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Abstract—We consider a natural scheduling problem which
arises in many distributed computing frameworks. Jobs with
diverse resource requirements (e.g. memory requirements) arrive
over time and must be served by a cluster of servers, each
with a finite resource capacity. To improve throughput and
delay, the scheduler can pack as many jobs as possible in the
servers subject to their capacity constraints. Motivated by the
ever-increasing complexity of workloads in shared clusters, we
consider a setting where the jobs’ resource requirements belong
to a very large number of diverse types or, in the extreme,
even infinitely many types, e.g. when resource requirements are
drawn from an unknown distribution over a continuous support.
The application of classical scheduling approaches that crucially
rely on a predefined finite set of types is discouraging in this
high (or infinite) dimensional setting. We first characterize a
fundamental limit on the maximum throughput in such setting,
and then develop oblivious scheduling algorithms that have
low complexity and can achieve at least 1/2 and 2/3 of the
maximum throughput, without the knowledge of traffic or resource
requirement distribution. Extensive simulation results, using both
synthetic and real traffic traces, are presented to verify the
performance of our algorithms.

Index Terms—Scheduling Algorithms, Stability, Queues, Knap-
sack, Data Centers

I. INTRODUCTION

Distributed computing frameworks (e.g., MapReduce [1],
Spark [2], Hive [3]) have enabled processing of very large data
sets across a cluster of servers. The processing is typically
done by executing a set of jobs or tasks in the servers.
A key component of such systems is the resource manager
(scheduler) that assigns incoming jobs to servers and reserves
the requested resources (e.g. CPU, memory) on the servers
for running jobs. For example, in Hadoop [1], the resource
manager reserves the requested resources, by launching re-
source containers in servers. Jobs of various applications can
arrive to the cluster, which often have very diverse resource
requirements. Hence, to improve throughput and delay, a
scheduler should pack as many jobs (containers) as possible
in the servers, while retaining their resource requirements and
not exceeding server’s capacities.

A salient feature of resource demand is that it is hard to
predict and cannot be easily classified into a small or moderate
number of resource profiles or “types”. This is amplified by the
increasing complexity of workloads, i.e., from traditional batch
jobs, to queries, graph processing, streaming, machine learning
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Fig. 1: There are more than 700 discrete memory requirements
and 400 discrete CPU requirements in the tasks submitted to
a Google cluster during a day.

jobs, etc., that rely on multiple computation frameworks, and
all need to share the same cluster. For example, Figure 1
shows the statistics of memory and CPU resource requirement
requested by jobs in a Google cluster [4], over the first day in
the trace. If jobs were to be divided into types according to
their memory requirement alone, there would be more than 700
types. Moreover, the statistics change over time and these types
are not sufficient to model all the job requirements in a month,
which are more than 1500. We can make a similar observation
for CPU requirements, which take more than 400 discrete
types. Analyzing the joint CPU and memory requirements,
there would be more than 10, 000 distinct types. Building a
low-complexity scheduler that can provide high performance
in such a high-dimensional regime is extremely challenging, as
learning the demand for all types is infeasible, and finding the
optimal packing of jobs in servers, even when the demand is
known, is a hard combinatorial problem (related to Bin Packing
and Knapsack problems [5]).

Despite the vast literature on scheduling algorithms, their
theoretical study in such high-dimensional setting is very
limited. The majority of the past work relies on a crucial
assumption that there is a predefined finite set of discrete types,
e.g. [6], [7], [8], [9], [10], [11]. Although we can consider
every possible resource profile as a type, the number of such
types could be formidably large. The application of scheduling
algorithms, even with polynomial complexity in the number
of types, is discouraging in such setting. A natural solution
could be to divide the resource requests into a smaller number
of types. Such a scheduler can be strictly suboptimal, since,
as a result of mapping to a smaller number of types, jobs
may underutilize or overutilize the resource compared to what
they actually require. Moreover, in the absence of any prior
knowledge about the resource demand statistics, it is not clear



how the partitioning of the resource axis into a small number
of types should be actually done.

Our work fulfills one of the key deficiencies of the past
work in the modeling and analysis of scheduling algorithms
for distributed server systems. Our model allows a very large
or, in the extreme case, even infinite number of job types,
i.e., when the jobs’ resource requirements follow a probability
distribution over a continuous support. To the best of our
knowledge, there is no past work on characterizing the optimal
throughput and what can be achieved when there are no
discrete job types. Our goal is to characterize this throughput
and design algorithms that: (1) have low complexity, and
(2) can provide provable throughput guarantees without the
knowledge of the traffic or the resource requirement statistics.

A. Related Work

Existing algorithms for scheduling jobs in distributed com-
puting platforms can be organized in two categories.

In the first category, we have schedulers with throughput
guarantees, e.g., [6], [8], [9], [10], [11]. They work under
the assumption that there is a finite number of discrete job
types. This assumption naturally lends itself to MaxWeight
algorithms [12], where each server schedules jobs according
to a maximum weight configuration chosen from a finite
set of configurations. The number of configurations however
grows exponentially large with the number of types, making
the application of these algorithms discouraging in practice.
Further, their technique cannot be applied to our setting which
can include an infinite number of job types.

