
IEEE/ACM TRANSACTIONS ON NETWORKING 1

A Simple Congestion-Aware Algorithm for
Load Balancing in Datacenter Networks

Mehrnoosh Shafiee, Student Member, IEEE, and Javad Ghaderi, Member, IEEE

Abstract—We study the problem of load balancing in datacen-
ter networks, namely, assigning the end-to-end data flows among
the available paths in order to efficiently balance the load in
the network. The solutions used today rely typically on ECMP
(Equal Cost Multi Path) mechanism which essentially attempts
to balance the load in the network by hashing the flows to the
available shortest paths. However, it is well known that ECMP
performs poorly when there is asymmetry either in the network
topology or the flow sizes, and thus there has been much interest
recently in alternative mechanisms to address these shortcomings.
In this paper, we consider a general network topology where
each link has a cost which is a convex function of the link
congestions. Flows among the various source-destination pairs
are generated dynamically over time, each with a size (bandwidth
requirement) and a duration. Once a flow is assigned to a path in
the network, it consumes bandwidth equal to its size from all the
links along its path for its duration. We consider low-complexity
congestion-aware algorithms that assign the flows to the available
paths in an online fashion and without splitting. Specifically, we
propose a myopic algorithm that assigns every arriving flow to
an available path with the minimum marginal cost (i.e., the path
which yields the minimum increase in the network cost after
assignment) and prove that it asymptotically minimizes the total
network cost. Extensive simulation results are presented to verify
the performance of the myopic algorithm under a wide range of
traffic conditions and under different datacenter architectures.
Furthermore, we propose randomized versions of our myopic
algorithm which have much lower complexity and empirically
show that they can still perform very well in symmetric network
topologies.

Index Terms—Markov chains, Load balancing, Online algo-
rithms, Routing algorithms, Datacenter network

I. INTRODUCTION

There has been a dramatic shift over the recent decades
with search, storage, and computing moving into large-scale
datacenters. Today’s datacenters can contain thousands of
servers and typically use a multi-tier switch network to provide
connectivity among the servers. To maintain efficiency and
quality of service, it is essential that the data flows among
the servers are mapped to the available paths in the network
properly in order to balance the load and minimize the cost
(e.g., delay, congestion, etc.). For example when a large flow
is routed poorly, collision with the other flows can cause some
links to become congested, while other less utilized paths are
available.

The datacenter networks rely on path multiplicity to provide
scalability, flexibility, and cost efficiency. Consequently, there

The authors are with the Department of Electrical Engineering, Columbia
University, New York, NY, 10027 USA (e-mail:s.mehrnoosh@columbia.edu,
jghaderi@ee.columbia.edu). The research supported by NSF grants CNS-
1652115 and CNS-1565774. An earlier version of this paper appeared in
INFOCOM 2016 conference [1].

has been much research on flow scheduling algorithms that
make better use of the path multiplicity (e.g., [2]–[6]) or
designing new networks with better topological features (e.g.,
FatTree [2], VL2 [7], hypercube [8], hypergrid [9], random
graphs such as JellyFish [10], etc.).

In this paper, we consider a general network topology
where each link is associated with a cost which is a convex
function of the link utilization (e.g., this could be a latency
function). The network cost is defined as the sum of the link
costs. Flows among the various source-destination pairs are
generated dynamically over time where each flow is associated
with a size (rate) and a duration. Once a flow is assigned to a
path in the network, it consumes resource (bandwidth) equal to
its size (rate) from all the links along its path for its duration.
The main question that we ask is the following. Is it possible
to design a low-complexity algorithm, that assigns the flows to
the available paths in an online fashion and without splitting,
so as to minimize the average network cost?

In general, multi flow routing in networks has been exten-
sively studied from both networking systems and theoretical
perspective, however multi flow routing considered in this
paper has two key distinguishing objectives:

1) it does not allow flow splitting because splitting the
flow is undesirable due to TCP reordering effect [11].
Resolving packet reordering requires modification of pro-
tocol stack [12], which might be costly. Without splitting,
many versions of multi flow routing in networks become
hard combinatorial problems [13], [14]. In fact, the static
version of the problem considered in this paper (i.e.,
given a static list of flows, assigning flows to paths
without splitting so as to balance the load in the network)
is known to be NP-hard, through its connection to the
Partition problem [15]1.

2) it allows dynamic routing because it considers the current
utilization of links in the network when making the
routing decisions for newly arrived flows unlike static
solutions where the mapping of flows to the paths is fixed
and requires the knowledge of the traffic matrix.

A. Related Work

Seminal solutions for flow routing in datacenters (e.g. [7],
[16]) rely on Equal Cost Multi Path (ECMP) load balancing
which statically splits the traffic among available shortest paths
(via flow hashing). However, it is well known [3]–[6], [17]

1In the Partition problem, given a set of numbers, we are asked to divide
them into two subsets such that the maximum of the sum of the numbers in
the sets is minimized. This can be reformulated as the load balancing in a
simple two-node network with two parallel edges.

IEEE/ACM TRANSACTIONS ON NETWORKING 2

that ECMP can balance load poorly since it may map large
long-lived flows to the same path, thus causing significant
load imbalance. Further, ECMP is suited for symmetric ar-
chitectures such as FatTree and performs poorly in presence
of asymmetry either due to link failures [18] or in recently pro-
posed datacenter architectures [10]. Theoretical performance
of ECMP in Clos networks under a static flow model has
been studied in [19]. There have been recent efforts to address
the shortcomings of ECMP. The proposed algorithms range
from centralized solutions (e.g., [3], [4]), where a centralized
scheduler makes routing decisions based on global view of the
network, to distributed solutions (e.g., [6], [20]) where routing
decisions are made in a distributed manner by the switches.
There are also host-based protocols based on Multi Path TCP
(e.g., [5]) where the routing decisions are made by the end-
host transport protocol rather than by the network operator;
however, they require significant changes to Transport layer
which might not be feasible in public cloud platforms [12].
Authors in [21] investigated a more general problem based on
a Gibbs sampling technique and proposed a plausible heuristic
that requires re-routing and interruption of flows (which is
operationally expensive). There are also algorithms that allow
flow splitting and try to resolve the packet reordering effect in
symmetric network topologies [12], [20], [22]. As explained,
dealing with packet reordering involves overhead and modifi-
cation of protocol stack.

Our work is also related to a large body of literature on
traffic engineering and congestion control. For brevity, we
only highlight the most relevant work. The first line of work,
e.g. [23]–[25], studies the problem of minimizing the cost
of carrying traffic in a static multi-commodity flow model
and under a convex cost function for the link rates. Given
the knowledge of the traffic matrix (commodities) among the
nodes, routing algorithms are proposed that iteratively update
the fraction of traffic of each flow that should be sent on each
outgoing link in the network. They rely on splitting flows
among the least weighted paths where the weight of each link
is defined by its marginal link cost.

The second line of work is atomic and non-atomic con-
gestion games in game theory [26]–[29]. In the context of
routing, players are the commodities, strategy sets are the set
of directed source-destination paths for the commodities, the
edge cost ce(fe) is a function of the amount of congestion
fe over edge e, and the path cost cp(f) is the sum of the
cost of the links along the path p. A player i incurs a cost
cp(f)f

(i)
p for sending f

(i)
p amount of traffic over the path

p. In the atomic games, each player must choose a single
path to route its commodity, while in non-atomic games,
player can distribute its commodity fractionally over the set of
paths. The two versions are fundamentally different. While the
atomic game in general does not admit a Nash equilibrium,
the nonatomic game always has a Nash equilibrium (Wardrop
equilibrium) [30]. In Wardrop equilibrium, all the paths used
by a given commodity have equal cost. Moreover, it’s known
in non-atomic games that selfish best response moves (selfish
routing) by the players iteratively converge to the Wardrop
equilibrium, which is a local minimum of a potential function

(network cost)
∑
e

∫ fe
0
ce(x)dx.

The third line of work is oblivious routing [31]–[33] in
which routes are computed to optimize the worst-case per-
formance over the set of traffic matrices. This ensures that the
computed routes are prepared for changes in traffic demands
without the need to update the routes, however this is a
pessimistic point of view and may be far from optimal in
relatively stable periods of traffic or stable networks [32].

