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Abstract—Scheduling deadline-constrained packets in multi-
hop networks has received increased attention recently. However,
there is very limited work on this problem for wireless networks
where links are subject to interference. The existing algorithms
either provide approximation ratio guarantees which diminish
in quality as parameters of the network scale, or hold in an
asymptotic regime when the time horizon, network bandwidth,
and packet arrival rates are scaled to infinity, which limits their
practicality. While attaining a constant approximation ratio has
been shown to be impossible in the worst-case traffic setting,
it is unclear if the same holds under the stochastic traffic, in
a non-asymptotic setting. In this work, we show that, in the
stochastic traffic setting, constant approximation ratio or near-
optimal algorithms can be achieved. Specifically, we propose
algorithms that attain Ω((1 − ϵ)/β) or Ω(1 − ϵ) fraction of the
optimal value, when the number of channels is C = Ω( log(L/ϵ)

ϵ2
)

or C = Ω(χ
⋆ log(L/ϵ)

ϵ3
) respectively, where L is the maximum route

length of packets, χ⋆ is the fractional chromatic number of the
network’s interference graph, and β is its interference degree.
This marks the first near-optimal results under nontrivial traffic
and bandwidth assumptions in a non-asymptotic regime.

I. INTRODUCTION

Delivering packets on time has become increasingly impor-
tant in real-time applications such as video streaming and con-
ferencing, as well as in emerging applications such as cyber-
physical systems, vehicular networks, and Internet of Things.
These networks often feature complex multi-hop connectivity
and packets need to traverse several links in order to reach
their destinations. Packets that fail to meet specific deadlines,
defined as constraints on the total time from generation of
a packet at its source until delivery to its destination, are
typically discarded by the application. However, traditional
networking algorithms, e.g. [1], [2], have been designed for
maximizing throughput and do not provide guaranteed on-time
packet delivery over such networks.

Despite the importance of the problem due to its broad
applicability, there is very limited work on techniques with
strong theoretical guarantees in multi-hop wireless networks.
This can be attributed to the inherent complexity of the
problem, which includes making online decisions, the ex-
ponential growth of scheduling decisions for packet routes
and link activations, and the strict deadline constraints on
packets. Since the problem is in general NP-hard, efforts
have been focused on designing algorithms that provide good
performance in terms of “approximation ratio”, which is the
fraction of the optimal objective value (the weighted sum of
timely delivered packets) that the algorithm obtains. Previous

works on scheduling packets with deadlines in multi-hop
networks have either focused on worst-case traffic scenarios,
yielding pessimistic approximation ratios [3], or stochastic
traffic scenarios with guarantees under certain conditions, such
as relaxed capacity constraints or asymptotic regimes [4], or
considering wired networks [5], [6].

This paper addresses the open question of whether it is fea-
sible to design algorithms with strong performance guarantees
(e.g. constant approximation ratio that does not depend on
parameters of the network), for scheduling packets with strict
deadlines in multi-hop wireless networks. We present near-
optimal and constant-approximation algorithms that require a
minimum bandwidth (number of channels) that is logarithmic
in the maximum length of a packet’s route L in the network
(with L ≤ dmax, where dmax is the maximum deadline of any
packet). Our proposed algorithms are of varying computational
complexity and guarantees, but rely on careful randomization
in their scheduling and routing decisions.

Unlike prior techniques on the problem [3], [5], [6], our ob-
tained approximation ratios are independent of packet weights
and the maximum length of any route, L. Additionally, unlike
the past work in the stochastic setting [4], our algorithms are
applicable to finite time horizons, finite arrival rates, and finite
network bandwidth, without scaling these quantities to infinity,
and hence, are considerably more practical.

A. Related Work

There has been progress on deadline-constrained scheduling
in wireless networks but it has mainly focused on single-hop
traffic, e.g., [7], [8], [9], [10], [11]. These works typically
evaluate performance based on the attained fraction of the so-
called real-time capacity region. This can be related to the
approximation-ratio metric [11], [12], which is the considered
metric in this paper. Specifically, for stochastic traffic scenar-
ios, it is possible to design ( e−1

e )-approximation algorithms
in complete interference graphs and for C = 1 [11]. In more
general interference graphs, an extension to the well-known
Max Weight Scheduling [1] achieves an approximation ratio
of 1

2 , and the best-known polynomial-time algorithm yields a(
1

β+1

)
-approximation [13], [11], where β is the interference

degree of the network, which is the maximum number of non-
interfering links in any link’s neighborhood.

The work on multi-hop traffic has mainly focused on wired
networks (no interference) [14], [15], [16], [17], [18], [6], [5].
The works that provide theoretical guarantees on the problem



in the presence of wireless interference is very limited [4],
[3]. In [3], the authors consider the worst-case traffic set-
ting and provide algorithms that achieve Ω(1/(β log(ρ∆L)))
approximation ratio, at best, when the number of channels
C meets C = Ω(β log(ρ∆L)), with L the maximum route
length, ρ the maximum-to-minimum packet weight ratio, and
∆ the maximum degree of the interference graph. As L
or ρ increases, the guarantee deteriorates, and a constant
approximation ratio is not provided. In the case of stochastic
traffic, [4] proposes an algorithm that is analyzed for the case
that the capacity constraints (number of used channels) are
relaxed to hold only on average as opposed to strictly at each
time. It then argues that as the time horizon T → ∞, and as
arrival rates and number of channels are scaled concurrently
to infinity, the loss in the performance due to the relaxation
goes to zero. These results are therefore asymptotic and not
applicable to practical networks, which are characterized by
finite packet arrival rates and finite available bandwidth, and
moreover, required to be evaluated in finite time.

In this paper, we provide the first algorithms that yield
strong (constant, near-optimal) approximation guarantees in
a non-asymptotic regime (finite time horizon, finite number of
channels, finite arrival rates). We achieve these results through
techniques which are distinct from the prior work.

Finally, we point out that there are works that consider
other objectives as opposed to timely delivery within strict
deadlines, e.g., providing delay bounds on the packets [19],
[20], or optimizing the age of the packets [21], [22], [23].

B. Contributions.

The main contributions of this paper can be summarized as
follows.