In the second category, we have algorithms that do not
provide any throughput guarantees, but perform well empiri-
cally or focus on other performance metrics such as fairness
and makespan. These algorithms include slot-based schedulers
that divide servers into a predefined number of slots for
placing tasks [13], [14], resource packing approaches such
as [15], [16], fair resource sharing approaches such as [17],
[18], and Hadoop’s default schedulers such as FIFO [19], Fair
scheduler [20], and Capacity scheduler [21]. The methodology
in our work goes beyond the approaches that assume a finite
number of job types and hence can be potentially used to
analyze the performance of algorithms in this category.

There is also literature on classical bin packing prob-
lem [22], where given a list of objects of various sizes, and
an infinite number of unit-capacity bins, the goal is to use the
minimum number of bins to pack the objects. Many algorithms
have been proposed for this problem with approximation ratios
for the optimal number of bins or waste, e.g. [23], [24], [25].
There is also work in a setting of bin packing with queues [26],
[27], [28], under the model that an empty bin arrives at each
time, then some jobs from the queue are packed in the bin at
that time, and the bin cannot be reused in future. Our model
is fundamentally different from these lines of work, as the
number of servers (bins) in our setting is fixed and we need
to reuse the servers to schedule further jobs from the queue,
when jobs depart from servers.

B. Main Contributions

Our main contributions can be summarized as follows:
1. Characterization of Maximum Achievable Through-

put. We characterize the maximum throughput (maximum
supportable workload) that can be theoretically achieved
by any scheduling algorithm in the setting that the jobs’
resource requirements follow a general probability distri-
bution FR over possibly infinitely many job types. The
construction of optimal schedulers to approach this max-
imum throughput relies on a careful partition of jobs into
sufficiently large number of types, using the complete
knowledge of the resource probability distribution FR.

2. Oblivious Scheduling Algorithms. We introduce schedul-
ing algorithms based on “Best-Fit” packing and “universal
partitioning” of resource requirements into types, without
the knowledge of the resource probability distribution FR.
The algorithms have low complexity and can provably
achieve at least 1/2 and 2/3 of the maximum throughput,
respectively. Further, we show that 2/3 is tight in the
sense that no oblivious scheduling algorithm, that maps the
resource requirements into a finite number of types, can
achieve better than 2/3 of the maximum throughput for all
general resource distributions FR.

3. Empirical Evaluation. We evaluate the throughput and
queueing delay performance of all algorithms empirically
using both synthetic and real traffic traces.

II. SYSTEM MODEL AND DEFINITIONS

Cluster Model: We consider a collection of L servers
denoted by the set L. For simplicity, we consider a single
resource (e.g. memory) and assume that the servers have the
same resource capacity. While job resource requirements are
in general multi-dimensional (e.g. CPU, memory), it has been
observed that memory is typically the bottleneck resource [21],
[29]. Without loss of generality, we assume that each server’s
capacity is normalized to one.

Job Model: Jobs arrive over time, and the i-th job, i =
1, 2, · · ·, requires an amount Ri of the (normalized) resource
for the duration of its service. The resource requirements
R1, R2, · · · are i.i.d. random variables with a general cdf
(cumulative distribution function) FR(·) : (0, 1]→ [0, 1], with
average R̄ = E(R). Note that each job should be served by
one server and its resource requirement cannot be fragmented
among multiple servers. In the rest of the paper, we use the
terms job size and job resource requirement interchangeably.

Queueing Model: We assume time is divided into time slots
t = 0, 1, · · ·. At the beginning of each time slot t, a set A(t) of
jobs arrive to the system. We use A(t) to denote the cardinality
of A(t). The process A(t), t = 0, 1, · · ·, is assumed to be i.i.d.
with a finite mean E[A(t)] = λ and a finite second moment.

There is a queue Q(t) that contains the jobs that have
arrived up to time slot t and have not been served by any
servers yet. At each time slot, the scheduler can select a set
of jobs D(t) from Q(t) and place each job in a server that



has enough available resource to accommodate it. Specifically,
define H(t) = (H`(t), ` ∈ L), where H`(t) is the set of
existing jobs in server ` at time t. At any time, the total size
of the jobs packed in server ` cannot exceed its capacity, i.e.,

∑
j∈H`(t)

Rj ≤ 1, ∀` ∈ L, t = 0, 1, · · · . (1)

Note that jobs may be scheduled out of the order that
they arrived, depending on the resource availability of servers.
Let D(t) denote the cardinality of D(t) and Q(t) denote the
cardinality of Q(t) (the number of jobs in the queue). Then
the queue Q(t) and its size Q(t) evolve as

Q(t+ 1) = Q(t) ∪ A(t)−D(t), (2)
Q(t+ 1) = Q(t) +A(t)−D(t). (3)

Once a job is placed in a server, it completes its service after
a geometrically distributed amount of time with mean 1/µ,
after which it releases its reserved resource. This assumption is
made to simplify the analysis, and the results can be extended
to more general service time distributions (see Section VIII
for a discussion).

Stability and Maximum Supportable Workload: The system
state is given by (Q(t),H(t)) which evolves as a Markov
process over an uncountably infinite state space1. We investi-
gate the stability of the system in terms of the average queue
size, i.e., the system is called stable if lim suptE[Q(t)] <∞.
Given a job size distribution FR, a workload ρ := λ/µ is
called supportable if there exists a scheduling policy that can
stabilize the system for the job arrival rate λ and the mean
service duration 1/µ.