While the proposed myopic algorithm in this paper is remi-
niscent of prior algorithms under flow splitting and non-atomic
games (e.g. [23]–[25], [28]–[30]), the results in this paper are
not trivially drawn from these prior work. First, unlike [23]–
[25], [28]–[30] that rely on splitting flows in any granularity
and rerouting them continuously to find the optimal routing,
we do not allow flow splitting and migrations. Second, un-
like [23]–[25], [28]–[30] that consider a static set of flows with
known traffic demand, we are dealing with a dynamic version
of the problem when flows arrive and depart dynamically over
time and the traffic demand is not known. Such constraints
arise in practice due to the varying nature of the traffic over
time and space in datacenters as well as undesirability of
packet reordering in flow splitting. Our technical approach
relies on a careful analysis of the fluid limits of the system
under the myopic policy (without flow splitting) and proof of
convergence to an invariant set which is the set of optimal
flow assignments in steady state. Under unsplittable flows, the
fluid limits are not continuously differentiable which poses a
significant technical challenge. Intuitively, as the number of
flows in the system grows, the difference between the optimal
expected network cost under unsplittable flow assignment and
that under splittable flow assignment should vanish in the
performance ratio. We rigorously establish this intuition, and
further, present deterministic and randomized algorithms with
low complexity which perform very well in practice.

Finally, Software Defined Networking (SDN) has enabled
network control with quicker and more flexible adaptation
to changes in the network topology or the traffic pattern
and can be leveraged to implement centralized or hybrid
algorithms in datacenters [2], [34]–[36]. The weight construct
in the algorithms proposed in this paper can provide an
approach to optimally accommodate dynamic variations in
datacenter network traffic in centralized control platforms such
as OpenFlow [34].

B. Contributions

The main contributions of this paper can be summarized as
follows.
• Asymptotic optimality of a myopic algorithm. We

propose and analyze a simple flow scheduling algorithm
to minimize the average network cost (the sum of convex
functions of link utilizations). Specifically, we propose a
myopic algorithm that assigns every arriving flow to an
available path with the minimum marginal cost (i.e., the
path which yields the minimum increase in the network
cost after assignment). We prove that this simple myopic
algorithm is asymptotically optimal in any network topol-
ogy, in the sense that the performance ratio between the

IEEE/ACM TRANSACTIONS ON NETWORKING 3

average network cost under the myopic algorithm and the
optimal cost approaches 1 as the mean number of flows
in the system increases. The myopic algorithm does not
rely on flow splitting, hence packets of the same flow will
travel along the same path without reordering. Further, it
does not require migration/rerouting of the flows or the
knowledge of the traffic pattern.

• A low complexity randomized algorithm. We also
propose randomized versions of our myopic algorithm
which have much lower complexity. In the randomized
algorithm with parameter k ≥ 2, instead of considering
all the available paths upon arriving of a flow, k paths are
chosen at random and then the flow is assigned to the path
with the minimum marginal cost among these k paths.
Similar to the myopic algorithm, randomized versions
do not rely on flow splitting, flow migration/rerouting,
or the knowledge of the traffic pattern. We empirically
investigate the effect of parameter k on the algorithm
performance.

• Empirical evaluation of the algorithms. We evaluate
our myopic algorithm and its randomized versions under
various workload and network topologies. For the flow
generation, we consider two traffic models: (i) Poisson
arrival of flows with exponentially distributed durations,
and (ii) based on data from empirical studies of dat-
acenter traffic. For the network topology, we consider
FatTree (a highly structured topology), and JellyFish (a
random topology). Our empirical results show that the
myopic algorithm in fact performs very well under a wide
range of traffic conditions in both datacenter topologies.
Further, the randomized algorithms can perform very
well by choosing the proper parameter k (the number
of randomly chosen paths), in particular in symmetric
network topologies (like FatTree) small values of k will
suffice.

C. Notations

Given a sequence of random variables {Xn}, Xn ⇒ X
indicates convergence in distribution, and Xn → X indicates
the almost sure convergence. Given a Markov process {X(t)},
X(∞) denotes a random variable whose distribution is the
same as the steady-state distribution of X(t) (when it exists).
‖ · ‖ is the Euclidian norm in Rn. d(x, S) = mins∈S ‖s− x‖
is the distance of x from the set S. ‘u.o.c.’ means uniformly
over compact sets.

II. MODEL AND PROBLEM STATEMENT

A. Datacenter Network Model

We consider a datacenter (DC) consisting of a set of servers
(host machines) connected by a collection of switches and
links. Depending on the DC network topology, all or a subset
of the switches are directly connected to servers; for example,
in FatTree [2] (Figure 1) only the edge (top-of-the-rack)
switches are connected to servers, while in JellyFish [10]
(Figure 2) all the switches have some ports connected to
servers. Nevertheless, we can model any general DC network
topology (FatTree, JellyFish, etc.) by a graph G(V,E) where

Core

Edge

Aggregation

Fig. 1: FatTree connecting 16 servers (rectangles) using 4-port
switches (circles).

Fig. 2: JellyFish (random graph) connecting 16 servers (rect-
angles) using 4-port switches (circles).

V is the set of switches and E is the set of communication
links. A path between two switches is defined as a set of links
that connects the switches and does not intersect itself. The
paths between the same pair of source-destination switches
may intersect with each other or with other paths in DC.

B. Traffic Model

Each server can generate a flow destined to some other
server. We assume that each flow belongs to a set of flow
types J . A flow of type j ∈ J is a triple (aj , dj , sj) where
aj ∈ V is its source switch (i.e., the switch connected to
the source server), dj ∈ V is its destination switch (i.e., the
switch connected to its destination server), and sj is its size
(bandwidth requirement). Note that based on this definition,
we only need to find the routing of flows in the switch network
G(V,E) since the routing from the source server to the source
switch or from the destination switch to the destination server
is trivial (follows the direct link from the server to the switch).
Further, two switches can have more than one flow type with
different sizes. We assume that type-j flows are generated
according to a Poisson process with rate λj , and each flow
remains in the system for an exponentially distributed amount
of time with mean 1/µj . It is possible to extend our results
to a more general model of flow arrival and service time, e.g.,
when the arrival process is a “renewal” process and service
time distribution has lower bounded “hazard rate”, using a
similar approach as in [37]. We will also report simulation
results in Section V that show that our myopic algorithm
indeed performs very well under much more general arrival
and service time processes.

For any j ∈ J , let Rj denote the set of available paths
from aj to dj , then each type-j flow must be accommodated
by using only one of the paths from Rj (i.e., the flow cannot be
split among multiple paths). Note that Rj could be the set of
all possible paths from aj to dj or a subset of them as desired
by the network operator. We assume that Rj is nonempty for
each j ∈ J . Define Y (j)

i (t) to be the number of type-j flows

IEEE/ACM TRANSACTIONS ON NETWORKING 4

routed along the path i ∈ Rj at time t. The network state is
defined as

Y (t) =
(
Y

(j)
i (t); i ∈ Rj , j ∈ J

)
. (1)

The online (Markov) scheduling algorithm determines the path
where an arriving flow at time t is placed, as a function of the
current network state Y (t).

We also define X(j)(t) =
∑
i∈Rj

Y
(j)
i (t) which is the total

number of type-j flows in the network at time t. Let Zl(t) be
the total amount of traffic (congestion) over link l ∈ E. Based
on our notations,

Zl(t) =
∑
j∈J

∑
i:i∈Rj ,l∈i

sjY
(j)
i (t), (2)

where by l ∈ i we mean that link l belongs to path i. We also
define ρj = λj/µj which is the mean offered load by type-j
flows.

Note that under any Markov scheduling algorithm, the net-
work state {Y (t)}t≥0 is a continuous-time, irreducible Markov
chain. It is also positive recurrent, because the total number
of type-j flows X(j)(t) in the system is a Markov chain
independent of the scheduling algorithm, and its stationary
distribution is Poisson with mean ρj . Therefore, the process
{Y (t)}t≥0 has a unique stationary distribution as t→∞.

C. Problem Formulation
For the purpose of load balancing, the network can attempt

to optimize different objectives [38] such as minimizing the
maximum link congestion in the network or minimizing the
sum of link costs where each link cost is a convex function
of the link congestion (e.g. this could be a link latency
measure [39]). Under both objectives, the traffic needs to
be distributed and balanced among the feasible paths in the
network, which is essential for maintaining low end-to-end
delay for different flows. In this paper, we use the latter
objective but by choosing proper cost functions, an optimal
solution to the later objective can be used to also approximate
the former objective as we see below.