Near-optimal algorithms for wireless networks with
general interference graph. We introduce an algorithm that is
near-optimal, attaining a (1 − ϵ)-approximation for the prob-
lem of scheduling packets with hard deadlines in multi-hop
wireless networks. This is guaranteed in the case of a number
of channels that satisfy C = Ω(χ

⋆ log(L/ϵ)
ϵ3 ), and for i.i.d.

Bernoulli or Binomial packet arrival processes, where χ⋆ is
the fractional chromatic number of the network’s interference
graph. Further, our results can be extended to more general
arrival processes. The algorithm relies on probabilistic admis-
sion and routing of packets in the network and probabilistic
scheduling of independent sets over the channels. To the best
of our knowledge, this is the first result that provides near-
optimal performance in general interference graphs, for finite
time horizon, finite number of channels, and finite packet
arrival rates.

Efficient greedy maximal scheduling with probabilistic
forwarding. The near-optimal algorithm requires randomiza-
tion over all independent sets, which in general might not
be efficient. We propose an efficient algorithm that provides
Ω((1 − ϵ)/β)-approximation when C = Ω( log(L/ϵ)

ϵ2 ). The
algorithm relies on greedily selecting maximal independent
sets over the channels and probabilistic forwarding of packets
in the network. Further, this algorithm admits a distributed

implementation. Finally, we show that no polynomial-time al-
gorithm can attain an approximation ratio better than Ω(1/βϵ0)
for some ϵ0 > 0. Hence, a polynomial dependence in β in the
approximation ratio is unavoidable for any efficient algorithm.

Efficient near-optimal algorithms in perfect graphs.
We show that in the important class of perfect interference
graphs, such as bipartite graphs, our methods yield near-
optimal performance with polynomial-time complexity. The
solution relies on a clique-based formulation which is shown
to be polynomially solvable through an ellipsoid algorithm.

C. Notations

We use [n] to denote the set {1, 2, · · · , n}. Further we
denote [n]0 := [n] ∪ {0}. We use N := {1, 2, 3, · · · } , and
use R for the set of real numbers and R+ for the set of
positive real numbers. We define a ∧ b := min{a, b}, and
(a)+ := max(a, 0).

II. MODEL AND DEFINITIONS

Network Model. We consider a wireless network, com-
prising a set of nodes V and a set of communication links L
between these nodes, which form a directed graph G = (V,L).
Time is divided into discrete slots, i.e., t = 1, 2, 3, · · · . We
assume a packet requires one time slot to be transmitted over
any link ℓ ∈ L using a channel. The network is equipped
with C orthogonal channels, as in [4], [3]. Transmissions on
different channels do not interfere with one another, however,
transmissions on the same channel may interfere with each
other. To represent interference between links, we use the
conflict (or interference) graph model (e.g. [10], [13], [24]),
denoted by a graph GI = (L, EI). An edge (ℓ, ℓ′) ∈ EI
indicates that links ℓ, ℓ′ cannot be scheduled simultaneously
within the same time slot and channel.

For convenience, we define an extension of the set of links
by including self-loops, i.e., L = L ∪ {(u, u) : u ∈ V}.
Scheduling a packet at a given time slot over a self-loop has
the interpretation that the packet will remain at the same node
for that time slot. We define Out(v) as the set of outgoing
links of a node v or a self-loop, i.e., Out(v) = {(v, u) ∈ L},
and similarly, Inc(v) as the set of incoming links, i.e.,
Inc(v) = {(u, v) ∈ L}. The self-loop link (v, v) belongs
to both Out(v) and Inc(v).

Multi-hop Traffic Model. Packets of different types arrive
during a time horizon of length T. We use the set [J] =
{1, · · · , J} to denote the set of packet types. A packet type
j ∈ [J] is characterized by its source sj ∈ V , destination
zj ∈ V , relative deadline dj ∈ N∪ {0}, and weight wj ∈ R+.
If the packet arrives at the beginning of time slot t, it must
reach its destination before the end of time slot dj + t to yield
reward wj ; otherwise, it is discarded. We denote the number
of type j ∈ [J] packet arrivals at time t ∈ [T] as atj ≥ 0,
with an arrival rate λt

j = E[atj ]. We use dmax := maxj∈[J] dj
and λmin := minj∈[J] λj to denote the maximum deadline and
minimum arrival rate of any packet type, respectively. Packets
can therefore be in the network until time T := T + dmax.



(a) Network graph G (b) Interference graph GI

Fig. 1: In (a), a network G with nodes {u, a, b, v} and 4 links
is shown, with a single channel. Consider 2 packet types [J] =
{1, 2} with sources s1 = u, s2 = a, destinations z1 = z2 = v,
and deadlines d1 = 2 and d2 = 1. Two valid route-schedules
for packet type 1 and 2 are: k = [(u, u) (u, a) (a, v)] and
k′ = [(a, v) (v, v)]. In (b), a corresponding one-hop interfer-
ence graph is shown. A valid network-schedule consisting of
links {(u, a), (b, v)} is highlighted.

Route and Network Schedules. A type-j packet arriving
at time t and scheduled for transmission over the network
must be routed through a sequence of links that are activated
at specified time slots over specific channels. This sequence
carries the packet from its source sj to its destination zj before
the end of time slot t+dj . We first define the notion of relative
route-schedule below, which describes the sequence of links
and time slots the packet follows.

Definition 1 (Relative Route-Schedule). A (relative) route-
schedule k for a type-j packet, is a walk on G,
[k0 k1 · · · kdj

], where kτ ∈ L denotes the link over
which the packet is scheduled at the τ -th time slot following
its arrival, with k0 ∈ Out(sj) and kdj

∈ Inc(zj). We denote
the set of all valid route-schedules for packet-type j ∈ [J] as
Kj .

For notational convenience, we define kτ = ∅ for τ > dj ,
where k ∈ Kj . In addition to the route-schedule, a packet
must also be assigned to a specific channel at each time slot
it is scheduled over a link (which is not a self-loop). The
scheduling algorithm must determine which links are activated
in each channel at each time slot. We formalize this through
the notion of Network-Schedule.

Definition 2 (Network-Schedule). A network schedule at a
time slot t is a collection of C maximal independent sets on
the interference graph GI . Let I denote the set of all maximal
independent sets of GI . On channel c at time t, we use binary
variable Zct

I to indicate whether an independent set I ∈ I
is selected or not. The independent set specifies the links on
each channel that can transmit without causing interference.1

See Figure 1 for an illustration of route-schedules and
network-schedules, for a one-hop interference graph2.

