌𝐿)),
where 𝜉 ≤ Δ + 1, 𝛽 ≤ 𝜓 ≤ Δ, and 𝛽 is the interference degree. Our

results translate directly to many interference graphs of interest,

for example, in the case of one-hop interference model,𝜓 = 𝜉 = 2.

Scheduling in Wired Multihop Networks. Our framework

applies to the special case of wired networks with𝜓 = 𝜉 = 1. In this

case, our results translate to an 𝑂 (log(𝜌𝐿)/R)-competitive algo-

rithm when R𝐶min = Ω(log(𝜌𝐿)). This improves the prior results

[7, 8] for general 𝜌 (weighted packets) in terms of the assumptions

l1 l2

l3

l4s u v τ

Figure 1: A multihop network where at time 1 a packet
arrives at 𝑠 and needs to be delivered to 𝜏 with deadline
5. 𝑘 = {(𝑙1, 1), (𝑙3, 3)} and 𝑘′ = {(𝑙1, 2), (𝑙2, 3), (𝑙4, 5)} are both
valid route-schedules. {(𝑙1, 2), (𝑙2, 4), (𝑙4, 6)} is not a valid route-
schedule because the packet expires at time 6. Given a collec-
tion of packets, their selected route-schedules should further
respect the interference constraints among the links.

required to achieve a logarithmic competitiveness. Further, our

results are stated in terms of known constants.

Performance Lower Bounds.We provide lower bounds on the

performance guarantee of online algorithms. We show that online

admission-control and scheduling algorithms in networks with unit

capacity cannot be better than 𝜌𝛽 (𝐿 − 1)-competitive in general

interference networks. Similarly, in the case of wired networks,

no such algorithm can be better than 𝜌 (𝐿 − 1)-competitive when

C = 1. Further, for general online algorithms,𝑂 (log(𝜌𝐿)) is a lower
bound on competitiveness. These lower bounds, along with the

guaranteed upper bounds, indicate that our algorithms are optimal

up to constant multiplicative factors when R = 1.

2 NETWORK MODEL AND PROBLEM SETUP
We consider a communication network represented by a graph

G = (V,L), where each 𝑣 ∈ V is a node, and each edge 𝑙 =

(𝑢, 𝑣) ∈ L (with 𝑢, 𝑣 ∈ V) indicates a communication link over

which packets can be transmitted between two nodes. Time is

divided into time slots 𝑡 = 1, 2, 3, . . ., where a time slot is the time

required to complete transmission of one packet over a link. A

sequence of packetsM arrive to the nodes in the network over

time. Each packet𝑚 ∈ M has a source node 𝑠𝑚 , a destination node

𝜏𝑚 , an arrival time 𝑎𝑚 , a deadline 𝑑𝑚 (relative to the arrival), and

a weight 𝑤𝑚 . Let 𝑤max denote the maximum weight of a packet,

𝑤min be the minimum weight (with 𝜌 = 𝑤max/𝑤min), and 𝑑𝑚𝑎𝑥 be

the maximum deadline. To receive reward𝑤𝑚 , the packet𝑚 has to

be delivered to its destination before time slot 𝑎𝑚 + 𝑑𝑚 .

Definition 1 (Route-Schedule). A route-schedule 𝑘 for packet𝑚 is

a sequence of link-time slot tuples (𝑙1, 𝑡1), (𝑙2, 𝑡2) . . . , (𝑙𝑛, 𝑡𝑛), such
that by transmitting the packet over link 𝑙𝑖 at time 𝑡𝑖 , 𝑖 = 1, · · · , 𝑛,
𝑎𝑚 ≤ 𝑡1 < · · · < 𝑡𝑛 < 𝑎𝑚 + 𝑑𝑚 , it can be successfully transmitted

from its source to its destination within its deadline. We define the

length of 𝑘 as |𝑘 | = 𝑛. We useK𝑚 to denote the set of all valid route-

schedules for packet𝑚. We define 𝐿 to be the maximum length of

any route-schedule, i.e., 𝐿 = max𝑚∈M max𝑘∈K𝑚
|𝑘 |. Note that by

definition, 𝐿 ≤ 𝑑𝑚𝑎𝑥 , where 𝑑𝑚𝑎𝑥 is the maximum deadline.

See Figure 1 for an illustration of a route-schedule in a network.

As we mentioned earlier, we state our results in terms of re-

source augmented competitive ratios. Formally, suppose that the

capacity of the network is scaled by a factor of R ≥ 1. Let 𝜇 denote

an online scheduling algorithm. Let 𝑃𝜇 (R) be the total reward col-

lected by applying 𝜇 on the packet sequenceM, with the resource

augmentation R. Let 𝑃★ denote the total reward collected by an
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optimal offline algorithm without any resource augmentation. We

say online algorithm 𝜇 is (𝛾 (R), R)-competitive if:

𝑃𝜇 (R)
𝑃★

≥ 1

𝛾 (R) , (1)

for any sequence of packetsM, i.e., 𝜇 achieves a worst-case approx-

imation ratio of 1/𝛾 (R). Our goal is to design an online algorithm

such that the approximation ratio 1/𝛾 (R) is as large as possible, or
its competitiveness 𝛾 (R) is as small as possible, for R ≥ 1.

In the rest of the paper, we use [𝑛] to denote the set {1, 2, · · · , 𝑛},
and use N = {1, 2, · · · } to denote the set of positive integers.

2.1 General Interference Model
We assume a set of C ≥ 1 orthogonal frequency channels [9]. As a

result of wireless interference, certain links cannot be activated at

the same time in the same channel. We use an interference graph
G𝐼 = (L, E𝐼 ), e.g., [1, 2, 9], to represent the interference relation-

ships between links. In G𝐼 , vertices correspond to communication

links and there is an edge between any two links that interfere with

each other. Hence, the set of links scheduled at the same time in the

same channel should form an independent set of G𝐼 . We indicate

the maximum degree of G𝐼 with Δ.
We use Yc𝑡 to denote the independent set used at time 𝑡 in channel

c, and define 𝑌 c

𝑙𝑡
∈ {0, 1} to be 1 if link 𝑙 at time 𝑡 belongs to

independent set Yc𝑡 , and 0 otherwise.

Definition 2 (Network-Schedule). A valid network-schedule at

time 𝑡 is a set of RC independent sets

{
Yc𝑡 , c ∈ [RC]

}
of the in-

terference graph, over which packets can be transmitted on the

corresponding links and channels.

We define 𝑋𝑚𝑘 ∈ {0, 1} to be 1 if the route-schedule 𝑘 ∈ K𝑚 is

selected for packet𝑚 (and there is a way to schedule the packet

subject to the interference constraints), and is 0 otherwise.