We define g(Zl) to be the cost of link l when its congestion
is Zl. Our goal is to find a flow scheduling algorithm that
assigns each flow to a single path in the network so as to
minimize the mean network cost in the long run, specifically,

minimize lim
t→∞

E [F (Y (t))]

subject to: serving each flow using one path,
(3)

where, F (Y (t)) =
∑
l∈E g(Zl(t)). We consider polynomial

cost functions of the form

g(x) =
x1+α

1 + α
, α > 0, (4)

where α > 0 is a constant. Thus g is increasing and strictly
convex in x. As α → ∞, the optimal solution to (3)
approaches the optimal solution of the optimization problem
whose objective is to minimize the maximum link congestion
in the network2.

2Here we have considered identical links for simplicity but the analysis
is easily extendable to the case that g(·) is a function of x/cl where cl is
the link capacity, or the case that each link has a weight and the goal is to
minimize the weighted summation of the link costs.

III. ALGORITHM DESCRIPTION

In this section, we describe our myopic algorithm for
flow assignment where each flow is assigned to one path in
the network (no splitting) without interrupting/migrating the
ongoing flows in the network. Recall that Y (t) = (Y

(j)
i (t))

is the network state, Y (j)
i (t) is the number of type-j flows

on path i ∈ Rj , and Zl(t) is the total traffic on link l given
by (2).

Algorithm 1 Myopic Flow Scheduling Algorithm
Suppose a type-j flow arrives at time t when the system is in
state Y(t). Then,

1: Compute the path marginal costs w(j)
i (Y (t)), i ∈ Rj , in

either of the forms below:
• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

∆
(j)
l (Y (t)), (5)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (6)

2: Place the flow on a path i such that

i = arg min
k∈Rj

w
(j)
k (Y (t)). (7)

Break ties in (7) uniformly at random.

First, we define two forms of link marginal cost that
measure the increase in the link cost if an arriving type-j flow
at time t is routed using a path that uses link l.

Definition 1. (Link marginal cost) For each link l and flow-
type j, the link marginal cost is defined in either of the forms
below.
• Integral form:

∆
(j)
l (Y (t)) = g

(
Zl(t) + sj

)
− g
(
Zl(t)

)
. (8)

• Differential form:

δ
(j)
l (Y (t)) = sjg

′(Zl(t)). (9)

Based on the link marginal costs, we can characterize the
increase in the network cost if an arriving type-j flow at time t
is routed using path i ∈ Rj . Specifically, let Y (t+) = Y (t) +

e
(j)
i , where e(j)i denotes a vector whose corresponding entity

to path i and flow type j is one, and its other entities are
zero. Then F (Y (t)) is the network cost before the type-j flow
arrival, and F (Y (t+)) is the network cost after assigning the
type-j flow to path i. Then, it is easy to see that

F (Y (t+))− F (Y (t)) =
∑
l∈i

[
g
(
Zl(t) + sj

)
− g
(
Zl(t)

)]
=
∑
l∈i

∆
(j)
l (Y (t)). (10)

Similarly, based on the differential marginal costs, we have

∂F (Y (t))

∂Y
(j)
i (t)

=
∑
l∈i

sjg
′(Zl(t)) =

∑
l∈i

δ
(j)
l (Y (t)). (11)

IEEE/ACM TRANSACTIONS ON NETWORKING 5

Algorithm 1 describes our myopic flow assignment algorithm
that places the newly generated flow on a path that minimizes
the increase in the network cost based on either forms (10) or
(11). Upon arrival of a flow, Algorithm 1 takes the correspond-
ing feasible paths and their link congestions into the account
for computing the path marginal costs w(j)

i (t) but it does not
require to know any information about the other links in the
network. The two forms (5) and (6) are essentially identical
in our asymptotic performance analysis in the next section,
however it seems slightly easier to work with the differential
form (6). Algorithm 1 can be implemented either centrally
or in a distributed manner using a distributed shortest path
algorithm that uses the link marginal costs, ∆

(j)
l (t) or δ(j)l (t),

as link weights.

Remark 1. Note that in Algorithm 1 the flow is assigned to
a path with the minimum path marginal cost. The path with
the minimum path marginal cost is not necessarily the same
as the path with the minimum end-to-end congestion (sum of
link congestions in the path).

IV. PERFORMANCE ANALYSIS VIA FLUID LIMITS

The system state {Y (t)}t≥0 is a stochastic process which
is not easy to analyze, therefore we analyze the fluid limits
of the system instead. Fluid limits can be interpreted as the
first order approximation to the original process {Y (t)}t≥0
and provide valuable qualitative insight into the operation of
Algorithm 1. In this section, we introduce the fluid limits of
the process {Y (t)}t≥0 and present our main result regarding
the convergence of Algorithm 1 to the optimal cost. We
deliberately defer the rigorous claims and proofs about the
fluid limits to Section VII and for now mainly focus on the
convergence analysis to the optimal cost, which is the main
contribution of this paper.

A. Informal Description of Fluid Limit Process

In order to obtain the fluid limits, we scale the process in
rate and space. Specifically, consider a sequence of systems
{Y r(t)}t≥0 indexed by a sequence of positive numbers r, each
governed by the same statistical laws as the original system
with the flow arrival rates rλj , j ∈ J (therefore, a system with
a larger r would experience heavier traffic), and initial state
Y r(0) such that Y r(0)/r → y(0) as r → ∞ for some fixed
y(0). The fluid-scale process is defined as yr(t) = Y r(t)/r,
t ≥ 0. We also define yr(∞) = Y r(∞)/r, the random state
of the fluid-scale process in steady state. If the sequence
of processes {yr(t)}t≥0 converges to a process {y(t)}t≥0
(uniformly over compact time intervals, with probability 1
as r → ∞), the process {y(t)}t≥0 is called the fluid limit.
Then, y(j)i (t) is the fluid limit number of type-j flows routed
through path i. Accordingly, we define zrl (t) = Zrl (t)/r and
x(j)

r
(t) = X(j)r(t)/r and their corresponding limits as zl(t)

and x(j)(t) as r → ∞. The fluid limits under Algorithm 1
follow possibly random trajectories, and might not be continu-
ously differentiable; nevertheless, they satisfy the following set
of differential equations. We state the result as the following
lemma whose proof can be found in Section VII.

Lemma 1. (Fluid equations) Any fluid limit y(t) satisfies the
following equations. For any j ∈ J , and i ∈ Rj ,

d

dt
y
(j)
i (t) = λjp

(j)
i (y(t))− µjy(j)i (t) (12a)

p
(j)
i (y(t)) = 0 if i /∈ arg min

k∈Rj

w
(j)
k (y(t)) (12b)

p
(j)
i (y(t)) ≥ 0,

∑
i∈Rj

p
(j)
i (y(t)) = 1 (12c)

w
(j)
i (y(t)) =

∑
l∈i

sjg
′(zl(t)). (12d)

Equation (12a) is simply an accounting identity for y(j)i (t)
stating that, on the fluid-scale, the number of type-j flows
over path i ∈ Rj increases at rate λjp

(j)
i (y(t)), and decreases

at rate y
(j)
i µj due to departures of type-j flows on path i.

p
(j)
i (y(t)) is the fraction of type-j flow arrivals placed on

path i. w(j)
i (y(t)) is the fluid-limit marginal cost of routing

type-j flows in path i when the system is in state y(t).
Equation (12b) follows from (7) and states that the flows can
only be placed on the paths which have the minimum marginal
cost mink∈Rj w

(j)
k (y(t)).

It follows from (12a) and (12c) that the total number of type-
j flows in the system, i.e., x(j)(t) =

∑
i∈Rj

y
(j)
i (t), follows a

deterministic trajectory described by the following equation,

d

dt
x(j)(t) = λj − µjx(j)(t), ∀j ∈ J , (13)

which clearly implies that

x(j)(t) = ρj + (x(j)(0)− ρj)e−µjt ∀j ∈ J . (14)

Consequently at steady state,

x(j)(∞) = ρj , ∀j ∈ J , (15)

which means that, in steady state, there is a total of ρj type-j
flows on the fluid scale.

