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Abstract

How much information can be transferred over a wireless network and what is
the optimal strategy for the operation of such network? This thesis tries to answer
some of these questions from an information theoretic approach.

A model of wireless network is formulated to capture the main features of the
wireless medium as well as topology of the network. The performance metrics are
throughput and transport capacity. The throughput is the summation of all reliable
communication rates for all source-destination pairs in the network. The transport
capacity is a sum rate where each rate is weighted by the distance over which it
is transported. Based on the network model, we study the scaling laws for the
performance measures as the number of users in the network grows.

First, we analyze the performance of multihop wireless network under different
criteria for successful reception of packets at the receiver. Then, we consider the
problem of information transfer without arbitrary assumptions on the operation of
the network. We observe that there is a dichotomy between the cases of relatively
high signal attenuation and low attenuation. Moreover, a fundamental relationship
between the performance metrics and the total transmitted power of users is discov-
ered. As a result, the optimality of multihop is demonstrated for some scenarios in
high attenuation regime, and better strategies than multihop are proposed for the
operation in the low attenuation regime. Then, we study the performance of a spe-
cial class of networks, random networks, where the traffic is uniformly distributed
inside the networks. For this special class, the upperbounds on the throughput are
presented for both low and high attenuation cases. To achieve the presented upper-
bounds, a hierarchical cooperation scheme is analyzed and optimized by choosing
the number of hierarchical stages and the corresponding cluster sizes that maximize
the total throughput. In addition, to apply the hierarchical cooperation scheme to
random networks, a clustering algorithm is developed, which divides the whole net-
work into quadrilateral clusters, each with exactly the number of nodes required.
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Chapter 1

Introduction

1.1 Motivation and Background

Wireless networks formed by radio nodes are a subject of much topical interest, and
they are found in various applications such as ad hoc networks, mesh networks,
sensor networks, etc. These wireless networks without infrastructure (see figure
1.1) have been supposed to work in multi-hop mode: packets are relayed from
node to node in several hops until they reach their destinations and interference is
essentially regarded as noise, i.e., only point-to-point coding is considered. While
this may model how current technology operates, this model does not tell what are
the ultimate limits to the information transfer in future wireless networks. The
reason is that interference can carry information; so, one wishes to study wireless
networks without making arbitrary assumptions about how they operate.

For the optimal design and operation of such networks, it is of fundamental im-
portance to determine the information-theoretic capacity of such networks, which,
however, is a formidable task, since even for the simple three-node scenario [2], the
exact capacity is still undetermined after several decades’ effort. In fact, networks
with a few nodes have very complex cooperation possibilities. The situation be-
comes more complicated for networks with several source-destination pairs among
a large number of nodes, all cooperating in whatever ways are imaginable to max-
imize information transfer. As observed in [22], the union between information
theory and networking is not consummated.

Although the exact capacity is extremely difficult to determine, a lot of insight-
ful upper and lower bounds on the capacity of large wireless networks have been
obtained in recent years [3]-[18]. The progress has been made by asking for less.

1



Introduction 2

Figure 1.1: A wireless Ad Hoc network without infrastructure.

Instead of studying the capacity region, which is the closure of all feasible rate vec-
tors, we study two scalars, transport capacity and throughput. Transport capacity
is defined as

CT = max
All Rij

in the capacity region

n∑
i,j=1

Rijrij

where Rij is the rate of reliable communication between users i and j, and rij

denotes the Euclidean distance between them. Throughput is another performance
metric defined as the sum of all transmission rates in the network. Again we ask
for less, and instead of the exact quantity, we study the scaling laws for it as the
number n of nodes in the network grows.

The seminal work of Gupta-Kumar [3] initiated the study of scaling laws for
multihop wireless networks under several communication models. They essentially
demonstrated a trade off between the effects of the number of hops and the amount
of traffic routed across the network on the throughput of multihop networks. They
proved the former wins this tradeoff. In other words, a nearest neighbor multihop
scheme can achieve a higher throughput than what can be achieved by a single hop
network. Although this result justified the current layered or crosslayer activities
on optimizing the network performance based on multihop, it did not justify the
priority of multihop over other possible strategies.

Gupta-Kumar strategy for the constructive lower bound was based on a load
balancing routing scheme across the network and discovered a throughput scaling
of Θ(

√
n/ log n) for the class of random networks. Franceschetti et al. [10] later

presented a better scheme using percolation theory, to achieve Θ(
√

n) which meets
the upperbound for multihop wireless networks.

Subsequently, a purely information-theoretic approach without any restrictions
on the communication schemes was taken in [4], where a more fundamental con-
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nection between the total network transmit power and the transport capacity was
discovered. As a consequence, when fixing the minimum separation distance and
letting the number of nodes increase, the scaling law of Θ(

√
n) was confirmed in

the high signal attenuation regime. However, when the signal attenuation was low,
higher scaling laws were shown to be possible for some special relay networks.

Therefore, an interesting question was raised as to what exactly the scaling
laws are in the low signal attenuation regime. By incorporating long-range MIMO
communications with local cooperations as proposed in [11], a recent work [1] devel-
oped a hierarchical architecture which was able to continually increase the scaling
by adding more hierarchical stages. Specifically, for a network model where all the
nodes are confined in a unit area but still with the far-field signal attenuation, the

scaling with h hierarchical stages was claimed to be Θ(n
h

h+1 ). Thus, by letting
h →∞, any scaling of Θ(n1−ε) is achievable, where ε > 0 can be arbitrarily small.
However, there is a fundamentally important issue that needed to be addressed,
i.e., the pre-constant of the scaling. The pre-constants of the scalings for different
h are different, and they are not even lower bounded from zero.

1.2 Thesis Objectives

The focus of this thesis is on scaling laws for the capacity of wireless networks. The
two fundamental questions of interest are as follows.

1. How much information can wireless networks transport?

2. How should one operate wireless networks?

We consider the classical general setting of figure 1.2 where n users have been
distributed within a network of area A. There are multiple source-destination
pairs. In general, we allow a source node to generate traffic for several destinations.
The goal is to identify the scaling of transport capacity and throughput of such
networks as the number of nodes in the network grows.

To answer the first question, we try to find some upperbounds on scaling laws.
To do this, we resort to the max-flow min-cut theorem and sum rate bounds based
on MIMO techniques. To answer the second question, we try to find some new
strategies for the operation of network that are able to achieve the upperbounds, at
least in the sense of scaling growth. The design of such strategies necessitates con-
sideration of important features such as spatial distribution of nodes, the medium
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n

Figure 1.2: A planer network of area A with n nodes.

access control, the attenuation of signals with distance, interference management
by spatio-temporal scheduling of transmissions, and different choices of cooperation
between nodes.

It will be observed that choosing the appropriate strategy for the operation
of the network, significantly depends on the wireless channel properties such as
fading and signal attenuation. The topology and the traffic distribution of the
network are important factors as well. Such results can help in understanding the
complicated wireless interactions, and shed light on efficient design and operation
of future wireless networks.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 studies the performance of wireless networks under the multihop
operation. The concept of transport capacity is defined, and its scaling behavior
is analyzed under two models, namely, protocol model and physical model. The
criterion for successful transmission in these models is based on collision and signal-
to-noise-plus-interference ratio, which well models how current technology operates.

Chapter 3 is devoted to study the transport capacity from an information the-
oretic perspective. An interesting dichotomy is observed between low and high
attenuation cases. It is shown that multihop is an order optimal strategy for some
scenarios under the high attenuation regime. For the low attenuation regime, there
are better scalings. Actually, we can achieve unbounded transport capacity in some
networks for a limited total power. The strategy is coherent multistage relaying



Introduction 5

with interference subtraction (CRIS), where users profitably cooperate over long
distance by using coherent and multiuser estimation instead of multihop.

In Chapter 4, we study the throughput of random networks, where traffic is
uniformly distributed in the network. We consider two cases, dense networks and
extended networks, and present upperbounds on the throughput scaling in each
case. In particular, we are interested to discover whether a linear scaling is possible.

Chapter 5 develops a hierarchical cooperation scheme to achieve the scaling
results of Chapter 4. The scheme is analyzed and optimized by choosing the number
of hierarchical stages and the corresponding cluster sizes that maximize the total
throughput. In addition, to apply the hierarchical cooperation scheme to random
networks, a clustering algorithm is developed, which divides the whole network into
quadrilateral clusters, each with exactly the number of nodes required.

Finally, a summary of the thesis and some future research directions are pre-
sented in Chapter 6.



Chapter 2

The Capacity of Multihop
Wireless Networks

2.1 Transport Capacity of Arbitrary Wireless Net-

works

This section considers arbitrary networks operating under a multi-hop mode of in-
formation transfer, where the locations of the nodes, the choice of source-destination
pairs, rates along each hop, transmission time slots, and routing, can be jointly op-
timized. How will the transport capacity scale with the network size, the number
of nodes in the network? This is the question we try to answer in this section. We
present two models for successful transmissions: protocol model and physical model.
Given the protocol model, assuming that the nodes are located in a region of area A,
we show that the transport capacity cannot grow faster than O(

√
An)1 for a network

of n nodes. On the other hand, networks with grid distribution and neighbor-only
transmissions are shown to achieve Ω(

√
An) bit-meters per second. This shows

transport capacity scales as Θ(
√

An) for arbitrary networks under protocol model.
To understand the importance of this result, suppose all nodes share equally in this

transport capacity. Then each obtains only Θ(
√

A√
n
) bit-meters/second, when the

area is held fixed. To interpret this result note that if each node communicates to
a distant node at a distance of Ω(

√
A) meters away, then it can only obtain a rate

of O( 1√
n
). On the other hand, if each node only wishes to communicate with its

1Given two functions f and g, we say f=O(g) if supn |f(n)/g(n)| < ∞. We say f = Ω(g) if
g = O(f). If both f=O(g) and f = Ω(g), then we say that f = Θ(g).

6



The Capacity of Multihop Wireless Networks 7

nearest neighbor that is to a distance of O(
√

A√
n
) meters away, then it can do so at

a non-vanishing rate.

Similar results also hold under an alternate physical model, where a required
signal-to-noise-plus-interference ratio (SINR) is specified for successful reception.

2.1.1 The protocol model

Consider the following model for an arbitrary network. A set of n nodes N =
{1, 2, ..., n} is arbitrarily located in a disk of area A on the plane2. The scenario
when nodes locations are random will be discussed later. Let Xi denote the location
of node i and rij = |Xi −Xj| be the Euclidian distance between node i and node
j, for all i, j ∈ N . We assume that each node can transmit at W bits per second
over a common wireless channel shared by all nodes3. It will be shown that it will
not change the ensuring capacity results if the channel is broken up into several
sub-channels of capacities W1, W2, · · · , WM such that W = W1 + · · · + WM . Note
that the choice of the sequence of nodes along which a packet is sent from its origin
to its final destination is the routing problem. Suppose node i transmits over the
m-th sub-channel to the node j. Then this transmission at rate Wm bits/sec is
assumed to be successfully received by node j if

rkj ≥ (1 + ∆)rij (2.1)

for every other node k simultaneously transmitting over the same sub-channel. See
figure (2.1); The quantity ∆ > 0, or more properly a circle of radius (1 + ∆)rij

quantifies a guard zone required around the receiver to ensure that there is no
destructive interference from neighboring nodes transmitting on the same m-th
sub-channel at the same time.

Definition 2.1.1. Transport capacity of a network is defined as

CT = sup
{all feasible Rij}

∑
i,j∈N
i6=j

Rijrij (2.2)

where Rij is the rate of reliable communication from the source node i to the desti-
nation node j, for all i, j ∈ N .

2Choosing a disk does not degrade the generality. The results hold true for square or, in fact,
any domain which is the closure of its interior

3Note that the choice of the transmission range is achieved by power control
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ijr

klr
j

i

k

l
kjr

ijr)1( D+

Figure 2.1: Successful transmission from i to j according to the protocol model

Theorem 2.1.1. The transport capacity of an arbitrary network of n nodes in area
A under the protocol model is Θ(W

√
An) bit-meters/sec.

This is achievable when the locations of the nodes and the source-destination
pairs are chosen optimally, and the network is optimally operated. By the phrase
”optimally operated” we mean optimized over the choice of a route, or a multiple
set of routes to be used for each source-destination pair, as well as optimal timing
of all transmissions.