Optimization Problem. Our objective is to maximize the
weighted sum of the packets that are successfully delivered
from their sources to their destinations within their deadlines.

1An independent set in a graph is a subset of vertices in which no two
vertices are adjacent. In the context of the interference graph GI , scheduling
links from an independent set on each channel ensures that no two interfering
links are scheduled simultaneously within the same time slot and channel.

2A one-hop interference, is an interference graph in which, all links that
are adjacent in G, interfere with each other.

Given a random instance of the packets arrival sequence,
this optimization can be formulated as an integer program
over time horizon T, defined in (1a)-(1f) below. We refer
to this optimization as RI(T), which stands for random
integer problem over time horizon of length T. In RI(T),
the optimization is over scheduling decisions y = {yntjk} and
channel activations Z =

{
Zct
I

}
, where each yntjk is a binary

variable indicating whether the n-th arriving packet of type j
at time t is scheduled using a relative route-schedule k ∈ Kj

or not, and {Zct
I } are the network-schedule binary variables

(Definition 2).

max
y,Z

T∑
t=1

J∑
j=1

wj

at
j∑

n=1

∑
k∈Kj

yntjk (:= RI(T)) (1a)

s.t.
∑
k∈Kj

yntjk ≤ 1, ∀t ∈ [T], j ∈ [J], n ∈ [atj ], (1b)

t∧T∑
τ=(t−dmax)+

J∑
j=1

aτ
j∑

n=1

∑
k:kt−τ=ℓ

ynτjk ≤
C∑

c=1

∑
I:ℓ∈I

Zct
I ,

∀ℓ ∈ L, t ∈ [T],
(1c)∑

I∈I
Zct
I ≤ 1, ∀c ∈ [C], t ∈ [T], (1d)

Zct
I ∈ {0, 1}, ∀c ∈ [C], t ∈ [T], I ∈ I, (1e)

yntjk ∈ {0, 1}, ∀j ∈ [J], t ∈ [T], k ∈ Kj . (1f)

Constraints (1b) and (1f) indicate that each arriving packet
should be assigned to one route-schedule (or not scheduled
at all). Constraints (1d) and (1e) indicate that at each time
and channel, one independent set is selected for the network-
schedule. Constraint (1c) ensures that all the packets scheduled
for transmission on link ℓ at time t (left-hand side of (1c)) can
be transmitted using the allocated number of channels to that
link in the network-schedule (right-hand side of (1c)).

Performance Metric. Our goal is to develop online algo-
rithms that guarantee a strong performance compared to the
optimal offline value of RI(T), on average. The performance
is measured based on the achieved approximation ratio γ
formally defined below.

Definition 3. Assuming the optimal objective value of RI(T)
is W ⋆

RI(T), an algorithm ALG provides a γ-approximation
to RI(T) if the objective value achieved using ALG, WALG,
satisfies:

E
[
WALG

]
≥ γE

[
W ⋆

RI(T)

]
,

where the expectation in E
[
W ⋆

RI(T)

]
is with respect to the

randomness in the arrival sequence {atj}, and E [WALG] is
with respect to the randomness in the arrival sequence, and,
if applicable, the random decisions of ALG.

III. ALGORITHMS AND MAIN RESULTS

A. Near-Optimal Algorithm for General Interference Graphs

In this section, we introduce MINOS (Multi-hop
Interference-aware Near-Optimal Scheduling), a near-



optimal algorithm (w.r.t. Definition 3) for RI(T). MINOS
is an algorithm that decides what links to activate on
each channel (i.e., selecting a network-schedule defined
in Definition 2), and how to route each packet, through
randomization. Specifically, as a preprocessing step, MINOS
probabilistically selects an independent set for each channel
c ∈ [C], to obtain a network-schedule which remains fixed
for the entire execution of the algorithm. Subsequently, each
packet is forwarded probabilistically based on its age τ (time
slots elapsed since the packet’s arrival), its type j, and its
current node v within the network. The distribution over
independent sets, as well as the forwarding probabilities are
both selected based on the Linear Program (LP) below (2a-2f)
which is solved only once, at the beginning of MINOS.

max
f ,Z

J∑
j=1

wjλj

∑
ℓ∈Inc(zj)

f
dj

jℓ (:= FSO) (2a)

s.t.
∑

ℓ∈Out(sj)

f0
jℓ = 1,∀j, (2b)

∑
ℓ∈Inc(v)

fτ−1
jℓ =

∑
ℓ∈Out(v)

fτ
jℓ, ∀τ ∈ [dj ],∀v,∀j,

(2c)

fτ
jℓ ≥ 0,∀j,∀ℓ ∈ L,∀τ, f0

jℓ = 0, ∀j,∀ℓ ̸∈ Out(sj),
(2d)

J∑
j=1

dj∑
τ=0

λjf
τ
jℓ ≤ (1− ϵ)C

∑
I:ℓ∈I

ZI, ∀ℓ ∈ L, (2e)∑
I∈I

ZI ≤ 1, ZI ≥ 0,∀I ∈ I. (2f)

The solution variables to LP FSO will guide all scheduling
decisions for every t ∈ T. Each forwarding variable fτ

jℓ

controls the probability that a packet of type j and age τ ,
that is in the buffer of the transmitter node of link ℓ, is
forwarded over ℓ. Note that ℓ might be a self-loop, in which
case, the packet remains in the same node for that time
slot. Constraints (2b) and (2c) ensure that all packets are
continuously forwarded until they expire (their age reaches
their deadline). Constraint (2c) ensures the conservation of
packets flow over time at each node. Note that packets might
arrive at the destination zj earlier than dj , in which case,
they can continuously be forwarded over the self-loop (zj , zj)
until expiration (Constraint (2c)). Packets of type j that upon
expiry have arrived at their destination zj yield reward wj . As
a result, the objective of the optimization (2a) is to maximize
the expected weighted number of packets that are forwarded
to the destination, with age τ = dj .