B. Main Result and Asymptotic Optimality

In this section, we state our main result regarding the
asymptotic optimality of our myopic algorithm. First note that
by (15), the values of y(∞) are confined to a convex compact
set Υ defined below

Υ ≡ {y = (y
(j)
i) : y

(j)
i ≥ 0,

∑
i∈Rj

y
(j)
i = ρj , ∀j ∈ J }. (16)

Consider the problem of minimizing the network cost in steady
state on the fluid scale (the counterpart of optimization (3)),

min F (y)

s. t. y ∈ Υ
(17)

Denote by Υ? ⊆ Υ the set of optimal solutions to the
optimization (17). The following proposition states that the
fluid limits of Algorithm 1 indeed converge to an optimal
solution of the optimization (17).

Proposition 1. Consider the fluid limits of the system under
Algorithm 1 with initial condition y(0), then as t→∞

d(y(t),Υ?)→ 0. (18)

IEEE/ACM TRANSACTIONS ON NETWORKING 6

Convergence is uniform over initial conditions chosen from a
compact set.

The theorem below makes the connection between the fluid
limits and the original optimization problem (3). It states the
main result of this paper which is the asymptotic optimality
of Algorithm 1.

Theorem 1. Let Y r(t) and Y ropt(t) be respectively the system
trajectories under Algorithm 1 and any optimal algorithm for
the optimization (3). Then in steady state,

lim
r→∞

E
[
F (Y r(∞))

]
E
[
F (Y ropt(∞))

] = 1. (19)

For example, one optimal algorithm that solves (3) is the
one that every time a flow arrives or departs, it re-routes the
existing flows in the network in order to minimize the network
cost at all times. Of course this requires solving a complex
combinatorial problem every time a flow arrives/departs and
further it interrupts/migrates the existing flows. Under any
algorithm (including our myopic algorithm and the optimal
one), the mean number of flows in the system in steady state
is O(r). Thus by Theorem 1, Algorithm 1 has roughly the
same cost as the optimal cost when the number of flows in
the system is large, but at much lower complexity and with
no migrations/interruptions.

The rest of this section is devoted to the proof of Proposi-
tion 1. The proof of Theorem 1 relies on Proposition 1 and is
provided in Section VII.

C. Proof of Proposition 1

We first characterize the set of optimal solutions Υ? using
KKT conditions in the lemma below.

Lemma 2. Let Γj = {i ∈ Rj : y
(j)
i > 0} ⊆ Rj , j ∈ J . A

vector y ∈ Υ? iff y ∈ Υ and there exists a vector η ≥ 0 such
that

w
(j)
i (y) = ηj , ∀i ∈ Γj , (20a)

w
(j)
i (y) ≥ ηj , ∀i ∈ Rj \ Γj , (20b)

where w(j)
i (·) defined in (12d).

Proof of Lemma 2. Consider the following optimization prob-
lem,

min F (y) (21a)

s.t.
∑
i∈Rj

y
(j)
i ≥ ρj , ∀j ∈ J (21b)

y
(j)
i ≥ 0, ∀j ∈ J , ∀i ∈ Rj . (21c)

Since F (y) is an strictly increasing function with respect to
y
(j)
i , for all j ∈ J , i ∈ Rj , it is easy to check that the

optimization (17) has the same set of optimal solutions as the
optimization (21). Moreover, both optimizations have the same

optimal value. Hence we can use the Lagrange multipliers
ηj ≥ 0 and ν(j)i ≥ 0 to characterize the Lagrangian as follows.

L(η, ν, y) =F (y) +
∑
j∈J

ηj(ρj −
∑
i;i∈Rj

y
(j)
i)

−
∑
j∈J

∑
i;i∈Rj

ν
(j)
i y

(j)
i .

(22)

From KKT conditions [40], y ∈ Υ?, if and only if there exist
vectors η and ν such that the following holds.
Feasibility:

y ∈ Υ, (23a)

ηj ≥ 0, ν
(j)
i ≥ 0 ∀j ∈ J , i ∈ Rj , (23b)

Complementary slackness:

ηj(ρj −
∑
i;i∈Rj

y
(j)
i) = 0, ∀j ∈ J , (24a)

ν
(j)
i y

(j)
i = 0, ∀j ∈ J , i ∈ Rj , (24b)

Stationarity:

∂L(η, ν, y)

∂y
(j)
i

= 0. ∀j ∈ J , i ∈ Rj . (25a)

Note that (23a) implies (24a). It follows from (25a) that

∂F (y)

∂y
(j)
i

= ηj + ν
(j)
i , ∀j ∈ J , i ∈ Rj . (26)

Define Γj as in the statement of the lemma. Note that Γj is
nonempty for all j ∈ J by (23a). Then combining (24b) and
(26), ∀j ∈ J , and noting that ∂F (y)

∂y
(j)
i

= w
(j)
i (y) by definition,

yields (20a)-(20b).

Next, we show that the set of optimal solutions Υ? is
an invariant set of the fluid limits, using the fluid limit
equations (12a)-(12d), and Lemma 2.

Lemma 3. Υ? is an invariant set for the fluid limits, i.e.,
starting from any initial condition y(0) ∈ Υ?, y(t) ∈ Υ? for
all t ≥ 0.

Proof of Lemma 3. Consider a type-j flow and let I(j)(t) =

arg mini∈Rj
w

(j)
i (y(t)) be the set of paths with the minimum

path marginal cost. Note that
∑
i∈I(j)(t) p

(j)
i (t) = 1, t ≥ 0, by

(12b), therefore

d

dt

(∑
i∈I(j)i (t)

y
(j)
i (t)

)
= λj −

(∑
i∈I(j)(t)

y
(j)
i (t)

)
µj . (27)

Since y(0) ∈ Υ?, it follows from Lemma 2 that∑
i∈I(j)(0) y

(j)
i (0) = ρj . Hence, Equation (27) has a unique

solution for
∑
i∈I(j)(t) y

(j)
i (t) which is∑

i∈I(j)(t)

y
(j)
i (t) = ρj , t ≥ 0. (28)

On the other hand, since x(j)(0) = ρj , by (14),

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρj , t ≥ 0. (29)

IEEE/ACM TRANSACTIONS ON NETWORKING 7

Equations (28) and 29 imply that, at any time t ≥ 0, y(j)i (t) =

0 for i /∈ I(j)(t), and y
(j)
i (t) ≥ 0 for i ∈ I(j)(t) such that∑

i∈I(j)(t) y
(j)
i (t) = ρj . Hence, y(t) =

(
y
(j)
i (t)

)
∈ Υ? by

using ηj(t) = mink∈Rj
w

(j)
k (y(t)) in Lemma 2.

Next, we show that the fluid limits indeed converge to the
invariant set Υ? starting from an initial condition in Υ.

Lemma 4. (Convergence to the invariant set) Consider the
fluid limits of the system under Algorithm 1 with initial
condition y(0) ∈ Υ, then

d(y(t),Υ?)→ 0. (30)

Also convergence is uniform over the set of initial conditions
Υ.

Proof of Lemma 4. Starting from y(0) ∈ Υ, (14) implies that

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρj ∀j ∈ J , (31)

at any time t ≥ 0. To show convergence of y(t) to the set Υ?,
we use a Lyapunov argument. Specifically, we choose F (.) as
the Lyapunov function and show that (d/dt)F (y(t)) < 0 if
y(t) /∈ Υ?. Let ηj(y(t)) = mink∈Rj

w
(j)
k (y(t)). Then

(d/dt)F (y(t)) =
∑
j∈J

∑
i∈Rj

∂F (y)

∂y
(j)
i

dy
(j)
i (t)

dt

=
∑
j∈J

µj
[
ρj
∑
i∈Rj

w
(j)
i (y(t))p

(j)
i (t)−

∑
i∈Rj

w
(j)
i (y(t))y

(j)
i (t)

]
(a)
=
∑
j∈J

µj
[
ρjηj(y(t))−

∑
i∈Rj

w
(j)
i (y(t))y

(j)
i (t)

]
(32)

(b)
<
∑
j∈J

µj
[
ρjηj(y(t))− ηj(y(t))

∑
i∈Rj

y
(j)
i (t)

] (c)
= 0.

Equality (a) follows from the fact that p(j)i (t) = 0 if w(j)
i (t) >

ηj(t), and
∑
i∈I(j)(t) p

(j)
i (t) = 1, t ≥ 0, by (12b) and (12c).