Our goal is to maximize the total reward of packets that reach

their destinations before they expire. Given a resource augmenta-

tion R ≥ 1, the timely reward maximization can be formulated as

the following Integer Program which we refer to as 𝑃WG (R):

max

X,Y

∑︁
𝑚∈M

𝑤𝑚

∑︁
𝑘∈K𝑚

𝑋𝑚𝑘 (: 𝑃WG (R)) (2a)

s.t. 𝑌 c

𝑙𝑡
+ 𝑌 c

𝑙 ′𝑡 ≤ 1, ∀(𝑙, 𝑙 ′) ∈ E𝐼 ,∀c ∈ [RC],∀𝑡 (2b)∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 ≤
RC∑︁
c=1

𝑌 c

𝑙𝑡
, ∀𝑙 ∈ L,∀𝑡 (2c)∑︁

𝑘∈K𝑚

𝑋𝑚𝑘 ≤ 1, ∀𝑚 ∈ M (2d)

𝑋𝑚𝑘 ∈ {0, 1}, ∀𝑚 ∈ M, 𝑘 ∈ K𝑚 (2e)

𝑌 c

𝑙𝑡
∈ {0, 1}, ∀c ∈ [RC],∀𝑙 ∈ L,∀𝑡 (2f)

In the above, R is the augmentation factor. Constraints (2b) and

(2f) state the requirement that the network schedule at any time

𝑡 for every channel c ∈ [RC] has to be an independent set Yc𝑡 .
Constraints (2d) and (2e) state that at most one route-schedule 𝑘 is

selected for each arriving packet𝑚 ∈ M. Constraint (2c) states that

the number of transmitted packets over link 𝑙 at time 𝑡 cannot be

more than the number of times that link 𝑙 is scheduled considering

all the channels, i.e., each packet transmission on link 𝑙 at time 𝑡 will

l1
s

u1

d1

u2

d2

τ

(a) Matching Yc1

𝑡1

l2

s

u1

d1

u2

d2

τ

(b) Matching Yc2

𝑡2

l3
s

u1

d1

u2

d2

τ

(c) Matching Yc3

𝑡3

Figure 2: A sequence of matchings Yc1𝑡1 ,Y
c2

𝑡2
,Yc3𝑡3 at three time

slots 𝑡1 < 𝑡2 < 𝑡3, in channels c1, c2, c3, respectively. This
schedule can deliver a packet 𝑚 expiring at 𝑑𝑚 + 𝑎𝑚 > 𝑡3
from 𝑠 to 𝜏 . In this case, the route-schedule for 𝑚 is 𝑘1 =

{(𝑙1, 𝑡1), (𝑙2, 𝑡2), (𝑙3, 𝑡3)}, and 𝑋𝑚𝑘1 = 1.

be completed using a network independent set on a single channel.

Hence, Constraints (2b)–(2f) imply that in order for a specific packet

𝑚 to be admitted and scheduled using the route-schedule 𝑘 , i.e.,

𝑋𝑚𝑘 = 1, there must be a sequence of |𝑘 | independent sets, one for
each link that packet𝑚 traverses. With all the constraints satisfied,

any association of packets to independent sets is equivalent.

We refer to the unaugmented problem simply by 𝑃WG ≡ 𝑃WG (1).
Note that in general there are exponentiallymany route-schedules

in a network, hence the optimization problem 𝑃WG (R) could have

exponentially many variables. Furthermore, 𝑃WG (R) is clearly NP-

hard even in simple scenarios (e.g., with a reduction of the Maxi-

mum Independent Set problem to this problem).

Next, we present two special cases of the above model, namely,

one-hop interference, and no interference (i.e., wired network).

2.2 One-hop Interference Model
The one-hop (or node-exclusive) interference model, e.g. [17–20],

assumes that two adjacent links cannot be scheduled at the same

time in the same channel. Formally, define the links incident to

node 𝑣 ∈ 𝑉 as A(𝑣) =
{
𝑙 ∈ L : 𝑙 = (𝑣,𝑢), 𝑢 ∈ 𝑉

}
.

One-hop interference model requires that for every 𝑣 ∈ 𝑉 , at
most one link 𝑙 ∈ A(𝑣) is scheduled. Equivalently, at any time 𝑡 and

any channel c, the set of scheduled links should form a “matching”
of the communication graph G. Hence, the network-schedule Yc𝑡 in
this case corresponds to the matching used at time 𝑡 on channel c.

The reward maximization problem in this special case is as follows:

max

X,Y

∑︁
𝑚∈M

𝑤𝑚

∑︁
𝑘∈K𝑚

𝑋𝑚𝑘 (: 𝑃WM (R)) (3a)

s.t.

∑︁
𝑙∈A(𝑣)

𝑌 c

𝑙𝑡
≤ 1, ∀𝑣 ∈ 𝑉 ,∀c ∈ [RC],∀𝑡 (3b)

Constraints (2𝑐), (2𝑑), (2𝑒), (2𝑓 ) .

Refer to Figure 2 for an example illustrating transfer of a packet

through matchings in the case of one-hop interference.

2.3 Wired Networks (No Interference)
Our general model trivially translates to this case. Since there is no

interference, all links can be activated at the same time, i.e., we can

set Yc𝑡 = 1. Then
∑
RC

c=1 𝑌
c

𝑙𝑡
= RC. In this case, we enrich the model

slightly so that each link can have a different capacity, to obtain a

model analogous to the one in [7, 8]. Let C𝑙 ∈ N be the capacity

of link 𝑙 , which is the maximum number of packets that can be

transmitted over 𝑙 at a time slot. The new optimization 𝑃WD (R) is

13
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then as follows:

max

X

∑︁
𝑚∈M

𝑤𝑚

∑︁
𝑘∈K𝑚

𝑋𝑚𝑘 (: 𝑃WD (R)) (4a)

s.t.

∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 ≤ RC𝑙 , ∀𝑙 ∈ L,∀𝑡 (4b)

Constraints (2𝑑), (2𝑒) .

Our algorithm in its general form relies on a clique cover of the

interference graph and depends on the local properties of this cover,

𝜓, 𝜉 . Hence, in the next section, we introduce some preliminaries

and make a few definitions.

3 DEFINITIONS AND PRELIMINARIES:
CLIQUE COVER

We define the (extended) neighborhood of link 𝑙 as the set of links

that interfere with 𝑙 , including link 𝑙 itself, i.e., N𝑙 := {𝑙 ′ ∈ L :

(𝑙, 𝑙 ′) ∈ E𝐼 } ∪ {𝑙}. We use G𝐼 [L′] to denote the induced subgraph

of G𝐼 on a subset of links L′ ⊆ L. A set of links 𝑄 is a clique for
G𝐼 if G𝐼 [𝑄] is a complete graph. In other words, a clique for G𝐼 is a
set of links that all interfere with each other. We define a (vertex-)

clique cover of G𝐼 as a set Q of cliques in G𝐼 that can cover the

entire set L, i.e., ∪𝑄∈Q𝑄 = L. When sets in Q are all disjoint, we

refer to Q as a disjoint clique cover.
We define the local properties of the clique cover as follows.

Given a clique cover Q of G𝐼 , we use Q𝑙 to denote a minimal subset

of Q needed to cover the neighborhood of 𝑙 . Formally,

Q𝑙 = argmin
ˆQ⊆Q

(
| ˆQ|, s.t. N𝑙 ⊆ ∪𝑄∈ ˆQ𝑄

)
.

We define the local clique cover degree (lccd) of Q as

𝜓 := 𝜓 (Q) = max

𝑙∈L
|Q𝑙 |.