Maximum supportable workload is a workload ρ? such that
any ρ < ρ? can be stabilized by some scheduling policy, which
possibly uses the knowledge of the job size distribution FR,
but no ρ > ρ? can be stabilized by any scheduling policy.

III. CHARACTERIZATION OF MAXIMUM SUPPORTABLE
WORKLOAD

In this section, we provide a framework to characterize
the maximum supportable workload ρ? given a job resource
distribution FR. We start with an overview of the results for
a system with a finite set of discrete job types.

A. Finite-type System

It is easy to characterize the maximum supportable work-
load when jobs belong to a finite set of discrete types. In this
case, it is well known that the supportable workload region is
the sum of convex hull of feasible configurations of servers,
e.g. [6], [8], [9], [10], [11], which are defined as follows.

Definition 1 (Feasible configuration). Suppose there is a finite
set of J job types, with job sizes r1, · · · , rJ . An integer-valued
vector k = (k1, · · · , kJ) is a feasible configuration for a server
if it is possible to simultaneously pack k1 jobs of of type 1,

1The state space can be equivalently represented in a complete separable
metric space, see our technical report [30] for details.

k2 jobs of type 2, . . . , and kJ jobs of type J in the server,
without exceeding its capacity. Assuming normalized server’s
capacity, any feasible configuration k must therefore satisfy∑J

j=1 kjrj ≤ 1, kj ∈ Z+, j = 1, · · · , J . We use K to denote
the (finite) set of all feasible configurations.

Define Pj , P(R = rj) to be the probability that the size
of an arriving job is rj , P = (P1, · · · , PJ), and the workload
ρ = λ/µ. The maximum supportable workload ρ? is

ρ? = sup
{
ρ ∈ R+ : ρP <

∑
`∈L

x`,x` ∈ Conv(K), ` ∈ L
}

(4)

where Conv(·) is the convex hull operator, and the vector
inequality is component-wise. Also sup (or inf) denotes supre-
mum (or infimum). Hence any ρ < ρ? is supportable by some
scheduling algorithm, while no ρ > ρ? can be supported by
any scheduling algorithm.

The optimal or near-optimal scheduling policies then basi-
cally follow the well-known MaxWeight algorithm [12]. Let
Qj(t) be the number of type-j jobs waiting in queue at time
t. At any time t for each server `, the algorithm maintains a
feasible configuration k(t) that has the “maximum weight” [8],
[9] (or a fraction of the maximum weight [11]), among all the
feasible configurations K. The weight of a configuration is
formally defined below.

Definition 2 (Weight of a configuration). Given a queue
size vector Q = (Q1, · · · , QJ), the weight of a feasible
configuration k = (k1, · · · , kJ) is defined as the inner product

〈k,Q〉 =
∑J

j=1 kjQj . (5)

B. Infinite-type System

In general, the support of the job size distribution FR can
span an infinite number of types (e.g., FR can be a continuous
function over (0, 1]). We introduce the notion of virtual queue
which is used to characterize the supportable workload for any
general distribution FR.

Definition 3 (Virtual queues (VQs)). Define a partition X of
interval (0, 1] as a finite collection of disjoint subsets Xj ⊂
(0, 1], j = 1, · · · , J , such that ∪Jj=1Xj = (0, 1]. Let Pj =
P (R ∈ Xj) be the probability that resource requirement of
an arriving job belongs to Xj , in which case we refer to it
as a type-j job. For each type j, we consider a virtual queue
VQj which contains the type-j jobs waiting in the queue for
service.

Under this definition, it is not clear what configurations are
feasible, since the jobs in the same virtual queue can have
different sizes, even though they are called of the same type.
Hence we make the following definition.

Definition 4 (Rounded VQs). We call VQs “upper-rounded
VQs”, if the sizes of type-j jobs are assumed to be rj =
supXj , j = 1, · · · , J . Similarly, we call them “lower-rounded
VQs”, if the sizes of type-j jobs are assumed to be rj =
inf Xj , j = 1, · · · , J .



Given a partition X , let ρ?(X) and ρ?(X) be respectively
the maximum λ/µ under which the system with upper-rounded
virtual queues and the system with the lower-rounded virtual
queues can be stabilized. Let also ρ? = supX ρ?(X) and ρ? =
infX ρ?(X) where the supremum and infimum are over all
possible partitions of interval (0, 1]. Next theorem states the
result of existence of maximum supportable workload.

Theorem 1. Consider any general (continuous or discontinu-
ous) probability distribution of job sizes with cdf FR(·). Then
there exists a unique ρ? such that ρ? = ρ? = ρ?. Further, given
any ρ < ρ?, there is a partition X such that the associated
upper-rounded virtual queueing system (and hence the original
system) can be stabilized.

The proof of Theorem 1 has two steps. First, we show
that ρ?(X) ≤ ρ? ≤ ρ?(X) for any partition X . Second, we
construct a sequence of partitions, that depend on the job size
distribution FR, and become increasingly finer, such that the
difference between the two bounds vanishes in the limit. The
proof details can be found in our technical report [30].

Theorem 1 implies that there is a way of mapping the
job sizes to a finite number of types using partitions, such
that by using finite-type scheduling algorithms, the achievable
workload approaches the optimal workload as partitions be-
come finer. However, the construction of the partition crucially
relies on the knowledge of the job size distribution FR, which
may not be readily available in practice. Further, the number
of feasible configurations grows exponentially large as the
number of subsets in the partition increases, which prevents
efficient implementation of discrete type scheduling policies
(e.g. MaxWeight) in practice.