Recall that all packets forwarded over links, need to be
assigned to channels. To decide what links are activated
on each channel c, we use variable ZI, which controls the
probability of activating the links in independent set I, i.i.d. for
each channel. Therefore ZI is a distribution over independent
sets (Constraints (2f)). Constraints (2d) ensure non-negativity
of forwarding variables and that all arriving packets can only
be forwarded out of their sources. Finally, Constraint (2e)

Algorithm 1: MINOS: Multi-hop Interference-aware
Near-Optimal Scheduling

1.1 Input: Packet types
{
(si, zi, di, wi, pi)

}
. Distribution

δ =
{
δI :

∑
I∈I δI = 1

}
.

1.2 Find optimal solution f⋆ =
{
f t⋆
jℓ

}
and Z

⋆
=

{
Z

⋆

I

}
(Optimization (2a)-(2f)).

1.3 Initialize link service counters, Φℓ ← 0,∀ℓ ∈ L.
1.4 foreach channel c ∈ [C] do
1.5 Y c ← select I w.p. (1− ϵ

2 )Z
⋆

I +
ϵ
2δI.

1.6 Φℓ ← Φℓ + 1
(
ℓ ∈ Y c

)
, ∀ℓ ∈ L

1.7 end
1.8 foreach time t = 1, 2, · · · ,T do
1.9 Ψt

ℓ ← ∅,∀ℓ ∈ L
1.10 foreach unexpired packet of type j with age τ at

a node v ∈ V do
1.11 Select link ℓ ∈ Out(v) w.p.

fτ⋆
jℓ∑

ℓ∈Out(v) f
τ⋆
jℓ

.

1.12 Add the packet to set Ψt
ℓ for selected link ℓ.

1.13 end
1.14 Transmit up to Φℓ packets arbitrarily from set Ψt

ℓ

and drop any remaining packets.
1.15 end

ensures that the average number of packets scheduled over
a link (left-hand-side of (2e)), from different packet types and
ages, is not more than the average number of channels that
have been allocated to that link (right-hand-side). This ensures
that on average there is enough channels allocated to that link
to successfully schedule all packets. Note that since (2e) only
holds on average, it does not guarantee that all the packets
are actually transmitted at each time. We, therefore, included
a scaling factor (1− ϵ), which, as we will see in the analysis,
allows us to significantly reduce the probability of scheduling
more packets than the number of allocated channels.
MINOS, as described in Algorithm 1, starts by solving the

LP (FSO), to find f⋆ and Z
⋆
. Then, using distribution Z

⋆
, and

an additional input distribution over independent sets {δI},
a network-schedule is selected in Lines 1.4-1.7. The input-
distribution {δI} is selected such that each link receives a
minimum non-zero transmission rate (this is primarily for
technical reasons, adding slack that limits packet drops). After
selecting the network-schedule (Lines 1.4-1.7), at each slot t,
the algorithm iterates through all unexpired packets of type j at
any node v (Line 1.10). For each packet, the algorithm selects
an outgoing link based on the optimal forwarding variables,
normalized to form a distribution (Line 1.11). For each link
ℓ, all packets selected for that link (stored in Ψt

ℓ, Line 1.12)
will be transmitted if the total number of channels assigned
to the link is sufficient. Any packets exceeding the available
channels for the link will be dropped arbitrarily (Line 1.14).

1) Performance guarantee for MINOS: We focus on ar-
rivals that are i.i.d. Bernoulli or Binomial random variables,
for each packet type, for each time slot. However, our results
can be extended to more general distributions with a slight



modification, as will be discussed in Section IV-A.

Theorem 1. MINOS achieves (1−3ϵ)-approximation to RI(T)
for C ≥ 32

ϵ3ζ log(L/ϵ), using an input distribution δ =
{
δI
}

with
∑

I:ℓ∈I δI ≥ ζ,∀ℓ, and when T ≥ 2d2
max

ϵ .

We now discuss concrete choices for {δI}. First, we may
maximize ζ by solving the fractional coloring problem defined
in Definition 4 below.

Definition 4 (Fractional coloring problem). Consider the
optimization below, over distribution δ over independent sets,
that maximizes the probability of selecting a link:

max
δ,ζ

ζ s.t.
∑
I:ℓ∈I

δI ≥ ζ,∀ℓ,
∑
I∈I

δI = 1, δI ≥ 0,∀I. (3)

χ⋆ := 1/ζ⋆ is called the fractional chromatic number.

Identifying δ based on the optimal fractional coloring as in
Definition 4, yields ζ⋆ = 1/χ⋆ in Theorem 1. Consequently:

Corollary 1.1. MINOS achieves a (1−3ϵ)-approximation for
C ≥ 32χ⋆

ϵ3 log(L/ϵ) and T ≥ 2d2
max

ϵ , where χ⋆ is the fractional
chromatic number, and using

{
δI
}

obtained from (3) .

Note that solving (3) is no harder than FSO, and both
problems are tractable when the number of maximal inde-
pendent sets of the interference graph GI is not very large.
Alternatively, one may use Theorem 1 with a suboptimal ζ:

Corollary 1.2. It is easy to obtain δ = {δI} with ζ ≥ 1
∆+1 ,

where ∆ is the maximum degree of any node in the inter-
ference graph GI , through a simple greedy coloring of GI
with ∆ + 1 colors. Therefore, we obtain Theorem 1 with
C ≥ 6(∆+1)

ϵ3 log(L/ϵ).

Remark 1. Theorem 1 is the first algorithm, to our knowledge,
that solves the deadline-constrained scheduling problem near-
optimally in wireless networks, under stochastic traffic for fi-
nite bandwidth, arrival rates and horizon. Notably, the required
number of channels (bandwidth) is independent of the arrival
rates and is effectively constant given GI . This is in contrast
to prior work that requires C → ∞,T → ∞, λj → ∞ [4],
or provides pessimistic approximation ratios (assuming worst-
case input sequences) dependent on the traffic parameters [3].