We further define the clique involvement degree 𝜉 as the maximum

number of cliques any link belongs to. Formally,

𝜉 := 𝜉 (Q) = max

𝑙∈L
|{𝑄 ∈ Q : 𝑙 ∈ 𝑄}|

We omit the dependence of 𝜓 and 𝜉 on Q when there is no

ambiguity. As it will become evident in the performance guarantees

of our algorithm (Section 4.1), it is desirable to select a Q that

primarily minimizes𝜓 . Refer to Figure 3 for an illustration of clique

covers and properties𝜓, 𝜉 in a graph.

We define the optimal lccd 𝜓★
to be the minimum lccd over

all possible clique covers. We refer to 𝜓★
as the local clique cover

number of G𝐼 . The following lemma allows to compute 𝜓★
more

efficiently by considering local clique covers.

Lemma 1. Consider a clique cover obtained by the union ofminimal
clique covers for all local subgraphs G𝐼 [N𝑙 ], ∀𝑙 ∈ L. This clique cover
minimizes lccd, i.e., it achieves𝜓★.

Finally, we mention that one can define an edge clique cover as a
covering of all the edges rather than the vertices of a graph. Since

covering the edges requires covering the end-vertices of every edge,

an edge clique cover is also a valid vertex clique cover. An example

of an edge clique cover is cover 𝐵 of Figure 3, while clique covers

𝐴 and 𝐶 are not edge clique covers.

Figure 3: Three ways to perform a clique cover in the above
graph.𝐴 is aminimal clique cover of the graph. 𝐵 is a covering
that would naturally arise by attempting to cover locally all
neighborhoods.𝐶 is obtained from 𝐵 by removing redundant
cliques. In𝐴:𝜓 = 3, 𝜉 = 1, and in 𝐵 and𝐶:𝜓 = 2, 𝜉 = 2. Hence, 𝐵
or𝐶 give the minimum𝜓 . Note that for this graph𝜓★ = 𝛽 = 2.

4 SCHEDULING UNDER GENERAL
INTERFERENCE

In this section, we present the general form of our algorithm. We

refer to this algorithm as GIMS (General Interference Multihop

Scheduler), described in Algorithm 2. GIMS has three parts: (1)

selection of a clique cover Q, (2) admission and route-schedule

assignment, and (3) channel assignment. We discuss these three

parts below.

Selecting the Clique Cover. The choice of the clique cover

Q directly depends on the interference graph. A predetermined

clique cover can be specified for several families of graphs. For

example, as we will see in Section 5, a natural clique cover arises in

one-hop interference networks. In the case of arbitrary interference

graphs, due to Lemma 1, we can attain𝜓★
by identifying minimal

local covers. Algorithm 1 describes one such algorithm based on a

subroutine for finding the local clique covers at Line 1.4 (Line 4 of

Algorithm 1). As a result of selecting a disjoint clique cover locally,

we additionally have 𝜉 ≤ (Δ + 1). For graphs where even finding a

minimal clique cover locally is costly, we can simply use a greedy

clique cover [21] at Line 1.4. The use of a greedy clique cover at

Line 1.4 guarantees 𝜓 ≤ Δ and 𝜉 ≤ Δ + 1. However, as we see in
Section 10, for most graphs, even the greedy approach yields 𝜓

close to 𝛽 . We discuss the complexity in detail in Section 7.

The obtained clique cover Q might contain some redundant

cliques. For example, cliques that are subsets of other cliques in the

cover might arise. Algorithm 1 has a (optional) Prune step (Line 1.8)

that iteratively removes cliques whose removal does not increase
the value of𝜓 (as an attempt to reduce 𝜉).

Algorithm 1: Selecting Clique Cover Q
1.1 Input: Interference graph G𝐼
1.2 Q ← ∅
1.3 for each link 𝑙 ∈ L do
1.4 Q𝑙 ← Find a disjoint clique cover for G𝐼 [N𝑙 ]
1.5 Q = Q ∪ Q𝑙
1.6 end
1.7 while Q ≠ 𝑃𝑟𝑢𝑛𝑒 (Q) do
1.8 Q ← 𝑃𝑟𝑢𝑛𝑒 (Q)
1.9 end

1.10 Return: Q
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Figure 4: Consider a route-schedule 𝑘 = {(𝑙1, 𝑡1), (𝑙2, 𝑡2), (𝑙3, 𝑡3)}
in a graph G with interference graph G𝐼 . The bottom figure
shows only part of G that includes the links of 𝑘 . The top
figure shows the interference subgraph G𝐼 [

⋃
3

𝑖=1N𝑙𝑖 ] and a
corresponding clique cover. The cost of 𝑘 is 𝑞(𝑘) = (𝑏𝑄1𝑡1 +
𝑏𝑄12𝑡1 )+(𝑏𝑄12𝑡2 +𝑏𝑄2𝑡2 +𝑏𝑄 ′′

2
𝑡2 )+𝑏𝑄3𝑡3 . Only the cliques in which

a link of 𝑘 is included contribute to the cost.

Admission and Route-Schedule Assignment. GIMS main-

tains a cost, 𝑏𝑄𝑡 ≥ 0, for each clique 𝑄 ∈ Q at every time 𝑡 , which

depends on the load on the clique, i.e., the number of packets sched-

uled for links in 𝑄 at time 𝑡 . A link that belongs to cliques that are

not overloaded should be selected more favorably. Formally, define

the cost for a route-schedule 𝑘 as,

q(𝑘) =
∑︁
(𝑙,𝑡 ) ∈𝑘

∑︁
𝑄 :𝑙∈𝑄

𝑏𝑄𝑡 , (5)

i.e., the total cost of cliques of links included in the route-schedule

at the respective time slots. See Figure 4 for an illustrative example.

Algorithm 2 finds the route-schedule 𝑘★ that has the minimum

cost (Line 2.7).Wewill describe how this minimization can be solved

efficiently through an expanded graph in Section 7.

When a packet𝑚 arrives, admission decision is made by compar-

ing its reward𝑤𝑚 with the cost of the best route-schedule 𝑞(𝑘★)
(Line 2.9). If 𝑤𝑚 > 𝑞(𝑘★), the packet is admitted and scheduled

on the route-schedule 𝑘★, otherwise it is rejected. If the packet is

admitted and assigned to 𝑘★, we increase the corresponding clique

costs (Line 2.11). Formally, for each (𝑙, 𝑡 ′) ∈ 𝑘★, we increase 𝑏𝑄𝑡 ′

for all cliques in Q that link 𝑙 belongs to, i.e.,

𝑏𝑄𝑡 ′ ←
( 𝐹
C

+ 1
)
𝑏𝑄𝑡 ′ +

𝑤𝑚𝑖𝑛𝜙

𝐿C
, ∀𝑄 ∈ Q : 𝑙 ∈ 𝑄. (6)

The cost increase depends on the chosen parameters 𝐹 ≥ 1, 𝜙 >

0. We refer to GIMS with parameters 𝐹, 𝜙 , as GIMS𝐹,𝜙 . We will

later specify the value of these parameters such that the rate of

increase of 𝑏𝑄𝑡 ′ guarantees that the cliques are not overloaded and

consequently the capacity constraints are not violated.

Channel Assignment. In contrast to the admission and route-

schedule decisions which are made upon arrival of a packet, the

channel assignment that is used to transmit the packet is only

determined at the time slot that the packet is to be transmitted.