Inequality (b) follows from the fact that y(t) /∈ Υ?, so by
Lemma 2, there exists an i ∈ Rj such that y(j)i (t) > 0 but
w

(j)
i (y(t)) > ηj(y(t)). Equality (c) holds because of (31).

Now we are ready to complete the proof of Proposition 1,
i.e., to show that starting from any initial condition in a
compact set, uniform convergence to the invariant set Υ?

holds.

Proof of Proposition 1. First note that (d/dt)F (y(t)) (as
given by (32)) is a continuous function with respect to
y(t) = (y

(j)
i (t) ≥ 0). This is because the path marginal costs

w
(j)
i (y(t)) are continuous functions of y(t) and so is their

minimum ηj(y(t)) = mini∈Rj
w

(j)
i (y(t)).

Next, note that by Lemma 4, for any ε1 > 0, and a ∈ Υ,
there exists an ε2 > 0 such that if F (a)− F (Υ?) ≥ ε1 then,

(d/dt)F (y(t))
∣∣
y(t)=a

≤ −ε2 (33)

By the continuity of (d/dt)F (y(t)) in y(t), there exists a δ >
0 such that ‖y(t)− a‖ ≤ δ implies,

|(d/dt)F (y(t))− (d/dt)F (a)| ≤ ε2/2 (34)

Combining (33) and (34), for all y(t) such that ‖y(t)−a‖ ≤ δ,

(d/dt)F (y(t)) ≤ −ε2/2.

By (14), for any δ > 0, we can find tδ large enough such that
for all t > tδ , ‖y(t)− a‖ ≤ δ for some a ∈ Υ.
Putting everything together, for any ε1 > 0, there exists ε2 > 0
such that if F (y(t)) − F (Υ?) ≥ ε1 then (d/dt)F (y(t)) ≤
−ε2/2 < 0. Applying Lyapunov argument with F (.) as
Lyapunov function completes the proof of Proposition 1.

V. SIMULATION RESULTS

In this section, we provide simulation results and evaluate
the performance of Algorithm 1 under a wide range of traffic
conditions in the following datacenter architectures:
• FatTree which consists of a collection of edge, aggre-

gation, and core switches and offers equal length path
between the edge switches. Figure 1 shows a FatTree with
16 servers and 8 4-port edge switches. For simulations,
we consider a FatTree with 128 servers and 32 8-port
edge switches.

• JellyFish which is a random graph in which each switch i
has ki ports out of which ri ports are used for connection
to other switches and the remaining ki−ri ports are used
for connection to servers. Figure 2 shows a JellyFish with
4-port switches, and ki = 4, ri = 2 for all the switches.
For simulations, we consider a JellyFish constructed
using 20 8-port switches and 100 servers. Each 8-port
switch is connected to 5 servers and 3 remaining links are
randomly connected to other switches (this corresponds
to ki = 8, ri = 3 for all the switches).

For the 128-server FatTree, when source and destination
switches are located in different (same) racks, our myopic
algorithm considers 16 (4) equal length candidate paths. For
the case of d-regular random graphs (where each node has
d edges), the number of paths between 2 switches can be
very large which could significantly increase the computa-
tional complexity of the algorithm. To reduce the computation
overhead, we can neglect the long paths since such paths will
naturally have large marginal costs and will not be used by
Algorithm 1. In our simulations, for the case of JellyFish, we
consider (at most) the first 20 shortest paths (in terms of the
number of links) for each pairs of switches.

Our rationale for selecting these architectures stems from
the fact that they are on two opposing sides of the spectrum
of topologies: while FatTree is a highly structured topology,
JellyFish is a random topology; hence they should provide a
good estimate for the robustness of Algorithm 1 to different
network topologies and possible link failures.

We generate the flows under two different traffic models to
which we refer to as exponential model and empirical model:
• Exponential model: Flows are generated per Poisson

processes and exponentially distributed durations. The
parameters of duration distribution is chosen uniformly
at random from 0.5 to 1.5 for different flows to simulate
a more dynamic range of flow durations. The flow sizes
are chosen according to a log-normal distribution.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

Time (second)
0 5 10 15 20 25 30 35 40 45 50

N
o
rm

a
li
z
e
d
 N

e
tw

o
rk

 C
o
s
t

0

0.2

0.4

0.6

0.8

1

1.2 CVX

Alg.1

(a) Convergence of network cost

0.2 0.3 0.5 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

Traffic Intensity

ECMP

Alg.1

CVX

(b) Exponential traffic model

0.2 0.3 0.5 0.95
0

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

Traffic Intensity

ECMP

Alg.1

CVX

(c) Empirical traffic model

Fig. 3: Experimental Results for FatTree. (a): Convergence of the network cost under Algorithm 1, normalized with the lower-
bound on the optimal solution (CVX), to 1. The scaling parameter r is 100 here. (b) and (c): Performance ratio of Algorithm 1
and ECMP in FatTree, normalized with the lower-bound (CVX) for exponential and empirical traffic models.

• Empirical model: Flows are generated based on recent
empirical studies on characterization of datacenter traf-
fic. As suggested by these studies, we consider log-
normal inter-arrival times [41], service times based on
the empirical result in [11], and log-normal flow sizes
[41]. Particularly, the most periods of congestion tend
to be short lived, namely, more than 90% of the flows
that are more than 1 second long, are no longer than 2
seconds [11].

In both models, the flow sizes are log-normal with mean 1.2
and standard deviation 0.4. This generates flow sizes ranging
from 1% to 40% of link capacity with high probability to cap-
ture the nature of flow sizes in terms of “mice” and “elephant”
flows. Furthermore, we consider a random traffic pattern,
i.e., source and destination of flows are chosen uniformly at
random. The link cost parameter α is chosen to be 1 in these
simulations.

Under both models, to change the traffic intensity, we keep
the other parameters fixed and scale the arrival rates (with
parameter r).

We report the simulation results in terms of the performance
ratio between Algorithm 1 and a benchmark algorithm (similar
to (19)). Since the optimal algorithm (e.g. the one that every
time a flow arrives or departs, it re-routes the existing flows
in the network in order to minimize the network cost at all
times) is hard to implement (and even unknown), instead we
use a convex relaxation method to find a lower-bound on the
optimal cost at each time. We note that, for FatTree topology,
equal splitting of every flow among its candidate paths is
optimal. For JellyFish topology, every time a flow arrives or
departs, we use CVX [42], to minimize F (Y (t)), by relaxing
the combinatorial constraints, i.e., allowing splitting of flows
among multiple paths and re-routing the existing flows. We
compare the network cost under Algorithm 1 and traditional
ECMP (which statically assigns flows to the shortest paths (in
number of links) via flow hashing.), normalized by the lower-
bound on the optimal solution (to which we refer to as CVX
in the plots).

A. Experimental Results for FatTree

Figure 3a shows that the aggregate cost under Algorithm 1
indeed converges to the optimal solution (normalized cost ratio
goes to 1) which verifies Theorem 1. Figures 3b and 3c show
the cost performance under Algorithm1 and ECMP, normal-
ized by the CVX lower-bound, under the exponential and the
empirical traffic models respectively. The traffic intensity is
measured in terms of the ratio between the steady state offered
load and the bisection bandwidth. For FatTree, the bisection
bandwidth depends on the number of core switches and their
number of ports. As we can see, our myopic algorithm is
very close to the lower-bound on the optimal value (CVX)
for light, medium, and high traffic intensities. As it is shown,
the performance improves at higher traffic intensities which
correspond to larger values of r in Theorem 1. They also
suggest that Theorem 1 holds under more general arrival and
service time processes. In this simulations, Algorithm 1 gave
a performance improvement ranging form 50% to more than
100%, compared to ECMP, depending on the traffic intensity,
under the empirical traffic model. The standard deviation (SD)
of performance ratio for 30 different runs ranges from 0.14 to
0.01 for Algorithm 1, and from 0.3 to 0.03 for ECMP as traffic
intensity grows.