Specifically, the upper bound is
√

8
π

W
∆

√
An bit-meters/sec for every arbitrary

network for all scheduling strategies, while W
√

A
1+2∆

n√
n+

√
8π

bit-meters/sec is an achiev-

able lower bound, when the node locations and the transmissions are chosen ap-
propriately.

Proof of Theorem 2.1.1. Here, we only mention the main ideas of the proof. The
rigorous proof can be found in the references mentioned in the section ”Note” at
the end of this chapter.

The essential idea to upper-bound the transport capacity is that successful trans-
missions consume an area as they happen. The radius of such a consumed area is
proportional to the transmission range. To observe this, let Tm(t) denote the set
of all concurrent transmissions over the m-th subchannel at time slot t. Consider
figure (2.1). Assume both transmissions, from i to j and from k to l, are successful.
Then, by the triangle inequality and (2.1), we have

rjl ≥ rjk − rkl (2.3)

≥ (1 + ∆)rij − rkl (2.4)

and similarly
rjl ≥ (1 + ∆)rkl − rij (2.5)
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j

i

k

l

Figure 2.2: The exclusion disks around receivers are disjoint.

Adding the two inequalities yields

rjl ≥
∆

2
(rkl + rij) (2.6)

This is equivalent to say that two disks, one of radius ∆
2
rij catered at i and the

second one of radius ∆
2
rkl centered at l, are disjoint. In other words, exclusion

disks of radius ∆
2

times the length of hops centered at the receivers, over the same
subchannel in the same slot, are disjoint; as shown in figure (2.2). Obviously, the
sum of such areas is upper-bounded by the limited total area A. Considering the
edge effect where a node is near the boundary of the domain, and noting that a
transmission range greater than the diameter of the domain is unnecessary, we see
that at least a quarter of each exclusion disk is inside the domain. Hence,∑

(i,j)∈Tm(t)

1

4
π(

∆

2
rij)

2 ≤ A (2.7)

Since at most half of the nodes can transmit at each time, |Tm(t)| ≤ n/2 and
furthermore, by (2.7), we have∑

(i,j)∈Tm(t)

rij ≤
√

n

2

∑
(i,j)∈Tm(t)

r2
ij (2.8)

≤
√

8An

π∆2
(2.9)

Hence, for any time t, the total bit-meters/sec for subchannel m is given by

Wm

∑
(i,j)∈Tm(t)

rij ≤ Wm

√
8An

π∆2
(2.10)

Summing over all subchannels, we get the upperbound.
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Figure 2.3: The grid-like node arrangement for the lowerbound.

To show the achievability of Θ(
√

An) bit-meters/second, we can first arrange
the n nodes in grid-like positions, as shown in figure (2.3), then choose n/2 nodes as
senders with each of them transmitting only to one of its nearest neighbors. Note
that all the transmitters can transmit simultaneously according to the protocol
model. Therefore, n

2
Wr bit-meters/second is achievable. To make sure that there

are exactly n/2 transmitter nodes inside the disk of area A, by a simple calculation,

we choose r = 1
1+2∆

√
A√

n+
√

8π
. It is worth pointing out that, to achieve the upper-

bound, there is no need to divide the original bandwidth to several sub-channels.

2.1.2 The physical model

In the previous section, we considered a geometric model for successful reception. In
this section, we analyze a more realistic model. In the physical model, the criterion
for the successful reception is that the SINR at the receiver must be greater than
a threshold. The threshold must be large enough to enable the receiver to decode
a packet, which is a better modeling of current radio technology decoding.

Let T (t) be the subset of nodes simultaneously transmitting at some time instant
t. Let Pk be the power level chosen by node k, for k ∈ T (t). Then the transmission
between nodes i, j ∈ T (t) is successful if

Pi

rα
ij

N +
∑

k∈T (t)
k 6=i

Pk

rα
kj

≥ β (2.11)
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where N is the noise power level. The signal power is assumed to decay with
distance r as 1/rα. The constant α is called path loss exponent for power. We
assume α ≥ 2. If the required SINR is satisfied, we assume a data rate of W
bits/sec over the link.

Theorem 2.1.2. For an arbitrary network of unit area4, Ω(W
√

n) bit-meters per
second is feasible under the physical model, when the network appropriately de-
signed, while an upper bound is O(Wn

α−1
α ).

It is worth noting that there is a gap between these two bounds.

Proof of Theorem 2.1.2. The main idea to obtain the upper bound is using (2.11)
to find an upper bound for rα

ij. By using (2.11), and the fact that rkj ≤ 2/
√

π, we
get

rα
ij ≤

β + 1

β

Pi

N + (π/4)α/2
∑

k∈T (t) Pk

(2.12)

and consequently

∑
i∈T (t)

rα
ij ≤ β + 1

β

∑
i∈T (t) Pi

N + (π/4)α/2
∑

k∈T (t) Pk

(2.13)

≤ β + 1

β
(
4

π
)α/2 (2.14)

Then the rest of proof proceeds similar to the proof of upperbound for the protocol
model, using (2.13) instead of (2.10), and invoking the convexity of rα instead of
r2 in (2.8). The exact upperbound is given by

1√
π

(
2β + 2

β

) 1
α

Wn
α−1

α

For proving the feasibility, we find a correspondence between the protocol model
and the physical model such that for every β there exists a ∆ determining the total
number of simultaneous transmissions for each time instant and sub-channel. In
fact, a simple calculation for the SINR of the grid-like node arrangement of figure
(2.3) shows it is lowerbounded by (1+2∆)α

16(2α/2+ 6α−2
α−2

)
. So, it is sufficient to choose ∆ to

make this lowerbound equal to β. Then there exists a power assignment allowing

4The results can be easily extended to any area A, by multiplying by a factor of
√

A
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the same set of transmissions under the physical model with threshold β. More
specifically,

1

(16(2α/2 + 6α−2
α−2

))1/α

Wn
√

n +
√

8π

bit-meters/sec is achievable.

Remark 2.1.1. As compared to Θ(W
√

n) of the protocol model, the physical model
yields a larger bound for α > 2. In a special case where the ratio between the
maximum and the minimum powers that transmitters can employ satisfies Pmax

Pmin
< β,

the upperbound is in fact √
8

π

1

(βPmin

Pmax
)

1
α − 1

W
√

n

bit-meters/second.

2.1.3 The generalized physical model

The physical model assumes that a transmission can only occur at two rates: W
bits/sec if SINR exceeds β, and 0 bits/sec otherwise. This model can be generalized
to be continuous in SINR, based on Shannon’s capacity formula for AWGN channel.
In this case, the data rate from node i to its receiver j is assumed to be

Wi = Hm log

1 +

Pi

rα
ij

NHm +
∑

k∈T (t)
k 6=i

Pk

rα
kj

 (2.15)

where Hm is the bandwidth of channel m in hertz, such that the total bandwidth
is finite,

∑
m Hm ≤ H0, and N/2 is the noise spectral density in watts/hertz.

Theorem 2.1.3. For the Generalized Physical Model with N > 0 and α > 2 and
available total bandwidth H0, if the maximum power that a node can employ on
the mth sub-channel is Pmax = HmNnα/2, then the transport capacity of an n node
network located in a unit square is upper bounded by O(H0

√
n). The lower bound for

feasibility is Ω(
√

n), so Θ(
√

n) is indeed the scaling law for the transport capacity.

Proof of Theorem 2.1.3. The feasibility is similar to physical model because any
SINR larger than a threshold enables a constant rate between two nodes. To prove
the upper bound, one needs to carefully examine the interference experienced by
each receiver.
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Remark 2.1.2. For a square of area A, by shrinking it to a unit area and scaling the
powers to PiA

−α/2, it follows that for a power constraint of Pmax = HmN(nA)α/2

the transport capacity scales as Θ(
√

An). Hence, this closes the gap between the
lower bound and the upper bound in the physical model.

Remark 2.1.3. Note that the above attenuation model is based on far-field assump-
tion [29]. Let rf denote the far-field distance of a transmitter antenna. rf is defined
as

rf = 2D2/λc

where D is the largest physical linear dimension of the antenna and λc is the carrier
wavelength. Moreover, rf should satisfy

rf � D and rf � λc

which imposes the following constraint on the minimum separation distance rmin

between nodes.
rmin ≥ rf (2.16)

When increasing the number of nodes in a fixed area A, the physical model does
not seem reasonable, since the model fails to satisfy the far-field requirement after
some point. Therefore, nodes have to be separated by a positive distance. This is
the model we consider in Chapter 3, and as we see, it yields different results.

2.2 Throughput of Random Wireless Networks

The locations of source-destination pairs are not often known a priori ; so, one is
interested in how random settign will influence the performance. In this section,
we consider randomly distributed networks. For simplicity, we assume that each
source has one randomly chosen destination. The results are extendable to a more
general case, where a source node can generate traffic for more several destination
nodes.

Consider the following model of random networks. n nodes are uniformly and
independently distributed in a unit square. Each node has a random destination.
The destination is chosen as follows. A position is first picked uniformly from within
the unit square, then the node nearest to it is chosen as the destination. We present
the results on the average achievable throughput of each node under the protocol
model and the physical model.
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2.2.1 Throughput under the protocol model

The model is essentially the same as the protocol model considered for the arbitrary
network. For the random network, we impose another constraint on the range of
transmissions. We assume that all nodes employ a common transmission range r.
Therefore, node i can successfully transmit to node j if

(i) The distance between the transmitter and the receiver is no more than r, i.e.,
rij ≤ r.

(ii) For every other node k, k 6= i, transmitting at the same time, rkj ≥ (1+∆)r.

(iii) The data rate for such successful transmitter-receiver pair is W bits/second.

Theorem 2.2.1. The order of the per-node throughput of random wireless net-
works, λ(n), under the protocol model is Θ( W√

n log n
) bits/sec.

Proof of Theorem 2.2.1. First, let us focus on the achievability part. The key ideas
are the following:

1. A constructive lower bound

We need to present a scheme that achieves λ(n) = Θ( W√
n log n

).

a) Tessellating the units quare by small squares

We tessellate the unit square by square cells of side sn =
√

K log n
n

. It is easy

to prove, using the binomial distribution and Chernoff bound, that for any
K ≥ 1, with probability going to one, each cell holds at least one but no more
than Ke log n nodes5.

b) Transmission schedule

Index the cells as Sij, with i denoting the column number and j the row
number. For a positive integer M , let C(k1, k2), for 0 ≤ k1, k2 ≤ M − 1, be
the group of all cells {Sij : i mod M = k1, j mod M = k2}. All nodes choose
a common transmission range rn = 2

√
2sn, so that every node can cover all

its neighboring cells. If M is large enough, then all cells in one of the M2

groups can transmit simultaneously in a time slot.

c) The routing

5A general form of clustering of random networks, based on Vapnik-Chervonekis theorem, will
be presented in Chapter 5
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Each node i, located in Xi, for 1 ≤ i ≤ n, generates data packets at rate λ(n)
with an end destination chosen as the node nearest to a randomly chosen
location Yi. Denote by Xdest(i) the node nearest to Yi, and by Li the straight-
line segment connecting Xi and Yi. The packets generated by node i will
be forwarded toward Xdest(i) in a multi-hop manner, from cell to cell in the
order that they are intersected by Li. Any node in the cell can be chosen as
a receiver. Then there exists a constant c ≥ 0 such that

Prob

(
sup
(k,j)

{Number of lines Li intersecting Skj} ≤ c
√

n log n

)
→ 1.

This gives a bound on the maximum amount of traffic which must be relayed
by each cell.

d) Lower bound on per-node throughput

In every M2 slots, each cell gets one slot to transmit at rate W bits/sec. So the
rate of each call is W

M2 bits/sec. Each cell needs to handle the traffic assigned
to it and according to the routing, this traffic is less than λ(n)c

√
n log n.

This can be therefore accommodated by all cells if λ(n)c
√

n log n ≤ W
M2 and

consequently, any λ(n) ≤ ( c′W√
n log n

) is achievable.

2. Upper bound

The proof is analogous to the proof of the upperbound for arbitrary networks.
Exclusion disks of radius ∆

2
r around every receiver are disjoint. So, we can

find the maximum total number of simultaneous transmissions, that is 16
∆2r2 .

Let L be the expected distance between source and destination. Then each
packet needs L

r
hops to reach its destination, this means the bits/sec being

transmitted by the network is at least nλ(n) L
rn

and this value must be less
than the maximum number of simultaneous transmissions times W . Using

this inequality, and choosing r =
√

log n
πn

to guarantee the connectivity of the

network [15] yield the result.