After Line 2.21, we determine the network-schedule for that

time 𝑡 , namely, the collection of independent sets such that the

packets decided to be scheduled at time 𝑡 (denoted by
⋃

𝑙∈L 𝑆𝑙𝑡 ) are

transmitted through these independent sets over the corresponding

channels. The independent sets are chosen greedily. In every iter-

ation c, we choose a maximal independent set Yc𝑡 (Line 2.24) over
the links with remaining packets to be transmitted (Lc at Line 2.23)

until all scheduled packets are transmitted. We will later show that

the loop at Line 2.21 terminates in at most RC iterations, i.e., we

transmit all the scheduled packets using the RC available channels.

Algorithm 2: General Interf. Multihop Scheduler (GIMS)

2.1 Input: Parameters 𝐹 ≥ 1, 𝜙 > 0 and Q.
2.2 𝑏𝑄𝑡 ← 0,∀𝑄 ∈ Q,∀𝑡, and 𝑆𝑙𝑡 ← ∅,∀𝑙 ∈ L,∀𝑡 .
2.3 for each time 𝑡 = 0, 1, . . . do
2.52.5 for each packet arrival𝑚 at time 𝑡 do
2.72.7 𝑘★← argmin𝑘∈K𝑚

q(𝑘)
2.92.9 if q(𝑘★) < 𝑤𝑚 then
2.112.11 𝑏𝑄𝑡 ′ ← ( 𝐹C + 1)𝑏𝑄𝑡 ′ +

𝑤𝑚𝑖𝑛𝜙

𝐿C
,

2.12 ∀(𝑙, 𝑡 ′) ∈ 𝑘★,∀𝑄 : 𝑙 ∈ 𝑄
2.13 𝑆𝑙𝑡 ′ ← 𝑆𝑙𝑡 ′ ∪ {𝑚},∀(𝑙, 𝑡 ′) ∈ 𝑘★
2.14 𝑋𝑚𝑘★ ← 1

2.15 else
2.16 Drop packet𝑚

2.17 end
2.18 end
2.19 c← 0

2.212.21 while ∃𝑙 ∈ L with |𝑆𝑙𝑡 | > 0 do
2.22 c← c + 1
2.23 Lc ← {𝑙 ∈ L : |𝑆𝑙𝑡 | > 0}
2.24 Yc𝑡 ← A maximal independent set in G𝐼 [Lc].
2.25 𝑚𝑙,c ← An arbitrary packet from 𝑆𝑙𝑡 ,∀𝑙 ∈ Yc𝑡
2.26 Schedule𝑚𝑙,c at time 𝑡 over matching Yc𝑡
2.27 𝑆𝑙𝑡 ← 𝑆𝑙𝑡 \ {𝑚𝑙,c},∀𝑙 ∈ Yc𝑡
2.28 end
2.29 end

4.1 Performance Guarantees
The theorem below states the performance of GIMS in the most

general form.

Theorem 1. Consider a clique cover Q of G𝐼 with parameters𝜓, 𝜉 .
Then GIMS𝐹,𝜙 is (𝐹 + 𝜉𝜙)-competitive for the problem 𝑃WG (Eq. 2)

with R = 𝜓
log

(
𝜌𝐿𝐹

𝜙
+1

)
C log (𝐹/C+1) , where 𝐹 ≥ 1 and 𝜙 > 0.

Note that letting 𝜙 =
𝜙 ′

𝜉
, the algorithm is (𝐹 + 𝜙 ′)-competitive

with R = 𝜓
log( 𝜌𝐿𝐹𝜉

𝜙′ +1)
C log (𝐹/C+1) . Hence, R is linear in𝜓 while logarithmic

in 𝜉 . Therefore, in selecting the clique cover, minimizing𝜓 should

be prioritized (as in Algorithm 1).

The following corollary states the required R to achieve a near-

optimal performance.

Corollary 1. Given a clique cover Q, and any 𝜖 > 0, GIMS
1,𝜖/𝜉

is (1 + 𝜖)-competitive for the problem 𝑃WG when the resource aug-

mentation is R = 𝜓
log

(
𝜌𝐿𝜉

𝜖
+1

)
C log(1/C+1) .

Given Q and R, we can optimize for the competitive ratio by

solving the following simple single-variable optimization:
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min 𝐹 + 𝜉𝜙 (𝐹 ) (7a)

s.t. 𝐹 ≥ 1 (7b)

𝜙 (𝐹 ) = 𝐿𝜌𝐹

(1 + 𝐹/C)C
R

𝜓 − 1
. (7c)

Let us denote the optimal solution of this optimization problem

as 𝐹★(R) and its corresponding 𝜙 by 𝜙★(R) = 𝜙 (𝐹★(R)). Further,
we denote GIMS★ = GIMS𝐹★ (R),𝜙★ (R) . We provide a bound on the

performance of GIMS★ below based on a suboptimal choice of 𝐹, 𝜙 .

Corollary 2. Given a resource augmentation R ≥ 1, GIMS𝐹,𝜙

is 4𝜓

R
ln(𝜉𝜌𝐿 + 1)-competitive when C ≥ 2𝜓

R
ln(𝜉𝜌𝐿 + 1) by setting

𝐹 =
2𝜓

R
ln(𝜉𝜌𝐿 + 1) and 𝜙 as in (7c).

The special case of C = 1, R = 1 is not covered by Corollary 2 as

CR = 1. We provide a result for this case in the following Corollary.

Corollary 3. For C = 1 and R = 1, GIMS1,𝜌𝐿 is (1 + 𝜉𝜌𝐿)-
competitive given an edge clique cover Q.

Corollary 3 requires an edge clique cover Q. Note that in this

case we seek to choose a cover with only a small 𝜉 . For certain

graph families, there are known bounds for 𝜉 . For example, in linear

interval graphs 𝜉 = 𝑂 (logΔ), where Δ is the maximum degree of

any node in the interference graph [22].

Remark 1 (Relation to interference degree). As we saw, e.g., in Corol-

lary 2, our results are linear in 𝜓 while logarithmic in 𝜉 , hence

primarily impacted by𝜓 . We connect the optimal𝜓★
with the pre-

viously studied notion of the interference degree 𝛽 [1–3]. It is not

hard to show (see our technical report [23]) that, in general,

𝛽 ≤ 𝜓★ ≤ Δ.

For many families of interference graphs however we have 𝛽 = 𝜓★
,

e.g., graphs that are perfect [24] in every neighborhood (i.e., for

each G𝐼 [N𝑙 ]). One such case is the graph in Figure 3. In this case

𝜓★ = 𝛽 = 2. Note that the entire graph is not perfect. In practical

graphs, we expect𝜓★
to be close to 𝛽 . In Section 10, we verify that

this is indeed true for random graphs.

5 SCHEDULING UNDER NODE-EXCLUSIVE
INTERFERENCE

The general framework described in Section 4 is directly applicable

to the special case of node-exclusive interference model. However,

in this case we can describe an effective edge clique covering. In fact

under node-exclusive interference, all the links incident to a node

𝑣 ∈ V form a valid clique 𝑄𝑣 = A(𝑣) in G𝐼 . Furthermore, we can

locally cover N𝑙 of link 𝑙 = (𝑢, 𝑣), with Q𝑙 = {A(𝑢),A(𝑣)}. Hence,
Q = {A(𝑣), 𝑣 ∈ V}. Therefore, we can cover the neighborhood of

every link in G𝐼 with exactly two cliques and get 𝜓 = 𝜉 = 2. We

further simplify our notation for the costs to refer to the cost of

nodes instead of cliques, since each clique is associated with a node.