B. Experimental Results for JellyFish

Figure 4a shows that the aggregate cost under Algorithm 1
indeed converges to the optimal solution which again verifies
Theorem 1. Figures 4b and 4c compare the performance of
Algorithm 1 and ECMP, normalized with the lower-boud
on the optimal solution (CVX), under both the exponential
and empirical traffic models. As before, the traffic intensity
is measured by the ratio between the steady state offered
load and the bisection bandwidth. To determine the bisection
bandwidth, we have used the bounds reported in [43], [44]
for regular random graphs. Again we see that our myopic
algorithm performs very well in all light, medium, and high
traffics. In JellyFish, Algorithm 1 yields performance gains
ranging from 60% to 70%, compared to ECMP, under the
empirical traffic model. Corresponding SD for 30 different

IEEE/ACM TRANSACTIONS ON NETWORKING 9

Time (second)
0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

0

0.2

0.4

0.6

0.8

1

1.2
CVX

Alg.1

(a) Convergence of network cost

0.15 0.3 0.7 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

Traffic Intensity

ECMP

Alg.1

CVX

(b) Exponential traffic model

0.15 0.3 0.7 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

Traffic Intensity

ECMP

Alg.1

CVX

(c) Empirical traffic model

Fig. 4: Experimental Results for JellyFish. (a): Convergence of the network cost under Algorithm 1 in JellyFish, normalized
with the lower-bound on the optimal solution (CVX), to 1. The scaling parameter r is 100 here. (b) and (c): Performance ratio
of Algorithm 1 and ECMP in JellyFish, normalized with the lower-bound (CVX) for exponential and empirical traffic models.

runs ranges from 0.04 to 0.01 for Algorithm 1, and from 0.1
to 0.05 for ECMP as traffic intensity grows.

VI. RANDOMIZED MYOPIC ALGORITHMS

Algorithm 1 needs to consider all the available paths for
an arriving flow and finds the shortest path based on the
(integral (5) or differential (6)) marginal cost of paths. In this
section, we describe and empirically evaluate randomized ver-
sions of our myopic algorithm which have less complexity than
Algorithm 1, while can effectively provide a large fraction of
the performance gain obtained by Algorithm 1. Our approach
is motivated by the literature on randomized load balancing
for scheduling jobs in servers, where a widely used idea is
that, instead of considering all the servers and assigning the
arriving job to the least-loaded server, k servers are first chosen
at random (for some k ≥ 2) and then the job is assigned to
the least-loaded server among them. This idea was originally
proposed in [45], where it was shown that having k = 2 leads
to exponential improvement in the expected time a job spends
in the system over k = 1 which is basically the totally random
assignment.

In our setting, a counterpart of this approach can be used
for scheduling of flows in paths as follows. Fix k, when a
flow is generated, the algorithm chooses k paths at random
out of the available paths for the flow, then calculates the
marginal costs of these k paths according to the integral or
the differential form formulas, and assigns the flow to the path
with the minimum path marginal cost among these k paths.
See Algorithm 2 for the full description.

We notice that ECMP in structured topologies like FatTree,
where all candidate paths for an arriving flow have the
same number of links (same length), is basically the random
assignment of flows to the paths which is identical to setting
k = 1 in Algorithm 2.

Next, we empirically evaluate the performance of Algo-
rithm 2 for different values of k. We present the results for
two different topologies and two traffic model as in Section V.
For JellyFish, we consider (at most) the first 20 shortest paths
(in terms of the number of links) for each pairs of switches
to be consistent with Section V.

Algorithm 2 Randomized Myopic Algorithm with Parameter
k
Suppose a type-j flow arrives at time t when the system is in
state Y(t). Then,

1: Choose k paths from the set |Rj |, uniformly at random,
let R(k)

j denotes this subset of paths.
2: Compute the path marginal costs w(j)

i (Y (t)), i ∈ R(k)
j , in

either of the forms below:
• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

∆
(j)
l (Y (t)), (35)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (36)

3: Place the flow on a path i such that

i = arg min
k∈R(k)

j

w
(j)
k (Y (t)). (37)

Break ties in (37) uniformly at random.

A. Experimental Results for FatTree

Figures 5 and 6 show the cost performance under Algo-
rithm 2 with different values of k, normalized by the cost of
Algorithm 1, under the exponential and the empirical traffic
models respectively. Note that Algorithm 2 with k = 16 is
equivalent to Algorithm 1, as there are at most 16 available
paths for an arriving flow in the FatTree topology we described
in Section V. Error bars in all plots correspond to standard
deviation of normalized mean network cost computed from
results of 30 runs.
In these two plots, we can see that the maximum improvement
in network cost we get by increasing k happens at k = 2
compared with random assignment of flows, k = 1. Further-
more, as we increase value of k we get smaller improvement
in performance. For instance, normalized cost improves about
0.4 by increasing k from 1 to 2, while the improvement from
k = 2 to k = 4 is about 0.1, for traffic intensity equal to 0.3
under exponential model (Figure 5). This behavior is seen in

IEEE/ACM TRANSACTIONS ON NETWORKING 10

Traffic Intensity

0.3 0.6 0.9

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
k=1

k=2

k=4

k=8

k=12

Alg.1

Fig. 5: Performance of Algorithm 2 with diffrent values of
k, in FatTree under the exponential traffic model, normalized
with the Algorithm 1.

Traffic Intensity

0.3 0.6 0.9

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

0

0.5

1

1.5

2

2.5
k=1

k=2

k=4

k=8

k=12

Alg.1

Fig. 6: Performance of Algorithm 2 with different values of k,
in FatTree under the empirical traffic model, normalized with
the Algorithm 1.

both figures, and is more profound for higher traffic intensity.

B. Experimental Results for JellyFish

Figures 7 and 8 show the network cost under Algorithm 2
with different values of k, normalized by the cost of Al-
gorithm 1, under the exponential and the empirical traffic
models respectively. Note that Algorithm 2 with k = 20 is
equivalent to Algorithm 1, as there are at most 20 available
paths considered between any two switches in the JellyFish
topology we described in Section V.

In these figures, we observe the same behavior as what
discussed for FatTree: the performance improvement obtained
by increasing k by one is larger for smaller k. Also, comparing
Figures 7 and 8 with Figures 4b and 4c, in order for Algo-
rithm 2 to beat ECMP–which only considers shortest paths (in
the terms of the number of links)–we need to choose k ≥ 12.

We also note that in JellyFish, for small k (e.g., k = 1, 2),
the normalized cost under the randomized algorithm increases
as traffic intensity grows, unlike the results for FatTree. This
can be justified by noting that the symmetric structure of
FatTree allows random assignment of flows to balance the load
better as traffic intensity increases (higher flow arrival rates)
because the number of flow-to-path assignment decisions

Traffic Intensity

0.3 0.6 0.9

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 C
o
s
t

0

0.5

1

1.5

2

2.5

3

3.5

4
k=1

k=2

k=4

k=8

k=12

Alg.1

Fig. 7: Performance of Algorithm 2 with different values of
k in JellyFish under the exponential traffic model, normalized
with the Algorithm 1.

Traffic Intensity

0.3 0.6 0.9

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 C
o

s
t

0

0.5

1

1.5

2

2.5

3

3.5

4
k=1

k=2

k=4

k=8

k=12

Alg.1

Fig. 8: Performance of Algorithm 2 with different values of
k in JellyFish under the empirical traffic model, normalized
with the Algorithm 1.

increases. However, in JellyFish the structure is asymmetric
and long paths are used more frequently by the randomized
algorithm as traffic intensity increases. As a result, the con-
vexity of the link cost function, and the fact that the network
cost is the summation of all links’ costs, will cause a larger
network cost in higher traffic intensities.

Based on the simulations, we conclude that to get a rea-
sonably good performance, we need smaller values of k in
FatTree compared to JellyFish. This can be attributed to the
fact that all the candidate paths for a flow in the FatTree
topology have the same number of links, while in the JellyFish
topology, paths can be very different in terms of their number
of links. So selection of k paths completely at random, as
used in Algorithm 2, might lead to using long paths which
contribute more to the network cost. Thus, uniform sampling
seems more suitable for symmetric topologies like FatTree. We
postpone the exact analysis of the randomized myopic policy
to a future work.

VII. FORMAL PROOFS OF FLUID LIMITS AND THEOREM 1
A. Proof of Fluid Limits

We prove the existence of fluid limits under Algorithm 1
and derive the corresponding fluid equations (12a)-(12d).
Arguments in this section are quite standard [37], [46], [47].