As observed in the above argument for the upperbound, an interesting tradeoff
is involved for random networks: The desire to reduce the multihop burden is in
contradiction with the desire to increase the number of concurrent transmissions
and spacial reuse. In other words, by increasing the transmission range of each node,
packets can reach the destinations by less number of hops but this, in turn, results in
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a decrease in the total number of simultaneous transmissions. Considering the both
issues, we found out that we need to decrease r as much as possible. But this small
transmission range must guarantee the connectivity of the network. Hence, among
all the multihop schemes, the nearest-neighbor multihop has the best performance.

The critical transmission range for a random network on a unit area is
√

log n
πn

[15].

This critical value is the transmission range we chose for the constructive lower
bound. As a result of this argument, we mention the following remark:

Remark 2.2.1. To achieve a better scaling, one must be able to perform many si-
multaneous long-range communications. A technique which achieves this is MIMO
(Multi-Input Multi-Output). In this way, mutually interfering signals between source-
destination pairs can be tuned to useful ones to realize spatial multiplexing gain.
This will be the topic of Chapter 5.

2.2.2 Throughput under the physical model

The model is similar to the physical model of the arbitrary networks, with an
additional constraint that all nodes employ a common transmission power P . The
required SINR must satisfy (2.11).

Theorem 2.2.2. There exist positive constants c and c′ such that a per-node
throughput of λ(n) = cW√

n log n
is feasible, while λ(n) = c′W√

n
is not, both with proba-

bility approaching one as n →∞.

Proof of Theorem 2.2.2. The proof is very similar to the proof under the protocol
model. For feasibility we can use the constructive lower bound of the protocol model
and adjust M to make SINR≥ β. For upper bound, we find a correspondence with
the protocol model. Assume i is successfully transmitting to j, and k is to l. From
(2.11), we have

P/rα
ij

P/rα
kl

≥ β

which is equivalent to
rkl ≥ (1 + ∆)rij

for ∆ = (β
1
α − 1). Thus, the upper bound on the transport capacity of arbitrary

networks under the protocol model, Theorem 2.1.1, also holds for our physical
model. Using this transport capacity, and noting that the average distance between
a source node and its destination is a constant L, prove the stated result.
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Remark 2.2.2. As observed for arbitrary or random networks, the results are rel-
atively robust to the choice of geometric model or more physically realistic model.
In the next chapters, we will see a similar correspondence with the other modeling
approaches as well.

2.3 Notes

This section was mainly based on [3], [12] and [13]. The transport capacity was first
studied in [3] where there was a gap between the lower bound and the upper bound
on the transport capacity of arbitrary networks under the physical model. This
gap was closed in [12] by using the generalized physical model. For the throughput
of random networks under the physical model, as we saw, the constructive lower
bound shows Θ( W√

n log n
) is feasible, while Θ( W√

n
) is an upperbound. This gap was

later closed in [10], by showing a constructive scheme to achieve Θ( W√
n
). The scheme

is using techniques from percolation theory. In addition, nodes can use different
transmission ranges instead of the common range used here. As a result, the factor√

log n present in the earlier result can be vanished, however at the expense of a
more complicated architecture.



Chapter 3

An Information Theory for
Transport Capacity

In this chapter, we try to shed some information theoretical light on the appropriate
architecture for two separate cases, namely high attenuation and low attenuation.
We consider a model where nodes are located on a plane with a minimum distance
separation between them, with each node having an individual power constraint or

a total power constraint on all nodes. We model the signal attenuation as
√

Ge−γr

rα/2

where α is the path loss exponent for power and γ is the absorption coefficient. For
transmission in vacuum absorption is zero. G is another constant depending on the
transmitter and receiver antenna gains and the carrier wavelength.

The main results are as follows:

i) The transport capacity grows like O(n) when γ ≥ 0 or α ≥ 6. This is
established by showing that transport capacity is upper bounded by the multiple
of the total transmission powers of all the nodes. As the result, multi-hop is an
order-optimal strategy under some scenarios when γ ≥ 0 or α ≥ 61 . For example,
if the nodes are located at integer lattice sites in a square and randomly choose
their destinations, multihop transport is differing at most by a factor 1√

log n
from

optimal order. If traffic can be load-balanced across the network by multipath
routing with bounded distance at each hop, then the scaling law is sharp, i.e., the
transport capacity order is Θ(n), and is achieved by multihop transport. In overall,
this provide justification for using multihop when the traffic is balanced or can be
balanced by using multipath routing if necessary.

1Note that the linear scaling of transport capacity, in this case, agrees with the square-root
scaling O(

√
An) in Chapter 2. This is because the area A scales as Θ(n) due to the minimum

seperation distance constraint.

18
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ii) There is a dichotomy between the low and high attenuation cases. When
γ = 0 and α ≤ 3, we can achieve unbounded transport capacity in some networks
for a limited total power. In particular, for nodes on a line when α ≤ 2, there are
networks where their transport capacity scales super linearly like Θ(nθ) for 1 ≤
θ ≤ 2. The strategy is coherent multistage relaying with interference subtraction
(CRIS) where the nodes profitably cooperate over long distance by using coherent
and multiuser estimation instead of multihop.

3.1 Model of Wireless Networks

A set of n nodes is located on a plane. There is a minimum distance rmin between
nodes. At time instants t = 1, 2, ... node i sends Xi(t) and receives Yi(t) such that

Yi(t) =
∑
j 6=i

√
Ge−γrijXj(t)

r
α/2
ij

+ Zi(t)

where Zi(t), for 0 ≤ i ≤ n and t = 1, 2, ..., are i.i.d random variables with zero mean
and variance σ2. We consider constraint on the total power of the nodes (Ptotal)
or individual power constraint on each node (Pind). The network can have several
source-destination pairs (sl, dl), l = 1, ...,m. A regular planer network is a special
case of planer networks where the nodes are located at the points (i, j), 0 ≤ i, j ≤√

n. In a linear network all the nodes are on a line, and in regular linear network
the nodes are located on the points 1, 2, ..., n.

3.2 The High Attenuation Regime

3.2.1 Main results under high attenuation

For the case of total power constraint, we have the following bound on the transport
capacity.

Theorem 3.2.1. If γ ≥ 0 or α ≥ 6, then for every planer network we have

CT (n) ≤ c1(γ, α, rmin)

σ2
Ptotal

where c1(γ, α, rmin) is a constant.
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The exact value of c1 can be found in the references mentioned in the section
”Note” at the end of this chapter.

It follows immediately from this theorem that under the individual power con-
straint, transport capacity can not grow faster than linear in n. A corollary of the
above theorem is as follows.

Corollary 3.2.1. If γ ≥ 0 or α ≥ 6, then for any planer network

CT (n) ≤ c1(γ, α, rmin)

σ2
Pind n

On the other hand, according to the following theorem, the linear growth is
indeed achievable for regular networks.

Theorem 3.2.2. Suppose γ ≥ 0 or α ≥ 2, and each node is subject to an individual
power constraint Pind. A regular planer network of n nodes can achieve

CT (n) ≥ S(
e−2γPind

c3(γ, α/2)Pind

+ σ2) n

where S(x) is the Shannon function 1
2
log(1 + x).

Again, we do not mention the exact value of c3 here. The same results, as above
theorems, can be derived for linear networks as well, when dichotomy occurs for
α = 4, and c3 is replaced by another constant c2.

3.2.2 Main ideas behind the proof under high attenuation

Proof of Theorem 3.2.1. The proof is based on a Max-flow min-cut lemma relating
rates with received power. The lemma is similar in spirit to Theorem 14.10.1 in
[27].

Lemma 3.2.1. Let N1 be any subset of all the nodes N . If (R1, ..., Rm) is a feasible
rate vector, then ∑

{l:dl∈N1,sl∈N c
1}

Rl ≤
log e

σ2
lim

T→∞
inf P rec

N1
(T )

where P rec
N1

(T ) is the average power received by N1, from outside of N1, N c
1 , i.e.,

P rec
N1

(T ) =
1

T

T∑
t=1

∑
i∈N1

E

∑
j∈N c

1

e−γrijXj(t)

r
α/2
ij

2
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For simplicity, let us focus on linear networks. The idea is the same for planer
networks and the proof of their upperbound proceeds similarly. Let airmin denote
the coordinate of the node i. Let RS denote the sum of the rates with source nodes
in set S and destinations in the rest of the network. For every integer q, define the
following subsets.

N−
q = {i ∈ N : ai ≤ q}

and
N+

q = {i ∈ N : ai > q}

Then by using Lemma 3.2.1, we can bound RN−
q

and RN+
q
. The key idea in the

proof is that every source-destination pair (sl, dl) with distance rl cuts at least
b rl

rmin
c subsets among all N−

q s (dl on the right side of sl) or N+
q s (dl on the left side

of sl). Hence, we can upperbound the transport capacity as∑
i,j∈N

Rijdij ≤ 2rmin

∑
i,j∈N

Rijb
dij

rmin

c

≤ 2rmin

+∞∑
q=−∞

RN−
q

+ 2rmin

+∞∑
q=−∞

RN+
q

(3.1)

So, it is sufficient to calculate
∑+∞

q=−∞ RN−
q

or
∑+∞

q=−∞ RN+
q

(they are equal) where
RN−

q
and RN+

q
are given by Lemma 3.2.1. The series will converge for α > 4 or

γ > 0. This concludes the proof and yields the stated result.

Proof of Theorem 3.2.2. Consider a regular planer network with n nodes such that
two neighboring nodes are one meter apart from each other, and each source chooses
one of its 4 nearest neighbors as its destination. Let us only focus on the case where
γ = 0 and α > 2. Each node generates its codebook according to a Gaussian dis-
tribution with variance Pind. After the block of T transmissions, each destination
decodes its intended message treating all the other transmissions as noise (This
is, in fact, the grid-like node arrangement of Figure 2.3 that we used to show the
achievablity results for the multihop strategy). It is easy to verify that the interfer-
ence due to other transmissions can be bounded by c3(γ, α)Pind, and consequently
the following rate is achievable for each source-destination pair:

R <
1

2
log

(
1 +

Pind

c3(γ, α)Pind + σ2

)
. (3.2)

Therefore, a linear growth for transport capacity is achievable, which concludes the
proof.
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3.3 Low Attenuation Regime

We continue with the scaling behavior of transport capacity when there is no ab-
sorbtion and the attenuation is low. In this case, by coherent relaying with inter-
ference subtraction (CRIS) strategy, super linear growth in transport capacity can
be achieved for networks under the individual power constraint. The ratio of trans-
port capacity to total power can also be unbounded. These results reveal that there
must be a fundamental relationship between the properties of the medium, the in-
formation transfer capacity and appropriate architecture for different attenuations.
At the present, however, the results presented are under unrealistically low atten-
uations and further research is required to bridge the gap with high attenuation.
Next, we present the main features of CRIS scheme.

3.3.1 The Gaussian multiple-relay channel and CRIS strat-
egy

The basic idea of this new coding scheme is the same as the block markov coding
scheme for simple relay channel of figure (3.1).

Let s, r, d respectively denote source, relay and destination nodes, and αsr, αsd, αrd

denote the signal attenuation factors. The transmission time is divided into a se-
quence of blocks. In each block, the source divides its power into two parts: θPs

for informing the relay from its intention for the next block and (1 − θ)Ps for co-
herent cooperation with the relay to transmit to d. So, we can achieve any rate

R ≤ S(α2
srθPs

σ2 ) for informing the relay. The received signal of the destination has
three parts:

1. The signal consisting of coherent transmission of r and s with power

(αsd

√
(1− θ)Ps + αrd

√
Pr)

2.