Let the costs be 𝑏𝑣𝑡 ≥ 0 for every node 𝑣 ∈ 𝑉 at every time 𝑡 . The

cost for a route-schedule 𝑘 is then

q(𝑘) =
∑︁

( (𝑢,𝑣),𝑡 ) ∈𝑘
(𝑏𝑣𝑡 + 𝑏𝑢𝑡 ) . (8)

We refer to the algorithm for one-hop interference with the node-

induced clique cover as NEMS which stands for Node-Exclusive
Multihop Scheduler. Then Theorem 1 and Corollaries 1, 2 and 3 hold

for 𝜓 = 2, 𝜉 = 2. To facilitate our discussion, we state the follow-

ing bound on the performance of NEMS★ (defined analogously to

GIMS★) for the suboptimal choice of 𝐹, 𝜙 in the following corollary.

Corollary 4. Given a resource augmentation R ≥ 1, NEMS𝐹,𝜙

is 8

R
ln(2𝜌𝐿 + 1)-competitive when C ≥ 4

R
ln(2𝜌𝐿 + 1) by setting

𝐹 = 4

R
ln(2𝜌𝐿 + 1) and 𝜙 as in (7c) for𝜓 = 2.

6 SCHEDULINGWITH NO INTERFERENCE
In this section, we mention the special case of wired networks. This

time, we associate a cost 𝑏𝑙𝑡 ≥ 0 with every link 𝑙 at each time 𝑡 .

The cost of a route-schedule 𝑘 reduces to the sum of the cost of

link-time tuples (𝑙, 𝑡) in 𝑘 , i.e.,

q(𝑘) =
∑︁
(𝑙,𝑡 ) ∈𝑘

𝑏𝑙𝑡 . (9)

We refer to the algorithm for this setting asWeighted Multihop
Scheduler (WEMS). The simplified Algorithm 2 for WEMS is pro-

vided in our technical report [23]. Following similar notations of

the general algorithm, we define WEMS𝐹,𝜙 and WEMS★. In this

case, Theorem 1 and Corollaries 1, 2 and 3 hold with𝜓 = 𝜉 = 1.

We provide a bound on the performance of WEMS★ below based

on a suboptimal choice of 𝐹, 𝜙 .

Corollary 5. Given a resource augmentation R ≥ 1,WEMS𝐹,𝜙

is 4

R
ln(𝜌𝐿 + 1)-competitive when 𝐶min ≥ 2

R
ln(𝜌𝐿 + 1) by setting

𝐹 = 2

R
ln(𝜌𝐿 + 1) and 𝜙 = 𝜙 (𝐹 ) as in (7c) for𝜓 = 1.

Remark 2. As seen in Corollary 5,WEMS is𝑂 (log(𝜌𝐿))-competitive

for R = 1, if 𝐶min = Ω(log(𝜌𝐿)). This is the first logarithmic result

for general 𝜌 , improving over [8]. Corollary 5 further improves

the result in [7] for the values R = 𝑜 (log(𝜌𝐿)). For example, for

R = 2, Corollary 5 still provides logarithmic competitiveness as

opposed to the linear competitiveness of [7]. Finally our result is

not asymptotic in Cmin but only requires Cmin to be logarithmic.

7 COMPLEXITY OF ALGORITHMS
In this section, we elaborate on the complexity of the algorithms.

Selecting the clique cover. Recall that we need to find a clique

cover of the given interference graph. We discuss the complexity of

finding a clique cover through a local method such as in Algorithm 1.

For locally perfect graphs, finding an optimal clique cover can be

solved in polynomial time [25]. In more general graphs, we can

use an algorithm like Eppstein’s algorithm [25] to find an optimal

clique cover in each neighborhood, yielding a total complexity

𝑂 ( |L|2.415Δ). If Δ = 𝑂 (log |L|), this complexity is polynomial. In

the case of large Δ, when the complexity becomes prohibitive, one

can adopt experimentally tested algorithms that are shown to obtain

the optimal coloring in most graphs [26] or other greedy techniques

[21] (note that a disjoint clique cover of a graph corresponds to the

coloring of the complement graph).

Admission and route-schedule selection. Now we discuss

the running time of Algorithm 2. We show how the minimization

at Line 2.7 can be solved in polynomial time. We will reduce the

problem to finding a minimum cost path between two nodes in a
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Directed Acyclic Graph (DAG). The minimum path problem can

be solved even more efficiently in DAGs, with linear complexity

𝑂 (𝑉 + 𝐸) in a DAG (𝑉 , 𝐸) [27].
Consider the minimization for packet𝑚. We use 𝑇 = {𝑎𝑚, 𝑎𝑚 +

1, · · · , 𝑎𝑚 + 𝑑𝑚} to denote the time slots during which packet𝑚

can be in the system. Let us construct an Expanded graph, over
which we will find minimum paths, as follows. Define the set of

vertices asV ×𝑇 , i.e., each node of the network’s graph is copied

|𝑇 | = 𝑑𝑚 + 1 times. For each link 𝑙 = (𝑢, 𝑣) ∈ L, we add edges(
(𝑢, 𝑡), (𝑣, 𝑡 + 1)

)
if 𝑡 ∈ 𝑇 and 𝑡 + 1 ∈ 𝑇 , with weight

∑
𝑄 :𝑙∈𝑄 𝑏𝑄𝑡 .

Finally, for each node 𝑣 ∈ V , we add edges

(
(𝑣, 𝑡), (𝑣, 𝑡 + 1)

)
if 𝑡 ∈ 𝑇

and 𝑡 + 1 ∈ 𝑇 , with weight 0. It is easy to verify that all paths from

(𝑠𝑚, 𝑎𝑚) to (𝜏𝑚, 𝑎𝑚 + 𝑑𝑚) correspond to all the route-schedules

K𝑚 . Consequently finding the optimal route-schedule is reduced

to finding a minimum cost path in the expanded graph. Finding a

minimum path and processing a packet in this graph can thus be

completed in 𝑂 ( |L|𝑑𝑚𝑎𝑥 𝜉).
Channel assignment. For Algorithm 2, at every time slot, we

need to also find at most RC maximal independent sets. Each maxi-

mal independent set can be found in𝑂 (𝛽 |L|) [28], so the complexity

per time slot is bounded by 𝑂 (𝛽 |L|RC).

8 PROOFS OF MAIN RESULTS
We provide the proof of Theorem 1. The proofs of Corollary 2 and

Corollary 3 can be found in our technical report [23].