IEEE/ACM TRANSACTIONS ON NETWORKING 11

Recall that Y r(t) is the system state with the flow arrival rate
rλj , j ∈ J , and initial state Y r(0). The fluid-scale process is
yr(t) = Y r(t)/r, t ∈ [0,∞). Similarly, zrl (t) = Zrl (t)/r
and x(j)

r
(t) = X(j)r(t)/r are defined. We assume that

yr(0)→ y(0) as r →∞ for some fixed y(0).
We first show that, under Algorithm 1, the limit of the

process {yr(t)}t≥0 exists along a subsequence of r as we
show next. The process Y r(t) can be constructed as follows

Y
(j)
i

r
(t) =Y

(j)
i

r
(0) + Πa

i,j(

∫ t

0

P
(j)
i (Y r(s))rλjds)

−Πd
i,j(

∫ t

0

µjY
(j)
i

r
(s)ds), ∀j ∈ J , i ∈ Rj

(38)

where Πa
i,j(.) and Πd

i,j(.) are independent unit-rate Poisson
processes, and P

(j)
i (Y r(t)) is the probability of assigning a

type-j flow to path i when the system state is Y r(t). Note
that by the Functional Strong Law of Large Numbers [48],
almost surely,

1

r
Πa
i,j(rt)→ t, u.o.c.;

1

r
Πd
i,j(rt)→ t, u.o.c. (39)

where u.o.c. means uniformly over compact time intervals.
Define the fluid-scale arrival and departure processes as

ari,j(t) =
1

r
Πa
i,j(

∫ t

0

P
(j)
i (Y r(s))rλjds),

dri,j(t) =
1

r
Πd
i,j(

∫ t

0

µjY
(j)
i

r
(s)ds).

(40)

Lemma 5. (Convergence to fluid limit sample paths) If
yr(0) → y(0), then almost surely, every subsequence
(yrn , arn , drn) has a further subsequence (yrnk , arnk , drnk)
such that (yrnk , arnk , drnk)→ (y, a, d). The sample paths y,
a, d are Lipschitz continuous and the convergence is u.o.c.

Proof of Lemma 5. The proof is standard and follows from
the fact that ari,j(.) and dri,j(.) are asymptotically Lipschitz
continuous (see e.g., [37], [46], [49] for similar arguments),
namely, there exists a constant C > 0 such that for 0 ≤ t1 ≤
t2 <∞,

lim sup
r

(ari,j(t2)− ari,j(t1)) ≤ C(t2 − t1), (41)

and similarly for dri,j(.). More precisely, for arrival process
ari,j(.), we argue that,

lim sup
r

(ari,j(t2)− ari,j(t1))

= lim sup
r

1

r
Πa
i,j(

∫ t2

t1

P
(j)
i (Y r(s))rλjds)

(a)

≤ lim sup
r

1

r
Πa
i,j

(∫ t2

t1

rλjds
)

= lim sup
r

(
1

r
Πa
i,j(rλj(t2 − t1)))

where inequality (a) follows from the fact that P (j)
i (Y r(s)) ≤

1. Using (39), we obtain (41). The argument is similar for
dri,j(.), noting that (yr(.)) is uniformly bounded over any finite
time interval for large r. So the limit (y, a, d) exists along the
subsequence.

Proof of Lemma 1. It follows from (38), (40), (39), and the
existence of the fluid limits (Lemma 5), that

y
(j)
i (t) = y

(j)
i (0) + a

(j)
i (t)− d(j)i (t),

where d
(j)
i (t) =

∫ t
0
y
(j)
i (s)µjds, and

∑
i∈Rj

a
(j)
i (t) =

λjt, a
(j)
i (t) is nondecreasing. The fluid equations (12a) and

(12c) are the diffrential form of these equations (the fluid
sample paths are Lipschitz continuous so the derivatives exist
almost everywhere), where

p
(j)
i (t) :=

1

λj

da
(j)
i (t)

dt
. (42)

For any type j, and for w(j)
i (y(t)) defined in (12d), let

w?j (y(t)) = min
i∈Rj

w
(j)
i (y(t)).

Consider any regular time t and a path i /∈
arg mini∈Rj

w
(j)
i (y(t)). By the continuity of w

(j)
i (y(t)),

there must exist a small time interval (t1, t2) containing t
such that

w
(j)
i (y(τ)) > w?j (τ) ∀τ ∈ (t1, t2).

Consequently, for all r large enough along the subsequence,

w
(j)
i (yr(τ)) > w?j (yr(τ)) ∀τ ∈ (t1, t2).

Multiplying both sides by rα, it follows that

w
(j)
i (Y r(τ)) > w?j (Y r(τ)), ∀τ ∈ (t1, t2).

Hence P
(j)
i (Y r(τ)) = 0, τ ∈ (t1, t2), and a

r(j)
i (t1, t2) =

0, for all r large enough along the subsequence. Therefore
a
(j)
i (t1, t2) = 0 which shows that (d/dt)a

(j)
i (t) = 0 at t ∈

(t1, t2). This establishes (12b).

B. Proof of Theorem 1

We first show that

F (yr(∞)) =⇒ F ?, (43)

where F ? = F (Υ?) is the optimal cost. By Proposition 1
and the continuity of F (·), for any fluid sample path y(t)
with initial condition y(0), we can choose tε1 large enough
such that given any small ε1 > 0, |F (y(tε1)) − F ?| ≤ ε1.
With probability 1, every subsequence yrn has a further sub-
sequence yrnk such that yrnk (t)→ y(t) u.o.c. (see Lemma 5),
hence, by the continuous mapping theorem [48], we also have
F (yrnk (t)) → F (y(t)), u.o.c. For any ε2 > 0, for rnk

large
enough, we can choose an ε3 > 0 such that, uniformly over
all initial states yrnk (0) such that ‖yrnk (0)− y(0)‖ ≤ ε3,

P{|F (yrnk (tε1)− F (y(tε1))| < ε1} > 1− ε2 (44)

This claim is true, since otherwise for a sequence of initial
states yrnk (0)→ y(0) we have

P{|F (yrnk (tε1)− F (y(tε1))| < ε1} ≤ 1− ε2,

which is impossible because, almost surely, we can choose
a subsequence of rnk

along which uniform convergence

IEEE/ACM TRANSACTIONS ON NETWORKING 12

F (yrnk (t)) → F (y(t)), with initial condition y(0) holds.
Hence,

P{|F (yrnk (tε1))− F ?| < 2ε1}
≥ P{|F (yrnk (tε1)− F (y(tε1))|+ |F (y(tε1))− F ?| < 2ε1}
≥ P{|F (yrnk (tε1)− F (y(tε1))| < ε1} > 1− ε2

which in particular implies

F (yrnk (∞)) =⇒ F ?,

because ε1 and ε2 can be made arbitrarily small. Hence, we
have shown that every sequence F (yrn(∞)) has a further
subsequence F (yrnk (∞)) that converges to the same limit F ?

(the unique optimal cost). Therefore in view of Theorem 2.6
of [48], we can conclude that F (yr(∞)) =⇒ F ?.

Next, we show (19). Under any algorithm (including Algo-
rithm 1 and the optimal one),∑

i∈Rj

Y
(j)
i

r
(∞)/r = X(j)r(∞)/r,

where X(j)r(∞) has Poisson distribution with mean rρj , and
X(j)r(∞), j ∈ J , are independent. Let,

s̄ = max
j∈J

sj <∞.

The traffic over each link l is clearly bounded as

Zrl /r < s̄
∑
j

X(j)r(∞)/r = s̄Xr(∞)/r,

where Xr(∞) has Poisson distribution with mean
r
∑
j ρj . Hence, F (yr(∞)) is stochastically dominated

by |E|g
(
s̄Xr(∞)/r

)
, and g is polynomial. It then follows

that the sequence of random variables {F (yr(∞))} (and
also {yr(∞)}) are uniformly integrable under any algorithm.
Then, in view of (43), by Theorem 3.5 of [48], under our
Algorithm 1.

E
[
F (Y r(∞)/r)

]
→ F ?. (45)

Now consider any optimal algorithm for the optimization (3).
It holds that

F (E
[
yropt(∞)

]
) ≤ E

[
F (yropt(∞))

]
≤ E

[
F (yr(∞))

]
,

where the first inequality is by Jensen’s inequality, and the
second follows from definition of optimality. Taking the limit
as r →∞, it follows by an squeeze argument that

E
[
F (Y ropt(∞)/r)

]
→ F ?. (46)

Finally, (45) and (46) will imply (19) in view of the polynomial
structure of F .