Next, we focus on low-complexity scheduling algorithms
that do not assume the knowledge of FR a priori, and can
provide a fraction of the maximum supportable workload ρ?.

IV. BEST-FIT BASED SCHEDULING

The Best-Fit algorithm was first introduced as a heuristic for
Bin Packing problem [22]: given a list of objects of various
sizes, we are asked to pack them into bins of unit capacity so
as to minimize the number of bins used. Under Best-Fit, the
objects are processed one by one and each object is placed
in the “tightest” bin (with the least residual capacity) that can
accommodate the object, otherwise a new bin is used. Theo-
retical guarantees of Best-Fit in terms of approximation ratio
have been extensively studied under discrete and continuous
object size distributions [23], [24], [25].

There are several fundamental differences between the clas-
sical bin packing problem and our problem. In the bin packing
problem, there is an infinite number of bins available and once
an object is placed in a bin, it remains in the bin forever, while
in our setting, the number of bins (the equivalent of servers)
is fixed, and bins have to be reused to serve new objects from
the queues as objects depart from the bins, and new objects
arrive to the queue. Next, we describe how Best-Fit (BF) can
be adapted for job scheduling in our setting.

A. BF-J/S Scheduling Algorithm

Consider the following two adaptations of Best-Fit (BF) for
job scheduling:
• BF-J (Best-Fit from Job’s perspective):

List the jobs in the queue in an arbitrary order (e.g.
according to their arrival times). Starting from the first job,
each job is placed in the server with the “least residual
capacity” among the servers that can accommodate it, if
possible, otherwise the job remains in the queue.

• BF-S (Best-Fit from Server’s perspective):
List servers in an arbitrary order (e.g. according to their
index). Starting from the first server, each server is filled
iteratively by choosing the “largest-size job” in the queue
that can fit in the server, until no more jobs can fit.
BF-J and BF-S need to be performed in every time slot.

Under both algorithms, observe that no further job from the
queue can be added in any of the servers. However, these
algorithms are not computationally efficient as they both make
many redundant searches over the jobs in the queue or over
the servers, when there are no new job arrivals to the queue
or there are no job departures from some servers. Combining
both adaptations, we describe the algorithm below which is
computationally more efficient.
• BF-J/S (Best-Fit from Job’s and Server’s perspectives):

It consists of two steps:
1) Perform BF-S only over the list of servers that had job

departures during the previous time slot. Hence, some jobs
that have not been scheduled in the previous time slot or
some of newly arrived jobs are scheduled in servers.

2) Perform BF-J only over the list of newly arrived jobs that
have not been scheduled in the first step.

B. Throughput Guarantee

The following theorem characterizes the maximum support-
able workload under BF-J/S.

Theorem 2. Suppose any job has a minimum size u. Algorithm
BF-J/S can achieve at least 1

2 of the maximum supportable
workload ρ?, for any u > 0.

Proof Overview. The proof uses Lyapunov analysis for
Markov chain (Q(t),H(t)) whose state includes the jobs in
queues and servers and their sizes. The Markov chain can
be equivalently represented in a Polish space and we prove its
positive recurrence, by using Theorem 1 of [31] and properties
of BF-J/S. We use a Lyapunov function which is the sum of
sizes of all jobs in the system at time t. Given that jobs have
a minimum size, keeping the total size bounded implies the
number of jobs is also bounded.

The key argument in the proof is that by using BF-J/S as
described, all servers operate in more than “half full”, most
of the time, when the total size of jobs in the queue becomes
large. To prove this, we consider two possible cases:
• The total size of jobs in queue with size ≤ 1

2 is large:
In this case, these jobs will be scheduled greedily whenever
the server is more than half empty. Hence, the server will



Fig. 2: Partition I of interval (1/2J , 1] based on (6).

always become more than half full until there are no such
jobs in the queue.

• The total size of jobs in queue with size > 1
2 is large:

If at time slot t, a job in server is not completed, it
will complete its service within the next time slot with
probability µ, independently of the other jobs in the server.
Given the minimum job size, the number of jobs in a
server is bounded so it will certainly empty in a finite time.
Once this happens, jobs will be scheduled starting from
the largest-size one, and the server will remain more than
half full, as long as there is a job of size more than 1/2
to replace it. This step is true because of the way Best-Fit
works and does not hold for other bin packing algorithms
like First-Fit.

The proof details can be found in [30].

V. PARTITION BASED SCHEDULING

BF-J/S demonstrated an algorithm that can achieve at least
half of the maximum workload ρ?, without relying on any
partitioning of jobs into types. In this section, we propose par-
tition based scheduling algorithms that can provably achieve
a larger fraction of the maximum workload ρ?, using a
universal partitioning into a small number of types, without
the knowledge of job size distribution FR.

A. Universal Partition and Associated Virtual Queues

Consider a partition of the interval (1/2J , 1] into the fol-
lowing 2J sub-intervals:

I2m =
(2

3

1

2m
,

1

2m

]
, m = 0, · · · , J − 1

I2m+1 =
(1

2

1

2m
,

2

3

1

2m

]
, m = 0, · · · , J − 1.

(6)

We refer to this partition as partition I , where J > 1 is a
fixed parameter to be determined shortly. The odd and even
sub-intervals in I are geometrically shrinking. Figure 2 gives
a visualization of this partition.