2. The signal with power α2
sdθPs.

3. The noise.

For decoding, node d treats the second part in the previous block and the first
part in the current block as signal since they represent the same information. Note
that the destination can recover the second part in the previous block, since it has
already decoded the previous block, and can deducts the first part from the total
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s

r

d

Figure 3.1: The single relay channel

received signal. Hence, the destination can do decoding in the present block with
rate

R < S

(
(αsd

√
(1− θ)Ps + αrd

√
Pr)

2

α2
sdθPs + σ2

)
+ S

(
α2

sdθP

σ2

)

= S

(
α2

sdPs + α2
rdPr + 2αsdαsd

√
(1− θ)PsPr

σ2

)
. (3.3)

So, the achievable rate, for reliable decoding at both the relay and the destination,
is

R < max
0≤θ≤1

min

{
S(

α2
srθPs

σ2
) , S(

α2
sdPs + α2

rdPr + 2αsdαsd

√
(1− θ)PsPr

σ2
)

}
. (3.4)

The above method can be extended as CRIS for multiple-relay. Consider one
source, M−1 relay nodes, and a destination. Index them respectively by 0, 1, ...,M .
At the beginning of each block b, every relay node i has estimates of the previous
source messages up to i blocks before the present block, i.e., blocks b−M − i, · · · ,
up to b−i. Each node transmits coherently to all its downstream nodes (with larger
node number). The allocated power of node i to transmit to node k is Pik, k ≥ i+1.
Then any rate satisfying the following inequality is achievable:

R < min
1≤j≤M

S(
1

σ2

j∑
k=1

(
k−1∑
i=0

αij

√
Pik)

2) (3.5)

where Pik satisfies
∑M

k=i+1 Pik ≤ Pi.
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3.3.2 Main results under low attenuation

Theorem 3.3.1. For a regular planer network

(i) If γ = 0 and α < 3, then even with a fixed total power, we can achieve
unbounded transport capacity when n grows.

(ii) If γ = 0 and α < 2, then even with a fixed total power, we can achieve
a fixed minimum rate between every source-destination pair, irrespective of
their distance.

We have a similar theorem for regular linear networks, for α < 2 in the first
part and α < 1 in the second part of Theorem 3.3.1.

Theorem 3.3.2. If γ = 0 and 1 < α < 2, under an individual power constraint, a
superlinear Θ(nθ) scaling law with 1 < θ < 2/α is feasible for some linear networks.

3.3.3 Main ideas behind the proofs in low attenuation regime

In this subsection, we show how to use the CRIS strategy to achieve a superlinear
growth for the transport capacity. The key steps in proving Theorem 3.3.1 are
presented here. We refer the interested reader to [4] for complete proofs.

Proof of Theorem 3.3.1. For simplicity, consider a linear network. The proof for
planer case proceeds similarly. We consider one source-destination pair where the
source is located at 0 and the destination is located at n. So, there are n−1 nodes,
located at 1, 2, ..., n− 1 acting as relay nodes. Then the following rate is achievable
by CRIS:

R < min
1≤j≤n

S

 1

σ2

j∑
k=1

(
k−1∑
i=0

√
Pik

(j − i)α/2

)2
 (3.6)

with the total power constraint

n∑
k=1

k−1∑
i=0

Pik ≤ Ptotal. (3.7)

Recall that Pik is the part of the power used by node i for direct transmission to
node k. Let

Pik =
P

(k − i)β1kβ2
, 0 ≤ i < k ≤ n (3.8)
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and

P =
(β1 − 1)(β2 − 1)

β1β2

Ptotal. (3.9)

The above power assignment satisfies the total power constraint for β1, β2 > 1. For
3− β1 − β2 > 0, the following lower bound can be established:

j∑
k=1

(
k−1∑
i=0

√
Pik

(j − i)α/2

)2

= Ω(j3−β1−β2−α) (3.10)

As the result, for α < 1 and 3− β1 − β2 − α > 0, (3.10) is lower bounded by
a positive constant, say P ∗, from zero, and consequently any rate R < S(P ∗

σ2 ) is
achievable. Note that the transport capacity in this case is Rn. Therefore, an
unbounded transport capacity is achievable as n grows.

For the case where 1 ≤ α < 2, 3−β1−β2−α < 0; hence, the minimum of (3.10)
is attained at j = n. So, the transport capacity is lowerbounded by Ω(n4−β1−β2−α).
By choosing β1 and β2 such that 4 − β1 − β2 − α > 0, arbitrary large transport
capacity is achievable with a fixed total power constraint. This concludes the proof.
Similarly, an unbounded transport capacity can be obtained for a fixed total power
constraint in planer networks.

3.4 Notes

This section is mainly based on [4]. In [8], it has been shown that, for upper
bounding the transport capacity by a multiple of the total power, α > 3 suffices
for linear networks and α > 5 for planar networks. The effect of random phases of
channels is also discussed in the same paper. The linear growth rate of transport
capacity for an improved bound on α, and a generalized transport capacity are also
given in [14].



Chapter 4

Upper Bounds on the Throughput
of Random Networks

In the previous chapter, we presented some results on the transport capacity of
wireless networks from an information theoretic point of view. The upperbounds
were quite general and applicable to arbitrary wireless networks as well as some
special classes such as regular networks and random networks. Since for the special
cases, the topology of the network is known, one wishes to analyze the throughput
of such networks. Some interesting questions can be raised here that whether a
constant per-node throughput, irrespective of the number of nodes of the networks,
is possible or how fast the rate tends to zero as the number of users gets large.

In this chapter, we characterize the fundamental scaling behavior of the through-
put of random/regular wireless networks. We show how to derive performance
bounds by using multi-input multi-output (MIMO) techniques and by analysis of
random matrices. This will provide us with an impetus to build a hierarchical
cooperation scheme, in chapter 5, to achieve the performance bounds.

4.1 Model of Random Wireless Networks

The model is similar to the standard additive white Gaussian noise channel model
considered in Chapter 3.

1. There are a set of n nodes N located on a plane.

2. Each node uses a common average power P to transmit.

26
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3. At any time t, each node i transmits the signal Xi(t) ∈ C, and receives the
signal Yi(t) ∈ C. The received signal depends on the transmitted signals of
all the other nodes as

Yi(t) =
∑
k 6=i

HikXk(t) + Zi(t) (4.1)

where Zi(t) is white circularly symmetric Gaussian noise of variance N , and
the gain

Hik =
√

Gr
−α/2
ik exp(jθik) (4.2)

where rik is the distance between nodes i and k, and θik is the phase uniformly
distributed in [0, 2π]. The parameter α ≥ 2 is the power path-loss exponent
and G is another constant depending on the transmitter and receiver antenna
gains and the carrier wavelength.

In order to obtain the upperbound on the throughput, we make a series of optimistic
assumptions: We assume that the nodes are distributed randomly (uniformly and
independently) on a planer network with area A or they are located regularly on the
grid sites inside the area A. We further assume that source-destination pairs are
chosen i.i.d. Each node can be a source and also a destination for another source
node.

4.2 The Sum-Rate Upperbound For Random Dense

Networks

For dense networks, the network area is fixed and does not change with n. Let us
assume a unit area for the network. The following Theorem gives an upperbound
on the throughput of such networks.

Theorem 4.2.1. The aggregate throughput of a dense network is bounded by

T (n) ≤ K1n log n

with high probability1 for some constant K1 > 0 independent of n.

Proof of Theorem 4.2.1. Consider a source node s and its randomly selected des-
tination d. The transmission rate from s to d, is upper bounded by the capacity

1i.e., probability goes to one as number of nodes grows.
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of the single-input multiple-output (SIMO) channel between s and the rest of the
network. This capacity (see [28]) is given by

R(n) ≤ log

(
1 +

P

N

∑
i6=s

|His|2
)

(4.3)

= log

(
1 +

P

N

∑
i6=s

G

rα
is

)
(4.4)

It is easy to verify that in a dense random network, the minimum distance between
any two nodes is larger than 1

n1+δ with high probability, for any δ > 0. Hence, by
using this fact, we obtain

R(n) ≤ log

(
1 +

GP

N
nα(1+δ)+1

)
(4.5)

≤ K1 log n (4.6)

for some constant K1 independent of n. Since there are n such source-destination
pairs, T (n) = nR(n), and the theorem follows.

So, the upperbound does not deprive us from the hope for a linear through-
put scaling. However, to achieve this scaling, the removal of interference between
simultaneous transmissions from different sources is necessary.

4.3 The Sum-Rate Upperbound for Random Ex-

tended Networks

Another natural scaling is the extended case, where the density of nodes is fixed and
the area increases linearly with the number of nodes. Let us model the geographical
area by a

√
n×

√
n square. As compared to the dense network, the distance between

the nodes is increased by a factor of
√

n, and therefore the received powers, for the
same transmit power, are reduced by a factor of nα/2. The following Theorem gives
an upperbound on the capacity scaling of extended networks.

Theorem 4.3.1. For a random extended network, for any ε > 0, the aggregate
throughput is bounded by

T (n) ≤
{

K2n
2−α/2+ε 2 ≤ α < 3

K2n
1/2+ε α ≥ 3

with high probability for a constant K2 > 0 independent of n.
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Figure 4.1: The cut set considered in the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. The proof is based on careful analyzing the power transfer
through a cut-set bound. Consider a cut dividing the network into two equal halves
(See figure 4.1. The source-destination pairs that pass the cut from left to right are
depicted in bold lines). Because of the random source-destination pairing, the sum
rate of communication requests passing through the cut from left to right, is equal
to 1/4 of the total throughput of the network with high probability. This sum rate
is bounded by the capacity of the MIMO channel between the nodes S located on
the left of the cut and the nodes D located to the right. By an standard formula
[28], and under fast fading assumption, the capacity is given by∑

k∈S,i∈D

Rik ≤ max
Q(H)�0

E(Qkk(H))≤P,∀k∈S

E(log det(I + HQ(H)H∗)) (4.7)

where elements of H are the channel gains Hik, k ∈ S, i ∈ D. Q(H) � 0 denotes
a positive semi-definite transmit covariance matrix corresponding to the channel
realization H. The diagonal element Qkk(H) denotes the power allocated to the
node k at channel state H. Let VD be the set of nodes on the 1×

√
n rectangular

area to the right of the cut. By chernoff bound argument, there are no more than
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√
n log n in VD. By Hadamards’s inequality, we have∑

k∈S,i∈D

Rik ≤ max
Q(H(1))�0

E(Qkk(H(1)))≤P,∀k∈S

E(log det(I + H(1)Q(H(1))H(1)∗))

+ max
Q(H(2))�0

E(Qkk(H(2)))≤P,∀k∈S

E(log det(I + H(2)Q(H(2))H(2)∗)) (4.8)

where H(1) is the channel matrix between S and VD, and H(2) is between S and
D − VD. The first term in 4.8 can be easily upperbounded by the sum of the
capacities of MISO channels between nodes in S and each node in VD. The capacity
of each individual channel is of the order of log n. Since there are at most an order
of n log n such channels, the first term is bounded by K3

√
n(log n)2.

The hard part is the second term, i.e., the capacity of MIMO channel between
nodes in S and nodes in D − VD. Since, the channel matrix H(2) is random, com-
puting the second term invokes analysis of the distribution of the largest eigenvalue
of the channel matrix. Here, the channel gains Hik, are independent and the distri-
bution of real and imaginary parts are symmetric around the origin. In this case,
the maximum of the second term is attained with a diagonal Q(H(2)). In other
words, independent signaling can achieve the capacity. This result has been shown
in different ways in the literature [9], [24], [25], and [26]. Evaluating the second
term for diagonal Q, and using the Hadamard inequality yields:

The second term of (4.8) ≤ E

( ∑
i∈D−VD

log

(
1 +

∑
k∈S

Pk|Hik|2)

))
(4.9)

≤
∑

i∈D−VD

log

(
1 +

∑
k∈S

GPk

rα
ik

)

)
(4.10)

≤
∑

i∈D−VD

∑
k∈S

GPk

rα
ik

= Ptot. (4.11)

where we have used the Jensen’s inequality in the second step. It is worth noting
that (4.11) is equivalent to the max-flow min-cut lemma developed in the chapter
3, both relating the sum rate across a cut-set to the total power transfer. The last
thing needs therefore to be calculated is Ptot.

Lemma 4.3.1. The scaling of the total received power is bounded by

Ptot ≤


K4n(log n)3 α = 2
K4n

2−α/2(log n)2 2 < α < 3
K4

√
n(log n)3 α = 3

K4

√
n(log n)2 α > 3
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with high probability for a constant K4 > 0 independent of n.

We have mentioned the sketch of the proof of the above lemma at the end of
the chapter for completeness. Putting every thing together, the result stated in
Theorem is concluded.

4.4 Notes

This chapter was mainly based on [1], along with a simplified method for calculating
(4.8). In driving the upperbounds based on the capacity of MIMO channel, we
assumed a fast fading environment. In a recent work [18], it has been shown that
the same results can be extended to the slow fading setting as well. The throughput
of random extended networks has been also studied in [6] under the channel model
considered in chapter 3, i.e., attenuation of the transmitted signal over distance
without fading. The result was a throughput scaling of Kn1/2+1/α log n for all
α ≥ 2. It is interesting that this bound is looser than what was presented under
the fading assumption, especially for 2 < α < 3.