VIII. CONCLUDING REMARKS

This paper presents a simple myopic algorithm that dy-
namically adjusts the link weights as a function of the link
congestions and places any newly generated flow on a least
weight path in the network, with no splitting/migration of
existing flows. We demonstrate both theoretically and experi-
mentally that this myopic algorithm has a good load balanc-
ing performance. In particular, we prove that the algorithm

asymptotically minimizes a network cost and establish the
relationship between the network cost and the corresponding
weight construct. Although our theoretical result is an asymp-
totic result, our experimental results show that the algorithm in
fact performs very well under a wide range of traffic conditions
and different datacenter networks.

While the algorithm has low complexity, the real implemen-
tation depends on how fast the weight updates and least weight
paths can be computed in practical datacenters (e.g., based on
SDN). One possible way to improve the computation time-
scale is to perform the computation periodically or only for
long flows, while using the previously computed least weight
paths for short flows or between the periodic updates. Another
possibility is to use the randomized versions of our myopic
algorithm with an optimized parameter k which only takes
a small random subset of available paths into account and
finds the shortest path among them. While this algorithm has
much lower complexity, it performs very well in structured
topologies such as FatTree for small k. We leave theoretical
analysis of the randomized versions as an open problem for
future work. Finally, we would like to note that our myopic
algorithm and its randomized versions can be directly applied
to scheduling flowlets instead of scheduling flows, which can
give higher rate/granularity of flows [6], [36].

REFERENCES

[1] M. Shafiee and J. Ghaderi, “A simple congestion-aware algorithm for
load balancing in datacenter networks,” in Computer Communications,
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on. IEEE, 2016, pp. 1–9.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proceedings of the 7th
Conference on Emerging Networking Experiments and Technologies.
ACM, 2011, p. 8.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[5] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 266–277, 2011.

[6] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, pp. 51–62, 2007.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, 2009, pp. 51–62.

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: A high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[9] M. Bradonjić, I. Saniee, and I. Widjaja, “Scaling of capacity and
reliability in data center networks,” ACM SIGMETRICS Performance
Evaluation Review, vol. 42, no. 2, pp. 46–48, 2014.

[10] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly.” in NSDI, vol. 12, 2012, pp. 17–17.

[11] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM Conference On Internet Measurement
Conference, 2009, pp. 202–208.

[12] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proceedings of IEEE,
INFOCOM, 2013, pp. 2130–2138.

IEEE/ACM TRANSACTIONS ON NETWORKING 13

[13] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in 16th Annual Symposium on
Foundation of Computer Science. IEEE, 1975, pp. 184–193.

[14] G. M. Guisewite and P. M. Pardalos, “Minimum concave-cost network
flow problems: Applications, complexity, and algorithms,” Annals of
Operations Research, vol. 25, no. 1, pp. 75–99, 1990.

[15] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source un-
splittable flow problem,” in Foundations of Computer Science, 1998.
Proceedings. 39th Annual Symposium on. IEEE, 1998, pp. 290–299.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, 2009, pp. 39–50.

[17] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in Proceedings of the 9th ACM
Conference on Emerging Networking Experiments and Technologies.
ACM, 2013, pp. 49–60.

[18] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, 2011, pp.
350–361.

[19] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-
cost-multipath: An algorithmic perspective,” IEEE/ACM Transactions on
Networking, vol. 25, no. 2, pp. 779–792, 2017.

[20] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal
flow routing in datacenters via local link balancing,” in Proceedings
of the 9th ACM Conference on Emerging Networking Experiments and
Technologies, 2013, pp. 151–162.

[21] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM place-
ment and routing for data center traffic engineering,” in Proceedings of
IEEE, INFOCOM, 2012, pp. 2876–2880.

[22] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, pp. 465–478.

[23] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE transactions on communications, vol. 25, no. 1,
pp. 73–85, 1977.

[24] N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state optimal
routing,” IEEE/ACM Transactions on Networking (TON), vol. 23, no. 6,
pp. 1862–1875, 2015.

[25] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,” IEEE/ACM
Transactions on networking, vol. 19, no. 6, pp. 1717–1730, 2011.

[26] R. W. Rosenthal, “A class of games possessing pure-strategy nash
equilibria,” International Journal of Game Theory, vol. 2, no. 1, pp.
65–67, 1973.

[27] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
game theory. Cambridge University Press Cambridge, 2007, vol. 1.

[28] T. Roughgarden, Selfish routing and the price of anarchy. MIT press
Cambridge, 2005, vol. 174.

[29] P. Key, L. Massoulié, and D. Towsley, “Path selection and multipath
congestion control,” in INFOCOM 2007. 26th IEEE International Con-
ference on Computer Communications. IEEE. IEEE, 2007, pp. 143–
151.

[30] J. G. Wardrop, “Road paper. some theoretical aspects of road traffic
research.” Proceedings of the institution of civil engineers, vol. 1, no. 3,
pp. 325–362, 1952.

[31] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM, 2003, pp. 313–324.

[32] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: traffic engineering in dynamic networks,” in ACM SIGCOMM
Computer Communication Review, vol. 36, no. 4. ACM, 2006, pp.
99–110.

[33] M. Bienkowski, M. Korzeniowski, and H. Räcke, “A practical algorithm
for constructing oblivious routing schemes,” in Proceedings of the fif-
teenth annual ACM symposium on Parallel algorithms and architectures.
ACM, 2003, pp. 24–33.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innova-
tion in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[35] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 4, pp. 1270–1283, 2009.

[36] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “CONGA:
Distributed Congestion-Aware Load Balancing for Datacenters,” in
Proceedings of the 2014 ACM conference on SIGCOMM, 2014, pp.
503–514.

[37] A. L. Stolyar, “An infinite server system with general packing con-
straints,” Operations Research, vol. 61, no. 5, pp. 1200–1217, 2013.

[38] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-
cost-multipath: An algorithmic perspective,” in Proceedings of IEEE,
INFOCOM, 2014, pp. 1590–1598.

[39] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proceeding of 19th annual joint conference of the
IEEE computer and communications societies. INFOCOM 2000, vol. 2,
pp. 519–528.

[40] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[41] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic in
a cluster-based, multi-tier data center,” in ICDCS’07. 27th International
Conference on Distributed Computing Systems, 2007. IEEE, pp. 59–59.

[42] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[43] J. Dı́az, M. J. Serna, and N. C. Wormald, “Bounds on the bisection
width for random d-regular graphs,” Theoretical Computer Science, vol.
382, no. 2, pp. 120–130, 2007.

[44] B. Bollobás, Random graphs. Springer, 1998.
[45] M. Mitzenmacher, “The power of two choices in randomized load

balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[46] A. L. Stolyar and Y. Zhong, “Asymptotic optimality of a greedy
randomized algorithm in a large-scale service system with general
packing constraints,” Queueing Systems, vol. 79, no. 2, pp. 117–143,
2015.

[47] J. Ghaderi, Y. Zhong, and R. Srikant, “Asymptotic optimality of BestFit
for stochastic bin packing,” ACM SIGMETRICS Performance Evaluation
Review, vol. 42, no. 2, pp. 64–66, 2014.

[48] P. Billingsley, Convergence of probability measures, 2nd ed. John Wiley
& Sons, 1999.

[49] S. N. Ethier and T. G. Kurtz, Markov processes: Characterization and
convergence. John Wiley & Sons, 2009, vol. 282.

Mehrnoosh Shafiee joined M.Sc./ Ph.D. program
of the Department of Electrical engineering at
Columbia in August 2014. She is interested in the
analysis and design of resource allocation algorithms
for large-scale distributed systems. She did her B.Sc.
in EE department of Sharif University of Technol-
ogy, Tehran, Iran.

Javad Ghaderi joined the Department of Electrical
Engineering at Columbia University in July 2014.
His research interests include network algorithms
and network control and optimization. Dr. Ghaderi
received his B.Sc. from the University of Tehran,
Iran, in 2006, his M.Sc. from the University of
Waterloo, Canada, in 2008, and his Ph.D. from the
University of Illinois at Urbana-Champaign (UIUC),
in 2013, all in Electrical and Computer Engineering.
He spent a one-year Simons Postdoctoral Fellowship
at the University of Texas at Austin before joining

Columbia. He is the recipient of the Mac Van Valkenburg Graduate Research
Award at UIUC, and Best Student Paper Finalist at the 2013 American Control
Conference, and Best Paper Award at CoNEXT 2016, and NSF CAREER
award in 2017.