Jobs in queue are divided among virtual queues (Defini-
tion 3) according to partition I . Specifically, when the size of
a job falls in the sub-interval Ij , j = 0, · · · , 2J − 1, we say
this job is of type j and it is placed in a virtual queue VQj ,
without rounding its size. Moreover, jobs whose sizes fall in
(0, 1/2J ] are placed in the last virtual queue VQ2J−1, and
their sizes are rounded up to 1/2J .

We use Qj(t) to denote the size (cardinality) of VQj at
time t and use Q(t) to denote the vector of all VQ sizes.

B. VQS (Virtual Queue Scheduling) Algorithm

To describe the VQS algorithm, we define the following
reduced set of configurations which are feasible for the system
of upper-rounded VQs (Definition 4)

Definition 5 (Reduced feasible configuration set). The reduced
feasible configuration set, denoted by K(J)

RED, consists of the
following 4J − 4 configurations:

2me2m, m = 0, · · · , J − 1

3 · 2m−1e2m+1, m = 1, · · · , J − 1

e1 + b2m/3ce2m, m = 2, · · · , J − 1

e1 + 2m−1e2m+1, m = 1, · · · , J − 1

(7)

where ej ∈ Z2J denotes the basis vector with a single job of
type j, j = 0, · · · , 2J − 1, and zero jobs of any other types.

Note that each configuration k = (k0, · · · , k2J−1) ∈ K(J)
RED

either contains jobs from only one VQj , j = 0, · · · , 2J − 1,
or contains jobs from VQ1 and one other VQj .

The “VQS algorithm” consists of two steps: (1) setting
active configuration, and (2) job scheduling using the active
configuration:

1. Setting active configuration:
Under VQS, every server ` ∈ L has an active configuration
k`(t) ∈ K(J)

RED which is renewed only when the server
becomes empty. Suppose time slot τ `i is the i-th time that
server ` is empty (i.e., it has been empty or all its jobs
depart during this time slot). At this time, the configuration
of server ` is set to the max weight configuration among
the configurations of K(J)

RED (Definitions 2 and 5), i.e.,

k?(τ `i ) = arg max
k∈K(J)

RED

〈k,Q(τ `i )〉 = arg max
k∈K(J)

RED

2J−1∑
j=0

kjQj . (8)

The active configuration remains fixed until the next time
τ `i+1 that the server becomes empty gain, i.e.,

k`(t) = k?(τ `i ), τ `i ≤ t < τ `i+1. (9)

2. Job scheduling:
Suppose the active configuration of server ` at time t is
k ∈ K(J)

RED. Then the server schedules jobs as follows:
(i) If k1 = 1, the server reserves 2/3 of its capacity for

serving jobs from VQ1, so it can serve at most one job
of type 1 at any time. If there is no such job in the server
already, it schedules one from VQ1.

(ii) Any configuration k ∈ K(J)
RED has at most one kj > 0

other than k1. The server will schedule jobs from the
corresponding VQj , starting from the head-of-the-line
job in VQj , until no more jobs can fit in the server. The
actual number of jobs scheduled from VQj in the server
could be more than kj depending on their actual sizes.

Remark 1. The reason for choosing times τ `i to renew the
configuration of server ` is to avoid possible preemption of
existing jobs in server (similar to [6], [9]). Also note that active
configurations in K(J)

RED are based on upper-rounded VQs.
Since jobs are not actually rounded in VQs, the algorithm can
schedule more jobs than what specified in the configuration.



C. Throughput Guarantee

The VQS algorithm can provide a stronger throughput
guarantee than BF-J/S. A key step to establish the throughput
guarantee is related to the property of configurations in the set
K(J)

RED, which is stated below.

Proposition 1. Consider any partition X which is a refinement
of partition I , i.e., any interval in X is contained in an interval
Ij in (6). Given any set of jobs with sizes in (1/2J , 1] in
the queue, let Q and Q(X) be the corresponding vector of
VQ sizes under partition I and partition X . Then there is a
configuration k ∈ K(J)

RED such that

〈k,Q〉 ≥ 2

3
〈k(X),Q(X)〉, ∀k(X) ∈ K(X), (10)

where K(X) is the set of “all” feasible configurations based
on upper-rounded VQs for partition X .

Proof. Suppose X is a partition of (1/2J , 1] into N sub-
intervals (ξi−1, ξi], i = 1, · · · , N . Given the proposition’s
assumption, we can define sets Zj , j = 0, · · · , 2J − 1, such
that i ∈ Zj iff ξi ∈ Ij . Any job in VQ

(X)
i , i ∈ Zj ,

under partition X , belongs to VQj under partition I , therefore∑
i∈Zj

Q
(X)
i = Qj .

Let 〈k(X),Q(X)〉 = U . Note that in any feasible configura-
tion k(X) ∈ K(X),

∑
i∈Z1

k
(X)
i can be 0 or 1. To show (10),

we consider these two cases separately:
Case 1.