B. Greedy Maximal Scheduling with Probabilistic Forwarding

In this section, we introduce GMS-PF (Algorithm 2), an
algorithm which reduces the required number of channels
compared MINOS, and further, it does not require randomizing
over all maximal independent sets. GMS-PF leverages similar
forwarding variables {fτ

jℓ} as in MINOS, however, it does
not maintain variables for randomizing over independent sets.
Instead, packets are assigned greedily to independent sets at

each time slot. The modified LP, referred to as FS, is:

max
f

J∑
j=1

wjλj

∑
ℓ∈Inc(zj)

f
dj

jℓ (:= FS) (4a)

s.t.
∑

ℓ′∈Nℓ

J∑
j=1

dj∑
τ=0

λjf
τ
jℓ′ ≤

C

1 + ϵ
, ∀ℓ ∈ L, (4b)

Constraints (2b), (2c), (2d). (4c)

FS is similar to FSO, but as implied earlier, lacks static
variables for selecting independent sets. Further, the capacity
constraint (2e) is modified to (4b), which requires the average
total number of packets scheduled over links in the neighbor-
hood Nℓ := {ℓ : (ℓ, ℓ′) ∈ EI} of any link ℓ to be less than
the total number of channels (divided by a (1 + ϵ) factor).
Algorithm 2 describes GMS-PF.

Algorithm 2: Greedy Maximal Scheduling with
Probabilistic Forwarding (GMS-PF)

2.1 Input: Packet types {(si, zi, di, wi, pi)}.
2.2 Find optimal solution f⋆ = {f t⋆

jℓ } to FS ((4a)-(4c)).
2.3 foreach time t = 1, 2, · · · ,T do
2.4 Ψt

ℓ ← ∅,∀ℓ ∈ L ▶ Packets assigned to

each link

2.5 for each unexpired packet of type j with age τ at
a node v do

2.6 Select link ℓ ∈ Out(v) w.p.
fτ⋆
jℓ∑

ℓ∈Out(v) f
τ⋆
jℓ

2.7 Add packet to the buffer (set) Ψt
ℓ of link ℓ

2.8 end
2.9 for each channel c ∈ [C] do

2.10 I←Choose any maximal independent set
over links with a non-empty buffer Ψt

ℓ

2.11 Schedule packets from the buffers of links
ℓ ∈ I and remove them from the buffers

2.12 end
2.13 Drop remaining packets in the buffers of links

Ψt
ℓ.

2.14 end

Compared to MINOS, GMS-PF finds the values of forward-
ing variables for routing through FS as opposed to FSO. Further,
in the network-schedule (Lines 2.9-2.12), for each channel, a
maximal independent set is selected greedily, over the links
with packets assigned for scheduling, and an arbitrary packet
from the link of the selected independent set is transmitted.
The maximal independent set can optionally be selected greed-
ily, by prioritizing links with more pending packets.

Theorem 2 states the performance guarantee of Algorithm 2.

Theorem 2. Given ϵ ∈ (0, 1/3), GMS-PF provides 1−3ϵ
β -

approximation to RI(T) when C ≥ 2
(
1+ϵ
ϵ

)2
log(L/ϵ) and

T ≥ 2d2
max

ϵ .

Efficient Distributed Implementation. Here, we discuss
an efficient implementation for selecting maximal independent
sets in a distributed manner in Lines 2.9-2.12.



Subroutine for Timer-Based Independent Set Selection
(Lines 2.9-2.12): Divide a time slot into a control phase of
duration ω ≪ 1 and a data-transmission phase of duration
1. At the beginning of the control phase, each link runs C
parallel timers, drawn i.i.d. from an exponential distribution
with rate ν ≥ 1

ω log CL2

ϵ . Each link’s timer corresponds to
an independent channel. Once a timer of a link runs down
to zero, it broadcasts a claim for the corresponding channel,
unless a neighbor has claimed the channel earlier. When a link
has claimed enough channels to transmit all pending packets,
it cancels the remaining timers.

Corollary 2.1. GMS-PF with Timer-Based Channel Selection
in Lines (2.9)-(2.12) provides a 1−4ϵ

β -approximation to RI(T)

when C ≥ 2
(
1+ϵ
ϵ

)2
log(L/ϵ), T ≥ 2d2

max

ϵ , and neglecting the
control phase overhead.

C. Efficient Near-Optimal Algorithm for Perfect Graphs

Although, as we will see in Section IV-C, it is generally not
possible to achieve significantly better approximations than
that of GMS-PF with polynomial algorithms, many difficult
graph theoretic problems related to our problem, such as the
fractional coloring problem, become easier in certain well-
behaved families of graphs such as the class of perfect graphs3,
which among others, contains all bipartite graphs and line
graphs. It is of interest to investigate if our techniques can
be adapted in this case, to obtain polynomial algorithms with
near-optimal approximation as opposed to a fraction of the
optimal (as in GMS-PF). We show that this is indeed the
case, through a variant of our methods of theoretical interest,
that leverages the ellipsoid algorithm to solve RI(T) near
optimally. First, define FSQ, a variant of FSO, that instead of
a constraint on the average number of scheduled packets on
each link, it considers a constraint on the scheduled packets on
each maximal clique Q ∈ CLIQUES(GI) of the interference
graph GI (Constraint (5b)). Conceptually, limiting the average
number of packets in every clique to C, replicates to a degree
the constraint that packets can be assigned to C independent
sets. Typically this leads to a relaxation, but there is a tight
connection in perfect graphs [25].

max
f

J∑
j=1

wjλj

∑
ℓ∈Inc(zj)

f
dj

jℓ (:= FSQ) (5a)

s.t.
∑
ℓ∈Q

J∑
j=1

dj∑
τ=0

λjf
τ
jℓ ≤ (1− ϵ)C, ∀Q ∈ CLIQUES(GI),

(5b)
Constraints (2b), (2c), (2d). (5c)

Note that the above LP could have exponentially many
clique constraints. However, we can still solve it in polynomial
time in perfect graphs, as stated in the following lemma.

3A graph is perfect if in all its induced subgraphs, the chromatic number
of the subgraph equals the maximum size of a clique.

Lemma 3. FSQ admits a polynomial time separation oracle, in
the class of perfect graphs, and hence is polynomially solvable
through the ellipsoid algorithm [26].

The proof is omitted due to the page constraint.
Algorithm: Near-Optimal Multi-hop Scheduling over Perfect

Graphs (NOPG). Consider a variant of MINOS, which, solves
FSQ (as opposed to FSO) through the ellipsoid algorithm in
polynomial time. As in MINOS, we select statically indepen-
dent sets at the beginning of the execution of the algorithm.
We do so as follows. Inspired by [27, Section 2], we can
solve a fractional coloring problem over a modification of GI ,
where each link ℓ is replaced by a clique, with a number of
nodes proportional to the average number of packets on it:∑J

j=1

∑dj

τ=0 λjf
τ
jℓ. Solving the fractional coloring problem

(which is polynomial for perfect graphs [28]) on this graph
yields a distribution {ZI} that satisfies (2e). We then proceed
forwarding packets hop-by-hop as in MINOS (Lines 1.8-1.15).