8.1 Outline of Proof Technique
Consider a (primal) maximization problem 𝑃 , such as 𝑃WG (Eq. 2)

or 𝑃WM (Eq. 3). Let 𝑃𝜇 denote the objective value of the solution

provided by our algorithm 𝜇, and 𝑃★ denote the optimal value. Let

𝑃 (R) denote the augmented optimization problem when R ≥ 1 (or

the contracted optimization problem when R < 1). Note that, in (2)

(or (3) and (4)), R appears in the constraints, not in the objective

function. To show (1), we first obtain a relaxation 𝑃 of the original

problem 𝑃 . Suppose for some 𝜆 ∈ N, our algorithm 𝜇 finds a feasible

solution for the relaxed augmented problem 𝑃 (R/𝜆) that is also
feasible for 𝑃 (R), then it holds that 𝑃𝜇 (R/𝜆) = 𝑃𝜇 (R), since the two
optimization problems have the same objective function. Then if

we show

𝑃𝜇 (R/𝜆) ≥ 𝛾 (R)−1𝑃★, (10)

we get

𝑃𝜇 (R) (𝑎)= 𝑃𝜇 (R/𝜆)
(𝑏 )
≥ 𝛾 (R)−1𝑃★

(𝑐 )
≥ 𝛾 (R)−1𝑃★,

and hence (1) follows. Here, (𝑎) is due to feasibility of solution of

𝜇 for 𝑃 (𝑅/𝜆) and 𝑃 (𝑅), (b) is due to (10), and (𝑐) is the immediate

result of the relaxation. Hence, our proof for each main theorem

has three steps:

Step 1: We construct 𝑃 as a Linear Program (LP).

Step 2: We show (10) through a primal-dual approach. Let 𝐷 be

the dual of 𝑃 . Let 𝐷𝜇
be the dual objective value under algorithm 𝜇

and 𝐷★
be the optimal dual value. We construct a primal-dual pair

through our algorithm 𝜇 such that

𝑃𝜇 (𝑅/𝜆) ≥ 𝛾 (𝑅)−1𝐷𝜇 . (11)

Then (10) follows since 𝐷𝜇 ≥ 𝐷★ = 𝑃★ by LP duality.

Step 3: We show that the solution of 𝜇 for 𝑃 (𝑅/𝜆) is also a feasible

solution for 𝑃 (𝑅).
In the following, for simplicity of exposition and to avoid tech-

nicalities we assume in our analysis that R is such that
RC

𝜓
is an

integer, unless RC = 1. As we see in our evaluations in Section 10,

this assumption does not have a negative impact on our algorithm.

8.2 Proof of Theorem 1
Step 1.We provide an LP relaxation of 𝑃WG (𝑅), given a clique cover

Q of G𝐼 . We refer to the relaxation as 𝑃WG (𝑅):

max

∑︁
𝑚∈M

𝑤𝑚

∑︁
𝑘∈K𝑚

𝑋𝑚𝑘 (: 𝑃WG (R)) (12a)

s.t.

∑︁
𝑙∈𝑄

∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 ≤ RC ∀𝑄 ∈ Q,∀𝑙,∀𝑡 (12b)∑︁
𝑘∈K𝑚

𝑋𝑚𝑘 ≤ 1 ∀𝑚 ∈ M (12c)

𝑋𝑚𝑘 ≥ 0 ∀𝑚 ∈ M,∀𝑘 ∈ K𝑚, 𝑌𝑐
𝑙𝑡
≥ 0 ∀𝑙, 𝑡, 𝑐 (12d)

To see that this is indeed a relaxation, we will show that any

feasible solution for 𝑃WG (R) is also a feasible solution for 𝑃WG (R).
Consider a particular clique 𝑄 ∈ Q. Constraints (2b), (2f) enforce
that each Yc𝑡 is an independent set, and consequently, for any clique,

we can have at most one link in the clique activated, i.e.,

∑
𝑙∈𝑄 𝑌 c

𝑙𝑡
≤

1 for all 𝑐 ∈ [RC] and for all 𝑡 . Then it follows∑︁
𝑙∈𝑄

∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘

(𝑎)
≤

∑︁
𝑙∈𝑄

RC∑︁
𝑖=1

𝑌 𝑖
𝑙𝑡
=

RC∑︁
𝑖=1

∑︁
𝑙∈𝑄

𝑌 𝑖
𝑙𝑡
≤ RC,

where (𝑎) is due to Constraint (2c). Hence, (12b) holds.

Step 2. Next, we show (10) in our case, by proving the following

Lemma through a primal-dual technique.

Lemma 2. Under 𝜇 = GIMS𝐹,𝜙 , relation (10) is satisfied as follows:

𝑃
𝜇

WG
( R
𝜓
) ≥ (𝐹 + 𝜉𝜙)−1𝑃★

WG
for R

𝜓
= log(𝐹/𝐶+1)𝐶

(
𝜌𝐿

𝜙
𝐹 + 1

)
.

Proof. We provide a sketch of the proof here. For the complete

proof, refer to our technical report [23].

The following LP is the dual of 𝑃WG (1):

min

𝛼𝑚,𝑏𝑄𝑡

∑︁
𝑚∈M

𝛼𝑚 +
∑︁
𝑄,𝑡

C𝑏𝑄𝑡 (: 𝐷WM) (13a)

s.t. 𝛼𝑚 +
∑︁
(𝑙,𝑡 ) ∈𝑘

∑︁
𝑄 :𝑙∈𝑄

𝑏𝑄𝑡 ≥ 𝑤𝑚 ∀𝑚,∀𝑘 ∈ K𝑚 (13b)

𝛼𝑚 ≥ 0,∀𝑚, 𝑏𝑄𝑡 ≥ 0,∀𝑄, 𝑡 (13c)

Note that in the above, the dual variables 𝑏𝑄𝑡 correspond to the

clique costs, i.e., our algorithm constructs an appropriate solution

for dual variables 𝑏𝑄𝑡 . We will also define a solution for 𝛼𝑚 . We,

then, show (10) by proving that Algorithm 2 yields a primal-dual

pair with 𝑃
𝜇

WG
( R
𝜓
) ≥ (𝐹 + 𝜉𝜙)−1𝐷𝜇

WG
.

Consider a given packet𝑚 processed by Algorithm 2. Assign to

the dual variable 𝛼𝑚 the value

𝛼𝑚 = 1(q(𝑘★) < 𝑤𝑚) (𝑤𝑚 − 𝑞(𝑘★)), (14)

where the values 𝑘★ and 𝑏𝑄𝑡 used in the evaluation of 𝛼𝑚 are the

values at the time packet𝑚 is processed at Line 2.9.
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Satisfying Dual Constraints. The dual constraints are satisfied as

a result of the assignment in (14) for each𝑚.

Satisfying Primal Constraints. For the primal constraints we need

to make sure that the capacity constraints in Equation 12b are

satisfied. After 𝑛 packet admissions to links in 𝑄 we have 𝑏𝑄𝑡 [𝑛] =
𝑤𝑚𝑖𝑛𝜙

𝐿C

( 𝐹
C
+1)𝑛−1
𝐹/𝐶 . Further, to admit a packet on a link in a clique

𝑄 , it must hold that 𝑏𝑄𝑡 [𝑛] ≤ 𝑞(𝑘★) < 𝑤𝑚 ≤ 𝑤𝑚𝑎𝑥 . From that

inequality on 𝑏𝑄𝑡 , we can bound the maximum number of packets

𝑛′ on any clique. It follows that 𝑛′ ≤ C
R

𝜓
for the R stated in the

statement of the lemma, i.e., the capacity can be violated by at most

a factor of
R

𝜓
.