4.5 Some Proofs

Proof of Lemma 4.3.1. Divide the network into n squares of area 1. By Chernoff
bound argument, there are no more than log n nodes in each square with high
probability. Consider figure 4.5; Each rectangle Sm of height 1 and width

√
n

consists of
√

n squares. We aim to bound

Ptot = PG

√
n∑

m=1

∑
k∈Sm

∑
i∈D−VD

r−α
ik

Let us first focus on
∑

i∈D−VD
r−α
ik . Note that if we move the nodes that lie in

each square to the square vertex, as indicated in figure 4.5, all terms in the sum-
mation only increase. Considering the same node displacement for all rectangular
slabs Sm, m = 1, ...,

√
n results in a regular network with at most log n nodes

at each vertex on the left and 2 log n nodes at each vertex on the right. So, the
problem reduces to computing Ptot for the resulting regular network. Let us index
the left-hand side nodes by (−kx + 1, ky) and those on the right by (ix, iy) where
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D-VDS

Sm

Figure 4.2: The displacement of nodes to the sqaure vertices, indicated by arrows.

kx, ky, ix, iy = 1, ...,
√

n. Then

Ptot ≤ 2(log n)2PG

√
n∑

kx,ky=1

dkx,ky (4.12)

where

dkx,ky =

√
n∑

ix,iy=1

1

((ix + kx − 1)2 + (iy − ky)2)α/2
(4.13)

The upper bound of Ptot is obtained by manipulations of the above series.



Chapter 5

Hierarchical Cooperation in Ad
Hoc Networks

In Chapter 4, we presented the upperbounds on the throughput scaling of the
extended random networks. The results demonstrated the optimality of multihop
for the high attenuation. An important question remained unanswered that what
the optimal operation scheme is for the low attenuation case. In this chapter,
we try to answer this question by introducing the hierarchical cooperation scheme,
which is proposed in [1] for the operation of random wireless networks with n source-
destination pairs communicating with each other at some common rate. We analyze
the scheme and optimize it by choosing the number of hierarchical stages and
the corresponding cluster sizes that maximize the total throughput. In addition,
to apply the hierarchical cooperation scheme to random networks, a clustering
algorithm is developed, which divides the whole network into quadrilateral clusters,
each with exactly the number of nodes required.

As a new result, we will show that the complete expression for the scaling with

h hierarchical stages should be c(h)n
h

h+1 . Since the pre-constant c(h) affects the
scaling behavior, we will present what can be achieved with the hierarchical scheme
by providing an explicit expression of the pre-constant. Actually, for each n, the

optimal number of stages to choose is
√

logβ(n/2), where β is a constant to be

defined later, and the corresponding maximum achievable throughput is

βR√
logβ(n/2)

(n/2)
1− 2√

logβ(n/2)
(5.1)

where R is another constant. Therefore, as shown in (5.1), the hierarchical scheme

33
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actually achieves a scaling with the exponent depending on n.

Generally, a network with area A is distinguished into two categories based on
whether Aα/2 ≤ n, where α ≥ 2 is the power path loss exponent. In the case where
Aα/2 ≤ n, (5.1) is achievable. In the other case where Aα/2 > n, (5.1) has to be
multiplied by n/Aα/2 in order to meet the power constraint. It is worth pointing out
that our results such as (5.1) apply to finite n. When trying to draw conclusions
on scaling laws by taking n →∞, however, it should be noted that the results for
the first case cannot remain valid if α > 2, since the far-field model would fail to
apply after some point.

For clarity, we will first present the results for regular networks. Then the
extension to random networks is trivial after we introduce a clustering algorithm
that divides the whole network into quadrilateral clusters, each with exactly the
number of nodes required for carrying out the hierarchical cooperation scheme.

The remainder of this Chapter is organized as follows. In section 5.1, the wireless
network model is described. Section 5.2 is devoted to the hierarchical cooperation
scheme in regular networks, where we present the optimal throughput-delay results
for the scheme with different stages. In section 5.3, a clustering algorithm is devel-
oped to extend the results to general random networks. In section 5.4, we study
the appropriate strategy for the operation of random networks. In sections 5.5 and
5.6, we mention some notes and proofs.

5.1 Wireless Network Model

Recall the standard additive white Gaussian noise channel model of wireless net-
works presented in Chapter 4. Briefly,

1. There are a set of n nodes N located on a plane.

2. Each node uses a common average power P to transmit.

3. At any time t, each node i transmits the signal Xi(t) ∈ C, and receives the
signal Yi(t) ∈ C. The received signal depends on the transmitted signals of
all the other nodes as

Yi(t) =
∑
k 6=i

HikXk(t) + Zi(t) (5.2)

where Zi(t) is white circularly symmetric Gaussian noise of variance N , and
the gain

Hik =
√

Gr
−α/2
ik exp(jθik) (5.3)
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Figure 5.1: A regular network with n nodes and a minimum distance rmin.

Consider the problem of n source-destination pairs in the network, where each
node is a source, with its destination node arbitrarily chosen from the other nodes.
For simplicity, assume that each node chooses a different node as its destination,
although this requirement can be relaxed to some extend as we can see from the
coding strategy described later. Therefore, each node is a source and also a desti-
nation for another source. We only consider the case where all pairs communicate
at the same rate.

For the simplicity of presentation, and in order to expose the key features of the
coding strategy, we will first consider a regular network as depicted in figure 5.1,
where nodes are located at the grid points (xrmin, yrmin) for 1 ≤ x, y ≤

√
n in an area

A = nr2
min. Then the results can be easily extended to general random networks

with high probability, where n nodes are randomly and uniformly distributed inside
a square of area A.

5.2 Hierarchical Cooperation in Regular Networks

5.2.1 Double stage cooperation scheme

As a prelude, consider only two stages for the scheme and assume A = 1 unit. We
will follow [1], but show what is really achievable by presenting a more transparent
description. Divide the regular network into clusters of size M nodes (See figure
5.2; A source node s and its cluster S, and the destination d within cluster D have
been depicted.). The double stage scheme is based on local transmit and receive
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minrn
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s

d

sdr
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Figure 5.2: Dividing the network of n nodes into clusters of size M nodes.

cooperation in clusters and MIMO transmissions between clusters. Consider one
source node s and its destination node d. The goal of s is to send M sub-blocks of
length L bits (in overal, ML bits) to d. Let these bits be arranged in a data matrix
BM×L

B =


B11 B12 . . . B1L

B21 B22 . . . B2L
...

...
. . .

...
BM1 BM2 . . . BML


which corresponds to choose one message W from 2LM possible messages

{
1, · · · , 2LM

}
.

Denote the i-th row by bi (i-th data sub-block) and the m-th column by bm (m-th
data vector). The node s sends its data matrix to the node d in three steps:

1. s distributes its sub-blocks among the M nodes in its cluster by using TDMA.
For this purpose, for each node k in the source cluster, s encodes the data
sub-block bk to a codeword of length C0 chosen from a randomly generated

Gaussian codebook C0
i.i.d∼ NC(0, σ2

0) where σ2
0 = Prα

sk. Sending one sub-block
requires C0 time slots and distributing all sub-blocks needs MC0 time slots.
At the end, each node in the cluster obtains one data sub-block of s.

2. The nodes of the source cluster form a distributed array antenna and send the
LM bits of information to the destination cluster by MIMO transmissions.
To accomplish this step, each node i encodes its sub-block bi to a codeword
XC1

i = (Xi1Xi2 · · ·XiC1) of C1 symbols by using a randomly generated Gaus-
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sian codebook C1
i.i.d∼ NC(0, σ2

1) where σ2
1 = P

rα
SD

M
and rSD is the distance

between the centers of two clusters. Then nodes of the source cluster send
their codewords simultaneously to the destination cluster. Therefore this step
needs C1 time slots to complete. Each node k in destination cluster receives
an observation Ykt from the MIMO transmission at time t for 1 ≤ t ≤ C1

according to (5.2) or the following vector form.

Y M(t) = HXM(t) + Z(t) (5.4)

where XM(t) = (X1tX2t · · ·XMt)
T and Y M(t) = (Y1tY2t · · ·YMt)

T is the ob-
servation vector at time t. Z(t) = (Z1tZ2t · · ·ZMt)

T is uncorrelated noise
at the receiver nodes, and Hik are given by (5.3). The nodes simply store
their observations. At the end of this step, each node k in destination clus-
ter has accumulated an observation sub-block Y C1

k = (Yk1Yk2 · · ·YkC1) of C1

observations.

3. Each node k in the destination cluster quantizes its observations with Q
bits per observation to obtain a quantized observation sub-block V C1Q

k =
(Vk1Vk2 · · ·Vk(C1Q)) of length C1Q bits. From now on, the step is similar to
step 1 but in reverse order. The cluster nodes send their quantized observation
sub-blocks Vk to d by using the codewords of length C0C1Q/L chosen from
a randomly generated Gaussian codebook with power σ2

0 where σ2
0 = Prα

kd.
The destination d can decode the quantized observations and estimate the
observation sub-blocks and consequently, the observation vector Y M(t) by an

estimated observation vector Ŷ M(t). Then d can decode the transmitted data

vectors b̂t. The required number of slots for this step is MC0C1Q/L.

In the double stage cooperation strategy, the power of each observation must be
upper bounded independent of cluster size which leads to quantization with a fixed
number of bits for an average distortion ∆2. When two clusters are neighbor, using
the power assignment of σ2 = Prα

SD/M yields an unbounded received power when
the cluster size increases. A simple solution is to divide these clusters into two equal
halves, each with M/2 nodes. The source node s distributes its sub-blocks among
M/2 nodes of the half located farther to the border. Then these M/2 nodes form a
distributed antenna and perform MIMO between the halves located farther away.
Now, the required time for the step 2 is twice the time needed for disjoint clusters,
i.e. the required time is 2C1 slots. In step 3, M/2 nodes take part in delivering
the observations to the destination. For source and destination nodes located in
the same cluster, we can simply ignore the second step. According to Lemma 4.5
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Figure 5.3: Parallel operating clusters according to 4-TDMA

of [1], the power received by each node in destination cluster P rec in the step 2 is
lower and upper bounded independent of cluster size such that

GPa2 + N ≤ P rec ≤ GPb2 + N (5.5)

where

a = (2−
√

2)α/2 (5.6)

b = (2 +
√

2)α/2 (5.7)

Each source-destination pair must accomplish the three steps. Clustering also
enables spatial reuse in the sense that clusters can work in parallel for local coop-
erations (step 1 and step 3) provided they locate far enough from each other. This
leads to three phases in the operation of the network:

Phase 1: Setting up transmit cooperation. Clusters work in parallel
according to the 4-TDMA scheme in figure 5.3 (as opposed to 9-TDMA scheme
in [1]1 ) where each cluster is active a fraction 1/4 of the total time of this phase.
When a cluster becomes active, its source nodes must perform the first step, i.e.
distributing their sub-blocks to the other nodes of the cluster by a simple TDMA.
Each source node needs MC0 slots, hence the required time for source nodes of one
cluster to exchange their bits is at most M2C0 slots and due to 4-TDMA, the whole
phase needs 4M2C0 slots to complete. Each node transmits with power σ2

0 in at
most fraction 1

4M
of the total time of the phase. It can be shown that this power

assignment satisfies an overal average power consumption less than P/n. Using
the 4-TDMA ensures us that the interference power each node received from all
simultaneously transmitting nodes is bounded according to the following Lemma.

14-TDMA actually saves time compared to 9-TDMA. However, the scaling won’t be changed.
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Lemma 5.2.1. The interference signals received by different nodes, due to parallel
operating clusters using 4-TDMA, are independent and for α > 2 the interference
power that each node is received is given by

PI ≤ GP (8 +
2

α− 2
+

2

α− 1
)

Phase 2: MIMO transmissions. We perform successive MIMO transmis-
sions according to the step 2, one MIMO for each source-destination pair from
source cluster to destination cluster in one time slot, hence we need at most 2nC1

slots. Each node encodes the sub-blocks by using a Gaussian code of power σ2
1 as

defined earlier. Since at most M MIMO transmissions are originated from each
cluster, each node is active at most a fraction M/n of the total time of this phase
and remains silent during the rest of the phase which yields an average power
consumption less than P/n.