Theorem 4. NOPG yields (1 − O(ϵ))-approximation, when
C = Ω(χ

⋆ log(L/ϵ)
ϵ3 ), T ≥ 2d2

max

ϵ .

Our clique-based formulation can potentially be used to
obtain methods that yield improved approximation ratios in
“near perfect” graphs as quantified in [27].

D. Fractional-Coloring-Based Approximation Algorithms

The performance of GMS-PF depends on β, a parameter
often significantly smaller than ∆ [3]. However, in certain
interference graphs, such as a star graph, a guarantee that
diminishes with β is not ideal, as in this case β = ∆ = |L|−1.
In interference graphs with similar behavior, an approximation
diminishing with χ might be preferred. For instance, the
fractional coloring in a star graph is in contrast only 2. Further,
there are classes of graphs where the fractional coloring can be
found efficiently or/and bounded by a constant, e.g., in planar
interference graphs, χ ≤ 4 due to the well-known four-color
theorem [29]. A simple modification of our methods allows us
to obtain an improved guarantee for such cases, as described
below. In particular, given a fractional coloring of GI with
fractional chromatic number χ, we define a variant of FSO

which replaces the capacity constraints in FSO with

J∑
j=1

dj∑
τ=0

λjf
τ
jℓ ≤

C

χ(1 + ϵ)
, ∀ℓ. (6a)

Then selecting independent sets based on the fractional col-
oring distribution, the expected number of independent sets
that include each link is C

χ . Then by using the corresponding
forwarding variables, we proceed as in MINOS.

Corollary 4.1. The fractional-coloring variant yields a
(1−3ϵ)

χ -approximation when C = Ω( χ
ϵ2 log

L
ϵ ) and T ≥ 2d2

max

ϵ .

IV. DISCUSSIONS

A. Extension to general distributions

Our main results, e.g., Theorem 1 and Theorem 2, were
presented for i.i.d. Bernoulli or Binomial arrivals at each time



slot. However, these assumptions can be relaxed, to allow
general stationary arrival distributions. Our generalization has
no impact on the attained approximation ratios in Section III,
but it adds a multiplicative factor to the required number of
channels to achieve the desired performance, dependent on the
dependency-degree of the distribution of arrivals, a parameter
that roughly expresses the maximum number of arrivals of a
packet type which are dependent on each other. We omit the
details due to the page constraint, but simulation results under
different distributions are provided in Section VI-B. Similarly,
our techniques can be extended to nonstationary distributions.

B. Estimating the arrival rates

So far, we assumed the knowledge of the arrival rates
for simplicity. Our algorithms can be directly modified to
leverage estimated or predicted arrival rates. Under stationary
arrival rates, the horizon T can be divided into a number of
[log2(1/ϵ)] phases. In each phase, the algorithm estimates the
arrival rates using all prior arrivals and uses the estimated
rates to solve FSO (or FS, FSQ). The solution is used for the
scheduling decisions in the next phase, according to, e.g.,
Algorithm 1. Similar theoretical results are obtained, as in
e.g. Theorem 1, with an increased required lower bound on T.
For nonstationary traffic, predicting the arrival rates becomes
important. Given a routine that predicts the arrival rates, our
earlier results can be extended. Details are omitted due to page
constraints.

C. Upper bound on the approximation ratio

In Section III-A, we presented a near-optimal algorithm
which can be computationally demanding, and in Sec-
tion III-B, we provided efficient constant approximation al-
gorithms for any network topology. In Theorem 5, we present
a negative result, showing that in general there is no “effi-
cient” near-optimal algorithm for solving RI(T) ((1a)-(1f)),
indicating that our results cannot be improved significantly.

Theorem 5. No polynomial-time algorithm can yield better
than Ω( 1

|L|ϵ0 )-approximation, for some ϵ0 > 0, unless P =
NP , even in the case of Bernoulli packet arrival processes.

Proof. The proof leverages [30], and is omitted.

V. PROOF TECHNIQUES

In this section, we provide a general overview of our proof
techniques, which share many similarities across our results.
We leverage distinct techniques compared to [3], [4], [5], [6].

RI(T) ((1a)-(1f)) presents five important challenges: (I) it
has potentially many variables, due to a variable for each
independent set and channel, (II) it is an integer program, (III)
the number of constraints and variables grows with T, (IV) it
may have exponentially many variables due to a variable for
each route-schedule, and (V) it is an online program, with the
packet arrival sequence revealed over time. We address these
challenges in 5 steps. We mainly focus on the proof outline
for Theorem 1 due to space constraints.

A. Proof Outline of Theorem 1
Step 1. Here, we accept the cost of the independent set vari-
ables as we seek a near-optimal algorithm (I). A relaxation is
later used for, e.g., GMS-PF (Section V-B), to eliminate issue
(I) when it makes the execution computationally prohibitive.
Step 2. To address issue (II), we construct the expected-
instance EI(T) of RI(T), which is a linear program whose
optimal value serves as an upper bound to that of RI(T).
Consequently, if we design an algorithm based on EI(T),
approximating its optimal objective value, we can compare
with that of RI(T). The variables of EI(T) can be interpreted
as the probabilistic (relaxed) versions of those in RI(T), i.e.,
xt
jk can be viewed as the probability of setting yntjk = 1.

max
x,Y

T∑
t=1

J∑
j=1

wjλ
t
j

∑
k∈Kj

xt
jk (:= EI(T)) (7a)

s.t.
∑
k∈Kj

xt
jk ≤ 1, ∀t ∈ [T],∀j ∈ [J], (7b)

t∧T∑
τ=(t−dmax)+

J∑
j=1

λτ
j

∑
k:kt−τ=ℓ

xτ
jk ≤ C

∑
I:ℓ∈I

Z
t

I, ∀ℓ, t,

(7c)∑
I∈I

Z
t

I ≤ 1, ∀t, Z
t

I ≥ 0 ∀t, I, (7d)

xt
jk ≥ 0, ∀j ∈ [J],∀t ∈ [T],∀k ∈ Kj . (7e)

Then, EI(T) can be viewed as maximizing the expected
reward if every packet type j has E

[
atj
]
= λt

j arrivals at each
time slot t. Then, we have the following lemma.