Primal-Dual Analysis. We finish the proof of the Lemma and

thus of Step 2 by showing (11) for 𝜆 = 𝜓 . Let Δ𝑃WG and Δ𝐷WG

be respectively the change of the primal objective value and the

dual objective value after a packet arrival𝑚 has been rejected or

admitted and assigned to a route-schedule 𝑘 . For the nontrivial case

of when a packet is admitted, Δ𝑃WG = 𝑤𝑚 . For the dual we have

Δ𝐷WG = 𝑤𝑚 − q(𝑘★) +
∑︁
(𝑙,𝑡 ) ∈𝑘★

𝐶
∑︁

𝑄 :𝑙∈𝑄
Δ𝑏𝑄𝑡

≤ 𝐹𝑤𝑚 + 𝜙𝜉𝑤𝑚𝑖𝑛 ≤ (𝐹 + 𝜙𝜉)𝑤𝑚 .

This implies that 𝐷WG ≤ (𝐹 + 𝜉𝜙)𝑃WG and hence for the relaxation

we have a competitive ratio of (𝐹 + 𝜉𝜙)−1 for augmentation
R

𝜓
. □

Step 3.With Lemma 2 in hand, we complete the proof by arguing

that the obtained solution is feasible for 𝑃WG (R). To do that we

show that Algorithm 2 yields a set of independent sets that satisfy

Constraints (2b) and (2c) for each time slot 𝑡 .

Let Λ𝑡 denote the number of iterations of the loop at Line 2.21 of

Algorithm 2 before it terminates for time 𝑡 . Note that after process-

ing the arrivals at time 𝑡 (i.e, after exiting the loop at Line 2.5), 𝑆𝑙𝑡 is

the set of packets scheduled to be transmitted on link 𝑙 at time slot

𝑡 . Let 𝑆𝑙𝑡 (c) denote the set 𝑆𝑙𝑡 at the end of iteration c at Line 2.21,

and 𝑆𝑙𝑡 (0) be the initial set. Note that for c = Λ𝑡 , 𝑆𝑙𝑡 (Λ𝑡 ) = ∅, by
the condition of Line 2.21 and the definition of Λ𝑡 . We extend the

definition of 𝑆𝑙𝑡 by letting 𝑆𝑙𝑡 (c) = ∅ for c ≥ Λ𝑡 . Note that initially

|𝑆𝑙𝑡 (0) | =
∑︁

𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 . (15)

In every iteration, a packet is removed from 𝑆𝑙𝑡 if 𝑌
c

𝑙𝑡
= 1 (Line 2.27).

Thus it follows that for 𝑛 ∈ [Λ𝑡 ]

|𝑆𝑙𝑡 (𝑛) | =
∑︁

𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 −
𝑛∑︁
c=1

𝑌 c

𝑙𝑡
. (16)

By (16) and since |𝑆𝑙𝑡 (Λ𝑡 ) | = 0, we have∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 =

Λ𝑡∑︁
c=1

𝑌 c

𝑙𝑡
.

If we show that Λ𝑡 ≤ RC, then Constraints (2c) will be satisfied as∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 =

Λ𝑡∑︁
c=1

𝑌 c

𝑙𝑡
≤

RC∑︁
c=1

𝑌 c

𝑙𝑡
.

Since we take a maximal independent set at Line 2.24 in every itera-

tion for at most RC iterations, it will also follow that Constraints (2b)

are satisfied. Therefore the (𝐹 + 𝜉𝜙)-competitive solution obtained

Lemma 2 for 𝑃WM (R/𝜓 ) would be a feasible solution for 𝑃WM (R)
and, as we have discussed in Section 8.1, this will imply the theorem.

Thus it remains to show thatΛ𝑡 ≤ RC or alternatively |𝑆𝑙𝑡 (RC) | =
0. Let 𝑦𝑙𝑡 (c) = |𝑆𝑙𝑡 (c) |. Note that by Lemma 2, we obtain a solution

to 𝑃WG, and hence at the end of slot 𝑡 it must satisfy∑︁
𝑙∈𝑄

∑︁
𝑚∈M

∑︁
𝑘∈K𝑚 :(𝑙,𝑡 ) ∈𝑘

𝑋𝑚𝑘 ≤ CR/𝜓, ∀𝑄 ∈ Q,

where R/𝜓 = log(𝐹/C+1)C
(
𝑤𝑚𝑎𝑥𝐿
𝑤𝑚𝑖𝑛𝜙

𝐹 + 1
)
. Using (15), we can rewrite

these constraints as ∑︁
𝑙∈𝑄

𝑦𝑙𝑡 (0) ≤ RC/𝜓 . (17)

Take any link 𝑙 ′. We will show 𝑦𝑙 ′𝑡 (RC) = 0. To that end, consider

the graph G𝐼 [Lc] at time 𝑡 where Lc is defined at Line 2.23. Recall

that the neighborhood of link 𝑙 ′ is covered by definition by at most𝜓

cliques, Q𝑙 ′ . For each such clique there is a constraint in 𝑃WG (𝑅/𝜓 )
such as in (17). Further, since 𝑦𝑙𝑡 (c) is non-increasing with c, these

constraints can be written as∑︁
𝑙∈𝑄

𝑦𝑙𝑡 (c) ≤ CR/𝜓, ∀𝑄 ∈ Q𝑙 ′ . (18)

Since N𝑙 ′ = ∪𝑄∈Q𝑙 ′𝑄 , the above implies that∑︁
𝑙∈N𝑙 ′

𝑦𝑙𝑡 (c) ≤
∑︁

𝑄∈Q𝑙 ′

∑︁
𝑙∈𝑄

𝑦𝑙𝑡 (c) ≤ CR.

In every iteration c, while 𝑦𝑙 ′𝑡 (𝑐) > 0, the value of

∑
𝑙∈N𝑙 ′ 𝑦𝑙𝑡 (c) is

reduced by one. This is because we select a maximal independent

set and at least one of the links
ˆ𝑙 ∈ N𝑙 ′ with 𝑦

ˆ𝑙𝑡
(c) > 0 has to

be included in the independent set, otherwise it is not maximal.

Therefore we have 𝑦𝑙𝑡 ′ (RC) = 0, or

∑
𝑙∈N𝑙 ′ 𝑦𝑙𝑡 (RC) = 0 which in

turn implies 𝑦𝑙 ′𝑡 (RC) = 0. Since 𝑙 ′ was arbitrary, it follows that for
all links 𝑙 ∈ L, we have 𝑦𝑙𝑡 (RC) = 0.

9 LOWER BOUNDS ON COMPETITIVENESS
In this section we discuss lower bounds on competitiveness, or

equivalently upper bounds on the competitive ratio, of any online

algorithm. There are many parameters of interest and hence there

is a variety of the lower bounds one can state.

The following result follows directly from the results stated for

wireline networks in [6, 8].

Theorem 2. Any online algorithm, subject to a general interference
graph, cannot be better than Ω(max(𝐿, log(𝜌𝐿)))-competitive with
a single channel (C = 1).

Therefore our algorithms are optimal up to constants for C =

1, 𝜌 = 1, for one-hop interference and no-interference networks. It

remains an open question whether our online algorithms are also

optimal for general 𝜌 and𝜓 . Further, we remark that inapproxima-

bility results for the Maximum Independent Set (MIS) problem [29]

apply to our problem 𝑃WG as well. Hence, it is not likely (unless

𝑃 = 𝑁𝑃 ) to improve competitiveness significantly over a linear 𝛽

factor with any polynomial-time algorithm.