Phase 3: Cooperate to decode. After the first two phases, each source-
destination pair has completed the steps 1 and 2.Each cluster should accomplish
the step 3 by conveying the quantized observations to the corresponding destination
nodes located in the cluster. This phase is identical to the first phase, except that
each node has C1Q bits to transmit to each node in the same cluster instead of L
bits. Therefore, this phase needs 4M2C0C1Q/L slots to complete.

In summary, the required time D2 for the double stage scheme is

D2 = D(phase1) + D(phase2) + D(phase3)
= 4M2C0 + 2nC1 + 4M2C0C1Q/L
= 4M2C0(1 + C1Q/L) + 2nC1

Assume the channel gains are known at all nodes. All communication links in the
first phase can operate at any rate less than the following:

R0 ≤ log

(
1 +

GP

PI + N

)
(5.8)

Communications in the second phase are performed over the quantized MIMO
channel of figure 5.4 where the notation (· · · )L is used for an i.i.d sequence of L
random variables. The following lemma asserts that an spatial multiplexing gain
of M is achievable for this channel.
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Figure 5.4: A model for the quantized MIMO channel

Lemma 5.2.2. Define the average probability of error for the quantized MIMO
channel by

PL
e =

1

2LM

2LM∑
k=1

P(Ŵ 6= k|W = k)

Then there exists a strategy to quantize the observations with Q bits per observation
and a codebook C1 satisfying power constraint σ2

1 = Prα
SD/M to encode the data sub-

blocks such that arbitrary low PL
e is feasible. Moreover, the minimum quantization

rate Q and the maximum achievable rate R1 of the codebook satisfy

Q > log

(
1 +

GPb2 + N

∆2

)
and

log

(
1 + t

GP

N + ∆2

)
(a2 − t)2

2b4
≤ R1 < log

(
1 + b2 GP

N + ∆2

)
(5.9)

for any 0 ≤ t ≤ a2.

For simplicity, all nodes use the same rate for their codewords C0 and C1, i.e.,
L
C0

= L
C1

= R, where

R ≤ min {LHS of (5.9), RHS of (5.8)}

Hence, the required time D2 can be written as

D2(n,M,L) = 4M2 L

R

(
1 +

Q

R

)
+ 2n

L

R

We call this quantity delay because each destination can decode its intended bits
only after receiving all the corresponding observations , i.e., after the step 3. At the
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end of this time, each node has delivered ML bits to its destination which yields a
total throughput of

T2 =
nML

D2

which is maximized by choosing M =
√

R
2(R+Q)

√
n:

T opt
2 (n) =

R

4
√

2(1 + Q/R)
n1/2 (5.10)

and the corresponding delay is

Dopt
2 (n, L) = 4

L

R
n. (5.11)

Obviously, by repeating n times, the double stage scheme can also be used for
the problem where each node needs to send different information to all the other
nodes. The achievable rate is as the following.

Lemma 5.2.3. For a regular network of size n, by the double-stage cooperation
scheme with clusters of size M , each node can deliver ML different bits to each of
the other nodes in a time block of

nD2(n,M,L) = 4nM2 L

R

(
1 +

Q

R

)
+ 2n2 L

R
.

Remark 5.2.1. Note that L denotes the number of bits to be transmitted in a basic
time block, and is proportional to the block length for any fixed communication
rate. Although for the interest of delay, it is better to choose smaller L as shown
in Lemma 5.2.3, shorter block length leads to higher decoding errors. Hence, there
is always a minimum L required to ensure enough reliability.

5.2.2 Triple stage cooperation scheme

Is it possible to achieve a better throughput by local cooperation and MIMO trans-
missions? Recall that in Phase 1 and Phase 3 of the double stage scheme, TDMA
was used in each cluster to deliver the bits. Since each cluster itself is a network
similar to the original network only with a smaller number of nodes, this implies
that one can use the double stage scheme in each cluster to exchange the bits as
well. Next, we analyze the throughput and delay of this new triple stage scheme
when the double stage scheme is used in Phase 1 and Phase 3.
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Figure 5.5: The three stages of the triple stage cooperation scheme.

First, divide the whole network into clusters of size M1, and then divide each
cluster of size M1 into sub-clusters of size M2. Apply the double stage scheme to
each cluster of size M1. To avoid the interference from neighboring clusters, use
4-TDMA as before. Hence, according to Lemma 5.2.3, it takes M1D2(M1, M2, L)
time slots for each node to deliver M2L bits to each node in the same cluster and
this phase needs 4M1D2(M1, M2, L) time slots to complete.

In Phase 2, as before, it takes 2nM2L
R

time slots to complete.

In Phase 3, same as phase 1 except that there are Q
R

times as many bits to

transmit, it takes 4M1D2(M1, M2, L)Q
R

time slots to complete.

Totally, with the triple stage scheme, it takes

D3(n, M1, M2) = 4M1D2(M1, M2, L)

(
1 +

Q

R

)
+ 2n

M2L

R

time slots to communicate M1M2L bits for each source-destination pair. This yields
a throughput of

T =
nM1M2L

D3(n,M1, M2)
. (5.12)

The three stages of the scheme, namely S1, S2 and S3 have been depicted in
figure 5.5. In stage S1, global MIMO transmissions are performed between clusters
of size M1. In stage S2, clusters M1 work in parallel and local MIMO transmissions
are performed between sub-clusters of size M2. S3 is the bottom stage where point-
to-point communications take place between nodes of sub-clusters.
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Using the partial derivatives with respect to M1 and M2 to maximize the
throughput in (5.12), the optimal cluster sizes are given by

M2 =
1

2(1 + Q/R)

(n

2

)1/3

M1 =
1

2(1 + Q/R)

(n

2

)2/3

and consequently the optimal throughput and the delay of the triple stage scheme
are given by

T opt
3 (n) =

21/3

24(1 + Q/R)
Rn2/3

Dopt
3 (n) =

3

21/3(1 + Q/R)

L

R
n4/3

Remark 5.2.2. It is easy to prove as an extension of Lemma 5.2.1 that for the
triple stage cooperation scheme, the received interference signals by different nodes
of the network are uncorrelated in all the stages. Moreover the stage S3 has the
largest interference power which can be bounded by PI

2. Hence, the following
coding rate R and quantization rate Q can be used in all the stages.

R ≤ max
0≤t≤a2

log

(
1 + t

GP

N + PI + ∆2

)
(a2 − t)2

2b4
(5.13)

Q > log

(
1 +

GPb2 + N + PI

∆2

)
(5.14)

Compared to the double stage scheme, the triple stage scheme can achieve a
higher order of n for throughput (an order of n2/3 for the triple stage scheme in
contrast with an order of n1/2 for the double stage scheme), but the pre-constant
of throughput decreases by increasing the number of stages. The desirable and
adverse effects of increasing the number of stages can be explained as follows.

• Increasing the number of stages results in a better use of the degrees of free-
dom as the network transports more portion of the traffic by MIMO trans-
missions and less by TDMA. This in turn leads to an increase in order of n
in the throughput.

2Since the scheme runs 4-TDMA in both network and clusters, the exact interference power
is less than PI , nevertheless this bound is sufficient to verify that a universal coding rate R is
feasible.
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• For a higher stage scheme, one should be able to bound the interference
power due to parallel operating clusters which invokes running 4-TDMA in
the network and at the same time inside the clusters. This yields an increase in
the delay and consequently a reduction in the throughput. Another overhead
arises from quantizing and re-encoding the observations at different stages
which further increases the delay and reduces the throughput.

5.2.3 h-stage hierarchical cooperation scheme

Generally, suppose that with the (h − 1)-stage hierarchical cooperation scheme
with cluster sizes M1, M2, . . . ,Mh−2, it takes Dh−1(n,M1, M2, . . . ,Mh−2) time slots
to communicate M1M2 · · ·Mh−2L bits for each source-destination pair.

Replacing phase 1 and phase 3 of the double stage scheme with the (h−1)-stage
scheme, we have the h-stage scheme. Obviously, for the h-stage scheme with cluster
sizes M1, M2, . . . ,Mh−1, it takes

Dh(n,M1, M2, . . . ,Mh−1)

= 4M1Dh−1(M1, M2, . . . ,Mh−1)

(
1 +

Q

R

)
+2n

M2 · · ·Mh−1L

R

time slots to communicate M1M2 · · ·Mh−1L bits for each source-destination pair.

It can be verified that the general formula is

Dh(n,M1, M2, . . . ,Mh−1) = M1M2 · · ·Mh−1
L

R
×{

[4(1 + Q/R)]h−1Mh−1 + 2
h−2∑
i=0

[4(1 + Q/R)]i
Mi

Mi+1

}
Consequently, the throughput is given by

Th(n,M1, M2, . . . ,Mh−1) =
nM1M2 · · ·Mh−1L

Dh(n, M1, M2, . . . ,Mh−1)

which in general is a function of all the cluster sizes.

We maximize the throughput by using the partial derivatives. Solving ∂Th/∂Mi =
0 for 1 ≤ i ≤ h− 1 yields

M2
i =

Mi−1Mi+1

4(1 + Q/R)
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where let M0 = n and Mh = 2. Therefore, the optimal choices of the cluster sizes
are

Mi =
2(n/2)(h−i)/h

[4(1 + Q/R)]i(h−i)/2
for 1 ≤ i ≤ h− 1 (5.15)

Next we present one of our main results.

Theorem 5.2.1. For a regular network of n nodes in a unit area, by the h-stage
hierarchical cooperation scheme with the optimal cluster sizes (5.15), the throughput
is given by

T opt
h (n) =

R

h(2
√

1 + Q/R)h−1
(n/2)1− 1

h (5.16)

and the corresponding delay is

Dopt
h (n, L) =

h2(h+2)(h−1)/(2h)

(2
√

1 + Q/R)(h+3)(h−2)(h−1)/6

L

R
n

h−1
2

+ 1
h .

For any fixed n, we can find the optimal h to maximize T opt
h (n). Let

dT opt
h (n)

dh
= 0

which leads to
h2 ln(2

√
1 + Q/R) + h− ln(n/2) = 0.

Hence, the optimal number of stages to choose is

h∗ =

√
1 + 4 ln(2

√
1 + Q/R) ln(n/2)− 1

2 ln(2
√

1 + Q/R)
. (5.17)

In order to obtain a simple formula, let

h∗ =

√
ln(n/2)

ln(2
√

1 + Q/R)
(5.18)

=
√

logβ(n/2)

where β := 2
√

1 + Q/R. Note that

βh = β
logβ(n/2) h

logβ(n/2) = (n/2)
h

logβ(n/2) .
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Therefore,

T opt
h (n) =

R

h(2
√

1 + Q/R)h−1
(n/2)1− 1

h

=
βR

hβh
(n/2)1− 1

h

=
βR

h
(n/2)

1− 1
h
− h

logβ(n/2) (5.19)

where choosing h as in (5.18), we have

T opt(n) =
βR√

logβ(n/2)
(n/2)

1− 2√
logβ(n/2)

(5.20)

Obviously (5.20) is a very accurate estimation, although we made some approxi-
mation in (5.18) and h∗ should always be an integer.

Theorem 5.2.2. For a regular network of n nodes in the unit area, by the hierar-
chical cooperation scheme with the optimal number of stages (5.17) and the optimal
cluster sizes (5.15), the maximum throughput is approximately given by (5.20).

Actually, we can provide an exact upper bound of T opt(n). It follows from (5.19)
that

T opt
h (n) ≤ βR(n/2)

1− 1
h
− h

logβ(n/2)

≤ βR(n/2)
1− 2√

logβ(n/2)
(5.21)

where, in the last inequality, “=” holds if h =
√

logβ(n/2).

To check how much different (5.21) is from the linear scaling law Θ(n), we take
the ratio:

n/2

(n/2)
1− 2√

logβ(n/2)

= (n/2)

2√
logβ(n/2)

=
(
βlogβ(n/2)

) 2√
logβ(n/2)

= β2
√

logβ(n/2)

→ ∞.

Hence, the hierarchical cooperation scheme cannot achieve arbitrarily close to linear
scaling as claimed in [1]. Instead, the difference grows to infinity as n increases.
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5.2.4 Hierarchical cooperation for networks with area A

Generally, consider a regular network with area A. Note that distance affects the
power loss. We can scale down the general regular network with area A to a regular
network with unit area, but with the power constraint P

(
√

A)α at each node, since the

distance between nodes is reduced by a factor of
√

A. Recall that when A = 1 unit,
running the hierarchy does not need the whole power budget P and the average
power consumption is less than P/n per node. Thus, a general network can be
dichotomized based on the relation between its area and the number of nodes into
two cases:

• Dense network: The network is called dense when Aα/2 ≤ n. Then the nodes
have enough power to run the hierarchical scheme and get the throughput-
delay results as discussed above.