Lemma 6. Let WEI(T) denote the optimal value of the
expected instance EI(T). Then it follows:

WEI(T) ≥ E
[
WRI(T)

]
.

Step 3. Here, we show that in the case of fixed arrival
rates (λt

j ≡ λj), a near-optimal stationary solution (time-
independent) to the expected instance exists, which allows us
to obtain a simplified stationary problem that does not scale
with T, hence resolving the issue (III).

Lemma 7. When λt
j ≡ λj , there is a stationary solution xt

ik =

x⋆
ik for EI(T) with optimal value WEI(T), that satisfies

WEI(T) ≥WEI(T)

(
1− 2

d2max

T

)
. (8)

Proof. We provide a proof sketch due to space constraints.
Inequality (8) can be shown in three steps. In the first step, we
derive from EI(T), a new program EI(T), which is symmetric
with respect to time shifts (“cyclical”). In the second step,
we leverage the symmetry of EI(T) to argue that it admits
a stationary optimal solution. In third step, we argue that the
optimal value for EI(T) is close to that of EI(T).

First, for EI(T) we modify capacity constraints (7c) to:
t∑

τ=(t−dmax)

J∑
j=1

λj

∑
k:kt−τ=ℓ

x
τ mod (T+1)
jk ≤ C

∑
I:ℓ∈I

Z
t

I. (9)



This modification only impacts constraints (7c) for t < dmax

or t > T in EI(T), now replaced with stronger constraints
(9) for t ∈ [dmax] in EI(T). Second, we show that EI(T)
has a stationary optimal solution. To see this, consider any
optimal solution to EI(T) (possibly time-dependent). As the
program is time-shift invariant, time shifts of all variables by
any amount, should also be optimal. There are at most T
distinct shifts (which are all optimal). Since EI(T) is an LP, the
average of a set of optimal solutions yields an optimal feasible
solution. Further, that solution is a time averaging of the
original variables, and hence stationary. Third, we argue that
the optimal value to EI(T) cannot be significantly worse than
that of EI(T). Indeed, any feasible solution of EI(T) can be
converted to a feasible solution for EI(T) program by setting
all variables for times t < dmax or t > T to 0. The maximum
loss in the objective value, however, due to setting the variables
to 0, can be shown to be, per slot, at most WEI(T)dmax/T ,
and over 2dmax time slots, WEI(T)2

d2
max

T .

Step 4. We resolve (IV) by considering a forwarding-
variable based formulation, equivalent to the simplified ex-
pected instance with variables {xjk} for each route-schedule.
The new program is FSO ((2a)-(2f)) (with additionally the
number of channels, scaled by (1− ϵ)).

Step 5. We tie our analysis together, and explain how
we obtain a near-optimal online algorithm for RI(T), using
our earlier steps, and thereby addressing (V). To that end,
and based on our earlier steps, we argue that can attain the
near-optimal value of FSO guided by its solution, as seen in
MINOS. This leads to an algorithm that attains a fraction of
EI(T) ((7a)-(7e)) and therefore due to Step 2 and Step 1, a
fraction of RI(T) as well. First, we crucially leverage a careful
application of Bernstein-style concentration bounds [31], to
argue that packets will not be dropped with high probability
when scheduled based on MINOS.

Lemma 8. The probability of a scheduled packet being
dropped due to insufficient channels under MINOS is at most
ϵ, if C ≥ 32

ϵ3ζ log(L/ϵ).

Proof. We provide a proof sketch due to space constraints.
First, we introduce a concentration inequality

Lemma 9 ([31, Chapter 2.2]). Consider independent random
variables {Xi ≤ B}, for i ∈ [n]. If X :=

∑n
i=1 Xi and

S :=
∑n

i=1 E
[
X2

i

]
, it follows:

Pr [X ≥ E [X] + λ] ≤ e−
λ2

2S+2Bλ/3 . (10)

We leverage Lemma 9 to bound the probability that any link
is assigned more packets than channels, which upper bounds
the probability of any packet scheduled on that link to be
dropped. We define the following sets of random variables,
which count the number of channels assigned to link ℓ, Φℓ,

number of packets scheduled on the link (equal to |Ψt
ℓ|, at the

end of Line 1.13), and their difference:

Φc
ℓ := 1(ℓ is selected on channel c at t),

Ψτ
jℓ := 1(type-j packet arrives at τ , scheduled on ℓ at t),

Xt
ℓ :=

J∑
j=1

t∑
τ=t−dmax

Ψτ
jℓ −

∑
c∈C

Φc
ℓ := |Ψt

ℓ| − Φt
ℓ.

We use Lemma 9 based on Xt
ℓ and S defined below:

S : =

J∑
j=1

t∑
τ=t−dmax

E
[
Ψτ

jℓ

]
+

∑
c∈C

E
[
(−Φc

ℓ)
2
]

= E
[
Ψt

ℓ

]
+ E

[
Φt

ℓ

]
≤ (2− ϵ)E

[
Φt

ℓ

]
:= Su. (11)

The probability of violating the channel constraint is:

Pr
(
|Ψt

ℓ| > Φℓ)
(a)

≤ Pr
(
|Ψt

ℓ|−Φℓ > E
[
|Ψt

ℓ| − Φℓ

]
+
ϵ

2
E [Φℓ]

)
.

For λ = ϵ
2E [Φℓ], and using the bound on S (11):

− λ2

2S + 2λ/3
≤ −ϵ2/4E [Φt

ℓ]
2

4E [Φt
ℓ]
≤ −ϵ2E [Φt

ℓ]
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(a)

≤ −ϵ3ζC

32
.

Inequality (a) is due to Line 1.5, and the assumption on δ.
Now if C ≥ 32

ϵ3ζ log(L/ϵ), the probability of a packet drop
due to insufficient channels is at most Pr

(
|Ψt

ℓ| > Φℓ) ≤ ϵ/L
(Lemma 9). A packet can be dropped if it fails at any link along
its path. By taking a union bound over the traversed links, we
obtain ϵ as a probability bound on the packet drop.