∑
i∈Z1

k
(X)
i = 0:

We claim at least one of the following inequalities is true

Q2m ≥ 2U/3× 1/2m, m = 0, · · · , J − 1

Q2m+1 ≥ U/2× 1/2m, m = 1, · · · , J − 1
(11)

If the claim is not true, we reach a contradiction because

U =

J−1∑
m=0

∑
i0∈Z2m

k
(X)
i0

Q
(X)
i0

+

J−1∑
m=1

∑
i1∈Z2m+1

k
(X)
i1

Q
(X)
i1

(a)
<

( J−1∑
m=0

∑
i0∈Z2m

k
(X)
i0

2

3

1
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(c)

≤ 1× U,

where (a) is due to the assumption that none of inequalities
in (11) hold and using the fact that Q(X)

i ≤ Qj if i ∈ Zj , (b)
is due to the fact ξi > inf Ij if i ∈ Zj , and (c) is due to the
server’s capacity constraint for feasible configuration k(X).

Hence, one of the inequalities in (11) must be true. If
Q2m ≥ 2U/3× 1/2m for some m = 0, · · · , J − 1, then (10)
is true for configuration k = 2me2m, while if Q2m+1 ≥
U/2 × 1/2m for some m = 1, · · · , J − 1, then (10) is true
for configuration k = 3 · 2m−1e2m+1.
Case 2.

∑
i∈Z1

k
(X)
i = 1:

In this case
∑

i∈Z0
k
(X)
i = 0. We further distinguish three

cases for Q1 compared to U : Q1 ≥ 2U
3 , 2U

3 > Q1 ≥ U
2 , and

U
2 > Q1. In the second case, we further consider two subcases

depending on
∑

i∈Z2
k
(X)
i being 0 or 1. Here we present the

analysis of the case 2U
3 > Q1 ≥ U

2 ,
∑

i∈Z2
k
(X)
i = 0. The

rest of the cases are either trivial or follow a similar argument,
thus omitted to save space.

Let U ′ := U − Q1, then one of the following inequalities
has to be true

Q2m ≥ U ′/(3 · 2m−2), m = 2, · · · J − 1

Q2m+1 ≥ U ′/(3 · 2m−1), m = 1, · · · J − 1,
(12)

otherwise, we reach a contradiction, similar to Case 1, i.e.,

U ′ =

J−1∑
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1

3

1
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) (b)
< U ′

where (a) is due to the assumption that none of inequalities
in (12) hold, and (b) is due to the constraint that the jobs in
the configuration k(X), other than the job types in Z1, should
fit in a space of at most 1/2 (the rest is occupied by a job of
size at least 1/2). Depending on which of the inequalities in
(12) is true, one of the configurations in K(J)

RED, with k1 = 1,
will satisfy (10).

Using Proposition 1 and multi-step Lyapunov tech-
nique [31], we can prove the following theorem regarding the
throughput of VQS. The proof details can be found in [30].

Theorem 3. VQS achieves at least 2
3 of the optimal workload

ρ?, if arriving jobs have a minimum size of at least 1/2J .

Hence, given a minimum job’s resource requirement u > 0,
J has to be chosen larger than log2(1/u) in the VQS algo-
rithm. Theorem 3 is not trivial as it implies that by scheduling
under the configurations in K(J)

RED (7), on average at most
1/3 of each server’s capacity will be underutilized because
of capacity fragmentations, irrespective of the job size distri-
bution FR. Moreover, using K(J)

RED reduces the search space
from O(Exp(J)) configurations to only 4J−4 configurations,
while still guaranteeing 2/3 of the optimal workload ρ?.

A natural and less dense partition could be to only consider
the cuts at points 1/2j for j = 0, · · · , J . This creates a partition
consisting of J sub-intervals Ĩj = I2j∪I2j+1. The convex hull
of only the first J configurations of K(J)

RED contains all feasible
configurations of this partition. Using arguments similar to
proof of Theorem 3, we can show that this partition can only
achieve 1/2 of the optimal workload ρ?. One might conjecture
that by refining partition I (6) or using different partitions,
we can achieve a fraction larger than 2/3 of the optimal
workload ρ?; however, if the partition is agnostic to the job size
distribution FR, refining the partition or using other partitions
does not help. We state the result in the following Proposition.

Proposition 2. Consider any partition X consisting of a finite
number of disjoint sets Xj , ∪Nj=1Xj = (0, 1]. Any scheduling
algorithm that maps the sizes of jobs in Xj to rj = supXj



(i.e., schedules based on upper-rounded VQs) cannot achieve
more than 2/3 of the optimal workload ρ? for all FR.

Proof. The proof is based on constructing a counter example
and can be found in [30].

Theorem 3 assumed that there is a minimum resource
requirement of at least 1/2J . This assumption can be relaxed
as stated in the following corollary.

Corollary 1. Consider any general distribution of job sizes
FR. Given any ε > 0, choose J to be the smallest integer
such that FR(1/2J) < ε, then the VQS algorithm achieves at
least (1− ε) 2

3 of the optimal workload ρ?.

Proof. Consider two systems in which jobs of size at most
1/2J : (1) are completely discarded from queue, or (2) join
the queue but their resource requirement is resampled from
FR until it becomes greater than 1/2J . The two systems have
the same job-size distribution, but their job arrival rate differs
by a factor of 1 − ε. These two systems can be used to find
upper and lower bounds on the maximum throughput achieved
by VQS. See our technical report [30] for details.

Since the complexity of VQS algorithm is linear in J , it is
worth increasing it if that improves maximum throughput. An
implication of Corollary 1 is that this can be done adaptively
as estimate of FR becomes available.