• Sparse network: The network is called sparse when Aα/2 > n. Then the
nodes do not have sufficient power to run the hierarchical scheme all the
time. Instead, they run the scheme in a fraction n/Aα/2 of the time with
power PAα/2/n and remain silent during the rest of the time. Obviously this
bursty modification satisfies the original average power constraint P , and
correspondingly, the achieved throughput is modified by a factor of n/Aα/2,
e.g., in (5.16) and (5.20).

5.3 Extension to Random Networks

In this section, we extend the results of regular networks to random networks. We
first review the extension method of [1]: Consider a random network of unit area
with n nodes. Since the average number of nodes in a cluster of area Ac = M

n
is

M , the hierarchical scheme was applied to this random network by dividing the
network into the clusters of area M1

n
and proceeding to clusters of area Mh−1

n
, for

the h-stage scheme, and get the throughput-delay of the regular network but with
a failure probability. Failure arises from the deviation of number of nodes in each
cluster from its average. By a simple Chernoff bound argument, the probability of
having large deviations from the average can be bounded (see Lemma 4.1 of [1]).
As n →∞, this probability goes to zero.

The above clustering method is not sufficient for the following reasons:

1. The clusters of area Ac = M
n

are required to contain exactly M nodes to
perform the hierarchical scheme. A deviation from the average number of
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nodes M , even very small, results in failure of the scheme. However, [1] only
bounded the probability of large deviation.

2. The probability of having exactly M nodes in a cluster of area Ac = M
n

is
given by the binomial distribution p(M ; n, M/n) =

(
n
M

)
(M

n
)M (1 − M

n
)n−M .

Using the Stirling’s formula to approximate the factorial terms, as n → ∞,
yields

p(M ; n,M/n) ≈ MM

eMM !
Recall that for the optimal operation of the scheme, the cluster sizes M are
chosen proportional to nγ where 0 < γ < 1. Hence, the probability of having
M nodes is proportional to 1√

2πM
which, in fact, goes to zero.

To resolve the issue of making clusters of exactly M nodes, we will develop a
clustering algorithm in this paper. To achieve high probability, we need to consider
simultaneously the probabilities of events of the entire class of clusters, which in-
vokes a sort of uniform convergence (in probability) of law of large numbers over
the entire class. To resolve this, we will resort to the Vapnik-Chervonekis theorem.

5.3.1 Choosing an appropriate cluster shape

We use the Vapnik-Chervonekis theorem [19], [20] to find the appropriate cluster
shape. Let F be a set of subsets and A a finite set of points. First, we recall some
definitions:

Definition 1: ProjF(A) is the projection of F on A which is defined as {F ∩ A : F ∈ F}.
Definition 2: A is shattered by F if ProjF(A) = 2A, i.e., if the projection of F

on A includes all possible subsets of A.

Definition 3: The VC-dimension of F , denoted by VC-d(F) is the cardinality
of the largest set A that F shatters. It may be infinite.

The Vapnik-Chervonekis Theorem: If F is a set of finite VC-dimension and {Xi}
is a sequence of n i.i.d random variables with common probability distribution P ,
then for every ε, δ > 0

Prob

{
sup
F∈F

∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ F )− P (F )

∣∣∣∣∣ ≤ ε

}
> 1− δ (5.22)

whenever

n > max

{
8VC-d(F)

ε
log

16e

ε
,
4

ε
log

2

δ

}
(5.23)
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An application of this theorem has been already presented in [3] for the set of
disks on the plane. In this section, we consider a more general case; we apply the
Vapnik-Chervonekis theorem to the set of all the clusters that partition the given
random network with n nodes in the unit area. Note that a finite VC-dimension,
for the set of clusters F , is a sufficient condition for the uniform convergence in
the weak law of large numbers. Assume that this condition is satisfied and the set
of clusters has a finite VC-dimension (We will later derive a sufficient condition
for the cluster shapes to make the VC-dimension finite). Denote the area of each
cluster c ∈ F by Ac and its number of nodes with Nc, then we have the following
lemma:

Lemma 5.3.1. For every cluster c ∈ F that contains exactly M nodes,

M − ξ log n

n
< Ac <

M + ξ log n

n
(5.24)

with probability larger than 1− ξ log n
n

where ξ = max {8VC-d(F), 16e}.

Proof. Let F denote the class of clusters with finite VC-dimension VC-d(F). To
satisfy (5.23), let ε = δ = ξ log n

n
. Then the Vapnik-Chervonekis theorem states that

Prob

{
sup
c∈F

(∣∣∣∣Nc

n
− Ac

∣∣∣∣ ≤ ξ log n

n

)}
> 1− ξ log n

n
(5.25)

Therefore, if a cluster c contains exactly M nodes, i.e., Nc = M , then its area must
satisfy (5.24) with high probability.

Note that if a cluster has an area less than M−ξ log n
n

, then with high probability it

contains less than M nodes. Similarly, if its area is greater than M+ξ log n
n

, with high
probability, it contains more than M nodes. Next, we need to choose a right shape
for clusters to make the VC-dimension finite. We will make use of the following
lemma, due to [21], in finding the appropriate shape. We have presented the sketch
of the proof at the end of the chapter for completeness.

Lemma 5.3.2. Let F be a set of subsets with VC dimension d. Consider another
set F∩r which consists of r-wise intersections of subsets in F . The VC-dimension
of the new set is at most 2rd log(3r).

Corollary 5.3.1. The VC-dimension of the set of convex r-laterals is finite and
upper bounded by 6r log (3r) where r is the number of sides.



Hierarchical Cooperation in Ad Hoc Networks 50

+ +
+

+
+

+_
_

_

+

+

_

_

(a) (b)

Figure 5.6: VC-dimension for the set of half-spaces is 3. (a): A set of 3 points is
shattered, (b): No set of 4 points can be shattered.

Proof. Consider a line in the plane. It divides the plane into two half-spaces.
Choose one of the half-spaces as subset. Define F ′ as the set of all half-spaces
produced by considering different lines in the plane. It is easy to prove that VC-
d(F ′) = 3 since a set of 3 nodes that are not collinear can be shattered (see figure
5.6(a)) but it is impossible to find a set of 4 nodes that are shattered by F ′ (see
figure 5.6(b)). The labels “+” and “-” in figure 5.6 have been used to specify
different subsets of points. The key observation is that any convex r-lateral is an
intersection of r half-spaces. In the light of this observation and by using Lemma
5.3.2, it is concluded that the VC-dimension of the set of convex r-laterals is at
most 6r log (3r).

We will use a set of quadrilaterals as the clusters. Since the VC-dimension is at
most 24 log 12, we can apply Lemma 5.3.1 with ξ = 800 to these clusters. Next, we
develop an algorithm to make clusters of exactly M nodes.

5.3.2 Clustering algorithm

Divide the network into squares of area M
n

, and start from the square located on
the top left corner. Depending on how many nodes are within this square, three
situations may arise:

1. if the number of nodes in the square is exactly M , ignore this square and go
to the next one.

2. if the number of nodes in the square is less than M , make a quadrilateral
cluster by expanding the square: Move the top right vertex of the square
to the right such that the created quadrilateral cluster contains exactly M
nodes.

3. if the number of nodes in the square is more than M , make a quadrilateral
by shrinking the square: Move the top right vertex of the square to the left
such that the resultant quadrilateral cluster contains exactly M nodes.
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Figure 5.7: Clustering of a random network with exactly M nodes in each quadri-
lateral cluster.

After making the first cluster, go to the second cluster on the right side and make
it a quadrilateral with exactly M nodes by expanding or shrinking as discussed
above. Repeat the procedure for all the squares in the first row. For the top right
square, use its bottom right vertex to do expanding/shrinking. For the second row,
starting from the right square, move to the left side, and make the quadrilateral
clusters of M nodes by expanding-shrinking. Perform the same procedure for all
the rows, and we will have a set of quadrilateral clusters; each one contains exactly
M nodes. One instance of such a clustering algorithm has been depicted in figure
5.7. Note that according to Lemma 5.3.1, the amount of expanding/shrinking in
the areas of the squares is less than ξ log n

n
with high probability.

5.3.3 Network operation

The operation of random networks is similar to the operation of the regular net-
works. The centers of the quadrilateral clusters are defined as the centers of the
original squares. Note that the new quadrilateral cluster will include the center of
its original square with high probability. To observe this property of our clustering
algorithm, consider the combination of the clusters 1, 2, and 3 in figure 5.7. This
combination gives a larger quadrilateral cluster with Nc = 3M , hence according to
(5.25) the deviation of the area of this cluster from its average (3M/n) must be
less than ξ log n

n
and consequently l(n) ≤ 2ξ log n√

nM
. Therefore l(n) is much smaller than
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the square side
√

M
n

(recall that M = nγ for 0 < γ < 1) and the quadrilaterals are

concentrated on the squares. In other words, each quadrilateral corresponds only
to one square, and vice versa. Hence, the hierarchical scheme can be applied to the
random networks by using the corresponding quadrilateral of each square instead
of original square cluster. By making clusters of Mh−1 nodes for the bottom stage
of the hierarchy using the clustering algorithm, these clusters can be combined to
make larger clusters of Mh−2 nodes for the upper stage. Following the same pro-
cedure, make clusters of exactly M1 nodes for the top stage. It is worth noting
that for combined clusters, for example, combination of clusters 6, 7, 10, and 11 in
figure 5.7, we can define the same deviation factor l(n) as defined for the clusters
of the bottom stage. As the result, the received power of each MIMO transmission
will be lower-bounded and upper-bounded by (5.5). The only difference is that the
coefficients a and b in (5.6)-(5.7) should be replaced by

a′ = (1 +

√
2

2

√
M
n

+ l(n)√
M
n
− l(n)

)−α/2

b′ = (1−
√

2

2

√
M
n

+ l(n)√
M
n
− l(n)

)−α/2

or equivalently

a′ =

(
1 +

√
2

2

M + 2ξ log n

M − 2ξ log n

)−α/2

b′ =

(
1−

√
2

2

M + 2ξ log n

M − 2ξ log n

)−α/2

M can be chosen as the optimal cluster size for different stages, i.e., Mi for 1 ≤
i ≤ h − 1. But it holds for any i that Mi+2ξ log n

Mi−2ξ log n
≤ Mh−1+2ξ log n

Mh−1−2ξ log n
. Moreover, since

Mh−1 ∝ n1/h, the right hand side (RHS) of this inequality is a decreasing function
of n for large values of n and approaches to one. In fact, for any given η > 1, there
exists a n0 such that for all n > n0, the RHS is less than η. Hence, for all n > n0



Hierarchical Cooperation in Ad Hoc Networks 53

the coefficients can be chosen as

a′ =

(
1 +

√
2

2
η

)−α/2

b′ =

(
1−

√
2

2
η

)−α/2

(5.26)

Consequently, the required quantization rate Q and the channel coding rate R can
be defined based on the above coefficients. Obviously as n →∞, a′ → a and b′ → b
and we can use the same quantization and coding rates as the rates already used
for regular networks.

5.4 The Appropriate Operation Strategy

In previous sections of this chapter, we derived the exact achievable throughput of
the hierarchical scheme with any number of stages. As observed, for dense networks,
there is a gap between the maximum achieved throughput and the linear-scaling
upperbound of Theorem 4.2.1. As we increases the number of stages of the hierarchy
to achieve a scaling closer to the linear one, the overhead due to using the 4-TDMA
for parallel operating clusters and quantizing and re-encoding the observations at
different stages, reduces the performance significantly.

For the extended network model of Chapter 4, the area A = n, and as an
immediate application of presented results in section 5.2.4, a throughput of

O

(
n

2−α
2
− 2√

logβ(n/2)

)
(5.27)

is achievable.

Comparing the above scaling law with the upperbound of Theorem 4.3.1 for the
extended networks, we observe the sub-optimality of the hierarchical cooperation
scheme for 2 ≤ α ≤ 3. Furthermore, the multihop outperforms the hierarchical
scheme for α > 3.