Recall that our algorithms are admission-control algorithms, i.e.,

at the time slot a packet arrives, the algorithm determines if the

packet should be admitted or not, and if admitted, the packet should
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(b) Random Geometric Graph

Figure 5: Comparison of greedy𝜓 , maximum degree Δ and
interference degree 𝛽 , averaged over 100 random networks.

necessarily be scheduled. The following result indicates the opti-

mality of our results in this class in the single channel case for

general 𝜌 .

Theorem 3. Any admission-control algorithm in general inter-
ference graphs with any interference degree 𝛽 cannot be better than
𝜌𝛽 (𝐿 − 1)-competitive for a single channel (C = 1) and any 𝐿 > 1.

We provide the proof in the technical report [23]. Theorem 3 im-

plies that our algorithms are optimal up to multiplicative constants

for C = 1 in the class of online admission and scheduling algorithms

in all cases where 𝛽 = 𝜓★
, e.g., in the one-hop interference case,

locally perfect graphs and other families.

10 SIMULATION RESULTS
In this section, we provide simulation results to evaluate different

aspects of our algorithms and compare with the past algorithms.

Clique Cover Selection. We evaluate the𝜓 obtained by Algo-

rithm 1 using a locally greedy clique cover [21], on random graphs

of different densities. In Figure 5, we compare the obtained𝜓 with

the lower bound 𝛽 and upper bound Δ. In Figure 5a, we used Erdős–

Rènyi graphs of 50 nodes, with an edge probability ranging from

0.05 to 0.5 between every pair of nodes. The results are obtained by

averaging over 100 random graphs. In Figure 5b, we used random

geometric graphs, where points are thrown in a unit cube, and

pairs of points with distance less than the specified threshold are

connected. As we observe, the greedily obtained𝜓 is very close to

𝛽 and hence to the optimal value 𝜓★
. Both 𝜓, 𝛽 are much smaller

than Δ for denser graphs.

Comparing Competitive Ratios in Wired Networks. We

illustrate the advantage of the guarantees obtained by WEMS★

in Figure 6, compared to two past algorithms for wired networks,

namely, the PD algorithm from [7] that we refer to as DZH-PD

and GLS-ADP algorithm from [8]. As we see in Figure 6a in almost

all scenarios the guarantee of WEMS★ is considerably better than

those by [7, 8]. Similar results are obtained for different values

of 𝐿. In the case of GLS-ADP [8], the competitive ratio depends

on the ratio Cmax/Cmin. In our plot, we include the ideal case of

Cmax = Cmin and the case when the ratio of the two is 2. In our

comparison, we use the results of the PD variant from [7] which

provides known constants. In Figure 6b, we compare the guarantees

for R > 1 for various values of 𝐿. We observe that for larger 𝐿, the

gap between WEMS★ and DZH-PD becomes larger. Finally, we

emphasize that our results hold for general 𝜌 in contrast to these

works.
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Figure 6: Comparison of competitive ratios for 𝜌 = 1 in wired
networks.
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ure 8.

1 2 3 4 5 6 7 8 9
Capacity10

00
40

00
70

00
Av

er
ag

e 
Re

wa
rd

 p
er

 S
lo

t

WEMS⋆
PDSS
GLS-FP

(a) No Interference

1 2 3 4 5 6 7 8
Capacity

10
00

40
00

70
00

Av
er

ag
e 

Re
wa

rd
 p

er
 S

lo
t

NEMS⋆
PDSS-MTC
GLS-FP-MTC

(b) One-hop Interference

Figure 8: Average reward per time slot obtained by various
algorithms for the network in Figure 7.

Wired Multihop Networks.We simulate our algorithms and

compare them with prior algorithms in the network in Figure 7.

We simulated the following flows: (1, 5), (1, 8), (2, 7), (6, 7), (2, 5)
with i.i.d. weights, deadlines and number of arrivals (refer to [23]

for details). We observe that the average reward obtained from

our Algorithm NEMS★ is significantly higher than PDSS and GLS-

FP (we used the PDSS variant of [7] as it performed better in our

simulations, andGLS-FPwhich is the variant used in the simulations

of [8] for multiple routes). We simulated many other topologies,

such as the grid topology, and other traffic patterns, and observed

similar results [23].

Wireless Multihop Networks. Since the algorithms in [7, 8]

are for wired networks, in our evaluation, we extend these policies

to our wireless setting as follows: Apply the regular wired policy

in these works. To assign packets to channels, apply the packet

assignment to channels implemented in our algorithm. When a

packet admitted and scheduled for an (𝑙, 𝑡) cannot be allocated to

one of the C available channels on that link, we drop the packet.

First, we consider the network in Figure 7 under one-hop inter-

ference, and traffic as in our simulations for the wired multihop

network. This allows us to observe the effect of interference on

the performance. The results are presented in Figure 8b. NEMS★

significantly outperforms the other policies for C ≥ 3.
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Figure 9: Average reward per time slot obtained by various
algorithms for a random geometric wireless network, for
different traffic intensities.

We further evaluated the algorithms on random geometric net-

works with one-hop interference and more general interference.

The network is formed by distributing 25 nodes uniformly at ran-

dom in a unit square and connecting nodes that have a distance

less than 0.2. We kept the largest connected component of this

graph, which included 20 nodes. We generated traffic by selecting

10 random pairs of nodes, and assigning a random traffic flow to

that pair from a set of 4 different traffic sources. We further varied

the number of flows to 20, 30, 40, and 50 (traffic intensity of 1 to 5).

The results are presented in Figure 9 under one-hop interference.

For these results,𝐶 = 10 channels were used, however we obtained

analogous results for 𝐶 = 5, 15, 20.

To evaluate a more general interference model, in the random

geometric graph, each link (𝑢, 𝑣) was assigned a “location” as the

midpoint of the locations of 𝑢 and 𝑣 . Any two links in distance less

than 0.4 are then selected to interfere with each other. The resulting

interference graph has 185 edges, Δ = 20, and a greedily selected

𝜓 = 3. Before pruning 𝜉 = Δ + 1 = 21. After a simple pruning of

removing the redundant subset cliques we obtained 𝜉 = 16. The av-

erage reward performance is shown in Figure 9b. As expected, there

is a small reduction in performance compared to Figure 9a. How-

ever our algorithms preserve good performance overall, validating

our theoretical results. For details on the simulation parameters,

refer to our technical report [23]. In our simulations, we verified

that all packets admitted by NEMS★ and GIMS★ are successfully

allocated to the C available channels, as predicted by our analysis.

11 CONCLUSION
In this paper, we introduced a framework for scheduling packets

with end-to-end deadlines in multihop wireless networks with

general interference graphs, an important problem that has been

largely unexplored due to its difficulty. Our framework is directly

applicable to special cases such as one-hop interference models,

or even wired networks where the obtained competitive ratios

outperform prior results. Following our work, many interesting

problems arise. Tightening the lower bounds on competitiveness

in general regimes could be an interesting future work. Moreover,

investigating alternate relaxations can potentially yield improved

results.
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