We conclude by finishing the proof of Theorem 1 below.

Proof of Theorem 1. Combining our results, we can show:

E [WALG] = E

 T∑
t=1

J∑
j=1

wj

at
j∑

n=1

∑
k∈Kj

yntjk

 (12)

(a)

≥
T∑

t=1

J∑
j=1

wjλ
t
j

∑
ℓ∈O(sj)

(1− ϵ)f0⋆
jℓ = (1− ϵ)WFSO

(13)

(b)

≥ (1− ϵ)2WEI(T)

(c)

≥ (1− ϵ)2(1− 2d2max/T )E
[
WRI(T)

]
(d)

≥ (1− 3ϵ)E
[
WRI(T)

]
, (14)

where (a) follows by Lemma 8, (b) by Step 4, (c) by Lemma 7,
and (d) by T ≥ 2d2

max

ϵ ,

B. Proof Outline of Theorem 2 for Algorithm 2

The analysis remains largely similar to that of Theorem 1
(Section V-A). We emphasize the main differences here. In
Step 1, we relax RI(T) to obtain R̃I(T), which is identical to
RI(T), but with the constraints for each link ℓ, (1c), summed
over the link’s neighborhood Nℓ, to obtain a new set of
constraints (15):

t∧T∑
τ=(t−dmax)+

∑
ℓ′∈Nℓ

J∑
j=1

aτ
j∑

n=1

∑
k:kt−τ=ℓ

ynτjk ≤ βC, ∀ℓ, t. (15)
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Fig. 2: Network topology used in the simulations for Figure 3a.

β appears, as in each link’s neighborhood, it is the maximum
number of links that can be activated. Then: W ⋆

R̃I(T)
≥

W ⋆
RI(T). In Step 4, the LP in FS (4a)-(4c), can be related

to (15), with the capacity scaled down by 1
β(1+ϵ) , which is

reflected in the obtained approximation ratio.

VI. SIMULATION RESULTS

A. Evaluation under one-hop interference and general inter-
ference graphs

We compared the performance of MINOS, GMS-PF, with
the state-of-the-art worst-case algorithms from [3]. Specif-
ically, the authors in [3] introduced NEMS, for one-hop
interference networks, and GIMS, for general interference
networks. Due to space constraints, we present the results for
two network topologies. For the traffic distribution, we used
20 packet types, with randomly selected source-destination
pairs, randomly selected arrival rates in (0, 100) with Binomial
distribution on the arrivals, and weights selected randomly
between (0, 1). The deadlines of the packets were set to 10.
Different choices of these simulation parameters resulted in
similar results. For the selected distribution, we measured
the per slot reward of timely-delivered packets, for different
number of channels.

One-hop interference. We compare MINOS, GMS-PF with
NEMS [3] over the 8-node network in Figure 2 under one-hop
interference. Note that NEMS outperforms prior algorithms
significantly [3], and hence, we focus our comparison with this
algorithm. The results are presented in Figure 3a. We observe
that MINOS has the best performance, and GMS-PF follows
with roughly half the reward of MINOS. Our algorithms out-
perform the previous state of the art, NEMS. We remark that
in this network, there were a total of 27 maximal independent
sets considered for randomization by MINOS. The results in
the figure are averaged over 10 runs of the algorithms.

General interference. For the general interference model,
we used a random geometric graph, with 20 nodes and 30
edges, with links formed between nodes randomly located in
proximity. For determining interference between links, each
link was assigned a “location” as the midpoint of the locations
of its end-nodes. Then, links with distance less than a certain
threshold, were assumed to interfere with each other. The
resulting interference graph had 185 edges, and 539 maximal
independent sets. The results are shown in Figure 3b. Here
we compare our algorithms with GIMS [3]. MINOS has the
best performance. Recall that MINOS has a variable for each
independent set, and therefore, we require 539 variables for
the maximal independent set probabilities. The more efficient
GMS-PF outperforms GIMS as well, by a considerable margin.
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Fig. 3: Results for two types of interferences, compared to the
best performing worst-case algorithms from [3].

Analogous results are obtained in other graphs as well, but
omitted due to space constraints.

B. Evaluation of approximation ratio bounds

A valuable consequence of our results is the availability of
an upper bound on the optimal reward of the offline optimal for
RI(T), which only depends on the arrival rates of the traffic
distribution, and is based on the optimal value of FSO (see
Lemma 6, Lemma 7 and Step 4 of Section V-A). This allows
us to provide empirical lower bounds on the approximation
ratios for different algorithms and different traffic distributions.

First, we focus on MINOS, which has the best performance
in our evaluations, and study the obtained approximation
ratio bounds for three different arrival distributions: Binomial,
Poisson, and a scaled Bernoulli distribution, with 0 or amax

arrivals, for some amax. This time, we varied the number of
channels and scaled the number of packet types concurrently
for Figure 2. In each case, the maximum number of arrivals
per time slot for each packet type was chosen between [10, 20],
and the arrival rates were kept identical across the three
distributions. The performance in each case is averaged over
20 runs. The results are shown in Figure 4a. The Binomial
distribution, has the lowest dependency degree (Section IV-A)
and exhibits the best behavior. The Poisson distribution has
similar performance. A scaled Bernoulli, as expected, exhibits
the worst performance (highest dependency degree), but for
larger capacity, it becomes near-optimal as well. Finally, in
Figure 4b, we evaluated the approximation ratio obtained by
different algorithms under one-hop interference model. Note
that in this case β = 1/2. The empirical approximation ratios
we obtained are aligned with Theorem 1 and Theorem 2.

VII. CONCLUSIONS

In this paper, we revisited the important problem of schedul-
ing packets subject to strict deadlines and interferences in
multi-hop wireless networks. Despite the difficulty of the
problem, we obtain significant theoretical improvements under
stochastic traffic. In particular, our work provides the first near-
optimal and constant approximation algorithms given a finite
number of channels and a finite time horizon. Moreover, we
showed that in general our results cannot be improved signifi-
cantly. Finally, our algorithms and techniques are versatile and
generalize to a wide range of stochastic traffics.
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Fig. 4: Empirical approximation ratio bounds over different
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