A natural question is why attenuation has a fundamental effect on choosing the
appropriate strategy. A natural place to look for the answer is the cutset of figure
(4.1) in Chapter 4. Recall that the total throughput between the S −D pairs with
sources on the left half and destinations on the right half of the cut, which with
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MIMO-CRIS-

Multihop

Figure 5.8: Power transfer is dominated by long distance transmissions under high
attenuation and nearest-neighbor multi-hop under low attenuation

high probability is 1/4 of the total aggregate throughput, is bounded by a multiple
of the total received energy by the nodes on the right from the nodes located on the
left side. The total received power is dominated either by power transfer between
the nodes near the cut or by power transferred by nodes far away rom the cut.
There are roughly an order of

√
n nodes near the cut and order of n2 nodes away

from the cut but the channels between the nodes near the cut are much stronger.
When α ≤ 3, the received power is dominated by transfer between nodes far away
from the cut because there are fewer nodes near the cut than far away from the
cut. In this case, hierarchical scheme approximately achieves the required power by
long distance MIMO transmissions (and also the CRIS strategy by coherent long
distance transmissions). When α > 3, the received power is dominated by power
transferred by the nodes near the cut. This can be achieved by nearest-neighbor
multihop and therefore, multi hop is optimal in this regime.

5.5 Notes

The idea of clustering and MIMO transmission between clusters was first introduced
in [11]. The idea was later developed in [1] to the hierarchical architecture. The
results presented in this chapter have been mainly derived from the papers published
based on this thesis, [16] and [17], where the exact achievable throughput for any
number of users has been found. The clustering algorithm for random networks is
another contribution.
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Figure 5.9: Grouping of interfering clusters in 4-TDMA.

5.6 Some Proofs

Here, we mention the proofs for some of the stated Lemmas for completeness.

Proof of Lemma 5.2.1. The proof follows in parallel with Lemma 4.2 of [1] for
9-TDMA. Consider figure 5.9 for the regular network in the unit area. The inter-
ference signal received by each node v is given by

Iv =
∑
u∈Uv

HvuXu

where Hvu is given by (5.3) and Xu is the signal transmitted by an active node
located in a simultaneously operating cluster u with power σ2

0. Uv is the set of
simultaneously operating clusters of node v which can be grouped such that a
group Uv(k) contains 8k clusters which are separated from v by a distance larger

than (2k− 1)r where r =
√

M
n

. The number of such groups can be easily bounded

by k ≤ 1/4
√

f where f = n/M is the number of clusters.

PI <

1/4
√

f∑
k=1

∑
U∈Uv(k)

Gσ2
0

((2k − 1)r)α

where we used the assumption that channel gains are independent. Substituting
the value of σ2

0 yields

PI < 8GP

1/4
√

f∑
k=1

k

(2k − 1)α
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When α > 2, the above summation can be bounded as follows

∞∑
k=1

k

(2k − 1)α
=

1

2α

∞∑
k=1

1

(k − 1/2)α−1
+

1

2α+1

∞∑
k=1

1

(k − 1/2)α
(5.28)

≤ 1

2α
(

1

(1/2)α−1
+

∫ ∞

1/2

dx

xα−1
) +

1

2α+1
(

1

(1/2)α
+

∫ ∞

1/2

dx

xα
)(5.29)

= 1 +
1

4
(

1

α− 2
+

1

α− 1
) (5.30)

which concludes the proof.

Proof of Lemma 5.2.2. Consider figure 5.4. In the simple strategy of [1], each
node simply quantizes the observations with rate Q bits per observation. Let the
observations be encoded independently with a distortion constraint ∆2. Since each
observation is NC(0, P rec), Q must satisfy

Q > log

(
1 +

GPb2 + N

∆2

)
(5.31)

Now consider the quantized MIMO channel which can be written as

Ŷ M = HXM + Z + D (5.32)

and D ∼ NC(0, ∆2I). The mutual information of this channel with CSI at receiver
is given by I(XM ; Y M ,H) which can be written as log det

(
I + 1

N ′HQXH∗) where
N ′ = N + ∆2 (Noise and distortion are assumed to be uncorrelated). When H
varies in a stationary ergodic manner, in general QX is chosen to maximize the
expectation. Recall that in our model, H varies according to a stationary ergodic
process, and elements of H are independent with mean zero, and different variances,
such that the distributions of real and imaginary parts of the elements of H are
symmetric around the origin. In this case, this is a well known result that the
optimal QX must be diagonal. In other words, independent signaling can achieve
the capacity. Now, consider the strategy of [1] when the elements of transmitted

vector XM are i.i.d ∼ NC(0, σ2), i.e., nodes use the same power σ2 = P
rα
SD

M
. In this

case the mutual information is given by

I(XM ; Y M ,H) = E
[
log det

(
I +

σ2

N ′HH∗
)]

Define ρik as ( rSD

rik
)α/2, then the above mutual information can be written as

E
[
log det

(
I +

SNR

M
FF ∗

)]
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where SNR =GP
N

and Fik = ρik exp(jθik). Let λ1, λ2, · · ·λM be the M eigenvalues
of 1

M
FF ∗, then the mutual information is given by

I(XM ; Y M ,H) =
M∑

k=1

E [log (1 + SNRλk)]

≤ ME

[
log

(
1 +

SNR

M

M∑
k=1

λk

)]

≤ M log

(
1 +

SNR

M
E

[
M∑

k=1

λk

])

= M log

(
1 +

SNR

M2
E [Tr (FF ∗)]

)
where

E [Tr (FF ∗)] =
M∑

i,k=1

E
[
|Fik|2

]
=

M∑
i,k=1

ρ2
ik ≤ M2b2

Here, we have used the fact that a ≤ ρik ≤ b, and a and b are given by (5.7).
Therefore the mutual information can be upper-bounded by

I(XM ; Y M ,H) ≤ M log
(
1 + SNRb2

)
This upper bound, along with the lower bound of Lemma 4.3 of [1], yields the
given bounds on the maximum achievable rate R1 = L/C1. The destination can
decode the message with an average error probability arbitrary close to zero if
2LM+ε = 2C1I(XM ;Y M ,H) for any ε > 0 as C1 →∞.

Proof of Lemma 5.3.2. The proof is based on the following Lemma:

Lemma 5.6.1. Consider a set A of cardinality m and define Φd(m) =
∑d

i=0

(
m
d

)
for d ≥ 0. If the VC dimension of F is d, then

(i) |ProjA(F)| ≤ Φd(m)

(ii) Φd(m) ≤ 2
(
md/d!

)
≤ (em/d)d for all m ≥ d ≥ 1.
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Proof of part (i): We show that for any H ⊂ 2A that has VC dimension d,
|H| ≤ Φd(m). Letting H = ProjA(F), we get the result. The proof of the latter is
based on induction. Consider any point x ∈ A. Define the following sets:

H− x = {H − {x} : H ∈ H}

H(x) = {H ∈ H : x /∈ H, H ∪ {x} ∈ H}

Note thatH−x andH(x) are families of subsets of A and that |H| = |H − x|+
∣∣H(x)

∣∣.
Obviously H− x has VC dimension at most d and therefore |H − x| ≤ Φd(m− 1).
If we prove H(x) has VC-dimension less than d − 1, then the lemma follows since
Φd(m−1)+Φd−1(m−1) = Φd(m). The VC-dimension of H(x) is at most d−1 since
if its VC-dimension is d, there exists a set B ⊂ A−{x} such that it is shattered by
H(x) and |B| = d. But in this case, B ∪ {x} ⊂ A can be shattered by H; it means
that VC-dimension of H is d + 1 which is impossible.

Proof of part (ii): The second inequality of part (ii) is based on Stirling’s ap-
proximation for d! and the proof of the first inequality is by induction on d and
m.

To prove Lemma 5.3.2, suppose A has m elements. Note that, according to
the above lemma, |ProjA(F)| ≤ Φd(m). Every set in ProjA(F∩r) is of the form⋂r

i=1 Ai where Ai ∈ ProjA(F). This shows that |ProjA(F∩r)| ≤
(|ProjA(F)|

r

)
. If

|ProjA(F∩r)| < 2m, A can not be shattered by F∩r. Therefore, by part (ii) of the
lemma, it suffices to choose m such that(

Φd(m)

r

)
≤
(em

d

)dr

< 2m

which is satisfied when m = 2dr log(3r). This concludes the proof.



Chapter 6

Summary and Future Research

6.1 Summary

With the recent advances in wireless networks, it has become of fundamental impor-
tance to quantify the limitations of information transfer in these networks. More-
over, there have been much interest in designing appropriate architectures for the
efficient operation of wireless networks. In this thesis, we have presented a theory
to address those issues by using tools from information theory and networking. We
have studied the performance of the multihop strategy by using measures such as
transport capacity, which is a distance weighted capacity, and throughput. We have
provided sharp estimates on the bast achievable transport capacity in terms of its
growth rate as a function of number of nodes in the network. In addition, we have
studied the maximum throughput which can be supported by random networks.
The constructive lower bounds presented to achieve the scaling orders, can shed
insight on the design of multihop networks, as well as the role of protocols.

However, the multihop analysis imposes a restriction of the operation of network,
ignoring other possible opportunities such as multiuser coding and estimation, co-
operative transmission, interference subtraction, and etc. Therefore, one is forced
to turn to the Shannon’s fundamental work for the study of communication. But,
despite all the development and significant applications of information theory in
point-to-point communication, progress in network information theory is hindered
by intractability of a general solution for some simple networks like three-node relay
channel or four-node interference channel.

To overcome this difficulty, we have considered the scaling of the performance
measures as the number of nodes grows. The scaling results revealed an inter-
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esting connection between the physical properties of wireless medium, like signal
attenuation with distance, and the network’s capacity measures. Consequently, an
interesting dichotomy was observed between two separate cases of high attenuation
and low attenuation. For the high attenuation regime, the sub-optimality of mul-
tihop was shown for some load-balanced scenarios. Actually, there is a energy cost
in joules per one bit-meter information transfer, which can be achieved by using
multihop. For the low attenuation regime, a better energy transfer is possible via
long-distance transmissions such as MIMO and CRIS.

To bridge the gap between the two regimes, we have confined the study and
focused on the throughput of random networks in more details. For this special
class of networks, the upperbounds on the throughput were obtained for the whole
range of attenuation coefficients. The results identified an expected dichotomy be-
tween high and low attenuation cases, along with a sharp threshold to distinguish
these two cases. The sub-optimality of multihop was re-established for the high
attenuation case while predicting a better throughput for the low attenuation. To
achieve the upperbound for the low attenuation case, a hierarchical cooperation
scheme was studied which was able to continually increase the scaling by adding
more hierarchical stages and incorporating long-range MIMO communications with
local cooperations. The scheme was analyzed and optimized by choosing the num-
ber of hierarchical stages and the corresponding cluster sizes that maximize the
total throughput. In addition, to apply the hierarchical cooperation scheme to ran-
dom networks, a clustering algorithm was developed. Based on the expression of
the maximum achievable throughput, it was found that, actually, there is a gap
between the throughout scaling of the hierarchical scheme and the presented upper
bound, and, clearly, much remains to be done.

6.2 Future Research

Obviously, the problem is still open for a general network with n nodes in area A.
Despite the given upperbound on the throughput of the extended networks, further
research is needed to bridge the gap between the low and high attenuation cases
for general networks. Moreover, an interesting problem is that of designing more
efficient strategies for operation in the low attenuation. The bursty modification of
the hierarchical scheme for general networks is not necessarily optimal. In fact, it is
possible to do better by exploiting the available silent period to reduce the mutual
interference between parallel operating clusters.

There is an important unaddressed issue that whether the scaling laws are just
the artifacts of the unrealistic channel modelings, or they indeed have physical
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meanings. In a recent work [23], it has been claimed that the capacity scaling of
wireless networks is subject to a fundamental limitation which is independent of
power attenuation and fading models; It is a degrees of freedom limitation which is
due to maxwell’s equations. The key part of the argument is as follows. Consider
the cut-set of Figure 4.1 for the extended networks. The number of independent
channels from S to D − VD is at most an order of

√
n log n dictated by physics

of wave propagation, contrary to Theorem 4.3.1. We believe that the argument
is premature, and much more research is needed to be done for a comprehensive
electromagnetic-information theoretic approach.

As a final remark, we underline that some of the results presented in this thesis,
do not apply to fixed size networks. Furthermore, some of the preconstants in scal-
ing order results need to be sharpened and explicitly expressed as a function of net-
work parameters. Apparently, we are far from reaching a network information the-
ory for networks with any number of nodes.
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