VI. VQS-BF: INCORPORATING BEST-FIT IN VQS

While the VQS algorithm achieves in theory a larger frac-
tion of the optimal workload than BF-J/S, it is quite inflexible
compared to BF-J/S, as it can only schedule according to
certain job configurations and the time until configuration
changes may be long, hence might cause excessive queueing
delay. We introduce a hybrid VQS-BF algorithm that achieves
the same fraction of the optimal workload as VQS, but in
practice has the flexibility of BF. The algorithm has two steps
similar to VQS: Setting the active configuration is exactly
the same as the first step in VQS, but it differs in the way
that jobs are scheduled in the second step. Suppose the active
configuration of server ` at time t is k ∈ K(J)

RED, then:
(i) If k1 = 1, the server will try to schedule the largest-size

job from VQ1 that can fit in it. This may not be possible
because of jobs already in the server from previous time
slots. Unlike VQS, when jobs from VQ1 are scheduled,
they reserve exactly the amount of resource that they
require, and no amount of resource is reserved if no job
from VQ1 is scheduled.

(ii) Any configuration k ∈ K(J)
RED has at most one kj >

0 other than k1. Server attempts to schedule jobs from
the corresponding VQj , starting from the largest-size job
that can fit in it. Depending on prior jobs in server, this
procedure will stop when either the number of jobs from
VQj in the server is at least kj , or VQj becomes empty,
or no more jobs from VQj can fit in the server.

(iii) Server uses BF-S to possibly schedule more jobs in its
remaining capacity from the remaining jobs in the queue.
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Fig. 3: (a) A setting where VQS is unstable, but BF variants
are stable. (b) A setting where VQS is stable but BF variants
are unstable.

The performance guarantee of VQS-BF is the same as that
of VQS, as stated by the following theorem and corollary.

Theorem 4. If jobs have a minimum size of at least 1/2J ,
VQS-BF achieves at least 2

3ρ
?. For a general job-size dis-

tribution FR, if J is chosen such that FR(1/2J) < ε, then
VQS-BF achieves at least (1− ε) 2

3ρ
?.

Proof. The proof is similar to that of Theorem 3. However, the
difference is that the configuration of a server (jobs residing
in a server) is not predictable, unless it empties, at which
point we can ensure that it will schedule at least the jobs in
the max weight configuration assigned to it, for a number of
time slots proportional to the total queue length. The fact that
the scheduling starts from the largest job in a virtual queue
is important for this assertion, similarly to the importance of
Best Fit in the proof of Theorem 2. See [30] for details.

VII. EVALUATION RESULTS

A. Synthetic Simulations

1) Instability of VQS and tightness of 2/3 bound.: We first
present an example that shows the tightness of the 2/3 bound
on the achievable throughput of VQS. Consider a single server
where jobs have two discrete sizes 0.4 and 0.6. The jobs arrive
according to a Poisson process with average rate 0.014 jobs per
time slot and with each job size being equally likely. Each job
completes its service after a geometric number of time slots
with mean 100. Observe that by using configuration (1, 1)
(i.e., 1 spot per job type) any arrival rate below 0.02 jobs per
time slot is supportable. This is not the case though for VQS

that schedules based on configurations K(J)
RED, so it can either

schedule two jobs of size 0.4 or one job of size 0.6. This
results in VQS to be unstable for any arrival rate greater than
2/3 × 0.02 ≈ 0.013. Both of the other proposed algorithms,
BF-J/S and VQS-BF, circumvent this problem. The evolution
of the total queue size is depicted in Figure 3a

2) Instability of BF-J/S: We present an example that shows
BF-J/S is not stable while VQS can stabilize the queues.
Consider a single server of capacity 10 and that job sizes
are sampled from two discrete values 2 and 5. The jobs arrive
according to a Poisson process with average rate 0.0306 jobs
per time slot, and job of size 2 are twice as likely to appear
than jobs of size 5. Each job completes its service after a fixed
number of 100 time slots . The evolution of the queue size is
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Fig. 4: Comparison of the average queue size of different algorithms, for various
traffic intensities, when job sizes are uniformly distributed in (a) [0.01, 0.19] and
(b) [0.1, 0.9], in a system of 5 servers of capacity 1.
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Fig. 5: Comparison of algorithms using
Google trace for approximately 1,000,000
tasks. Traffic scaling varies from 1 to 1.6
and number of servers is fixed at 1000.

depicted in Figure 3b. This shows an example where VQS is
stable, while both BF-J/S and VQS-BF are not.

To justify the behavior of the latter two algorithms, we
notice that under both the server is likely to schedule according
to the configuration (2, 1) that uses two jobs of size 2 and
one of size 5. Because of fixed service times, jobs that are
scheduled at different time slots, will also depart at different
time slots. Hence, it is possible that the scheduling algorithm
will not allow the configuration (2, 1) to change, unless one
of the queues empties. However, there is a positive probability
that the queues will never get empty since the expected arrival
rate is more than the departure rate for both types. The arrival
rate vector is λ = (0.0204, 0.0102) while the departure rate
vector µ = (0.02, 0.01).

VQS on the other hand will always schedule either five
jobs of size 2 or two of size 5. The average departure rate
in the first configuration is µ1 = (0.05, 0), and in the second
configuration µ2 = (0, 0.02). The arrival vector is in convex
hull of these two vectors as λ < 4/9µ1+5/9µ2 and therefore
is supportable.

3) Comparison using Uniform distributions: To better un-
derstand how the algorithms operate under a non-discrete
distribution of job sizes, we test them using a uniform dis-
tribution. We choose L = 5 servers, each with capacity 1. We
perform two experiments: the job sizes are distributed uni-
formly over [0.01, 0.19] in the first experiment and uniformly
over [0.1, 0.9] in the second one. Hence R̄ is 0.1 in the first
experiment and 0.5 in the second one.

The service time of each job is geometrically distributed
with mean 1/µ = 100 time slots so departure rate is µ = 0.01.
The job arrivals follow a Poisson process with rate µL/R̄×
jobs per time slot (and thus ρ = αL/R̄), where α is a constant
which we refer to as “traffic intensity” and L = 5 is the
number of servers in these experiments. A value of α = 1 is a
bound on what is theoretically supportable by any algorithm.
In each experiment, we change the value of α in the interval
[0.85, 0.99]. The results are depicted in Figure 4.

Overall we can see that VQS is worse than other two
algorithms in terms of average queue size. Algorithms BF-
J/S and VQS-BF look comparable in the first experiment for
traffic intensities up to 0.95, otherwise BF-J/S has a clear

advantage. An interpretation of results is that VQS and VQS-
BF have particularly worse delays when the average job size is
large, since large jobs cannot be scheduled most of the time,
unless they are part of the active configuration of a server.
That makes these algorithm less flexible compared to BF-J/S
for scheduling such jobs.

B. Google Trace Simulations

We test the algorithms using a traffic trace from a Google
cluster dataset [4]. We performed the following preprocessing
on the dataset:
• We filtered the tasks and kept those that were completed

without interruptions/errors.
• All tasks had two resources, CPU and memory. To convert

them to a single resource, we used the maximum of the two
requirements which were already normalized in [0, 1] scale.

• The servers had two resources, CPU and memory, and
change over time as they a updated or replaced. For sim-
plicity, we consider a fixed number of servers, each with a
single resource capacity normalized to 1.

• Trace events are in microsec accuracy. In our algorithms,
we make scheduling decisions every 100 msec.

• We used a part of the trace corresponding to about a million
task arrivals spanning over approximately 1.5 days.
We compare the algorithms proposed in this work and

a baseline based on Hadoop’s default FIFO scheduler [1].
While the original FIFO scheduler is slot-based [19], the FIFO
scheduler considered here schedules jobs in a FIFO manner,
by attempting to pack the first job in the queue to the first
server that has sufficient capacity to accommodate the job.
We refer to this scheme as FIFO-FF which should perform
better than the slot-based FIFO, since it packs jobs in servers
(using First-Fit) instead of using predetermined slots.

We scale the job arrival rate by multiplying the arrival times
of tasks by a factor β. We refer to 1/β as “traffic scaling”
because larger 1/β implies that more jobs arrive in a time unit.
The number of servers was fixed to 1000, while traffic scaling
varied from 1 to 1.6. The average queue sizes are depicted in
Figure 5. As traffic scaling increases, BF-J/S and VQS-BF
have a clear advantage over the other schemes, with VQS-BF
also yielding a small improvement in the queue size compared



to BF-J/S. It is interesting that VQS-BF has a consistent
advantage over BF-J/S at higher traffic, albeit small, although
both algorithms are greedy in the way that they pack jobs in
servers.

VIII. DISCUSSION AND OPEN PROBLEMS

In this work, we designed three scheduling algorithms for
jobs whose sizes come from a general unknown distribution.
Our algorithms achieved two goals: keeping the complexity
low, and providing throughput guarantees for any distribution
of job sizes, without actually knowing the prior distribution.

Our results, however, are lower bounds on the performance
of the algorithms and simulation results show that the algo-
rithms BF-J/S and VQS-BF may support workloads that go
beyond their theoretical lower bounds. It remains as an open
problem to tighten the lower bounds or construct upper bounds
that approach the lower bounds.

We made some simplifying assumptions in our model but
results indeed hold under more general models. One of the
assumptions was that the servers are homogeneous. BF-J/S
and our analysis can indeed be easily applied without this
assumption. For VQS and VQS-BF, the scheduling can be
also applied without changes when servers have resources
that differ by a power of 2 which is a common case. As a
different approach, we can maintain different sets of virtual
queues, one set for each type of servers. Another assumption
was that service durations follow geometric distribution. This
assumption was made to simplify the proofs, as it justifies that
a server will empty in a finite expected time by chance. Since
this may not happen under general service time distributions
(e.g. one may construct adversarial service durations that
prevent server from becoming empty), in all our algorithms
we can incorporate a stalling technique proposed in [11] that
actively forces a server to become empty by preventing it from
scheduling new jobs. The decision to stall a server is made
whenever server operates in an “inefficient” configuration. For
BF-J/S that condition is when the server is less than half
full, while for VQS and VQS-BF, is when the weight of a
configuration is far from the maximum weight over K(J)

RED.
Finally we based our scheduling decisions on a single

resource. Depending on workload, this may cause different
levels of fragmentation, but resource requirements will not
be violated if resources of jobs are mapped to the maximum
resource (e.g. as in our preprocessing on Google trace data). A
more efficient approach is to extend BF-J/S to multi-resource
setting, by considering a Best-Fit score as a linear combination
of per-resource occupancies. We leave the theoretical study of
scheduling jobs with multi-resource distribution as a future
research.
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