
1

Flow-Level Stability of Wireless Networks:
Separation of Congestion Control and Scheduling

J. Ghaderi, Student Member, IEEE, T. Ji, Student Member, IEEE, R. Srikant, Fellow, IEEE

Abstract—It is by now well-known that wireless networks with
file arrivals and departures are stable if one uses α-fair congestion
control and back-pressure based scheduling and routing. In this
paper, we examine whether α-fair congestion control is necessary
for flow-level stability. We show that stability can be ensured
even with very simple congestion control mechanisms, such as
a fixed window size scheme which limits the maximum number
of packets that are allowed into the ingress queue of a flow. A
key ingredient of our result is the use of the difference between
the logarithms of queue lengths as the link weights. This result
is reminiscent of results in the context of CSMA algorithms, but
for entirely different reasons.

I. INTRODUCTION

In order to operate wireless systems efficiently, scheduling
algorithms are needed to facilitate simultaneous transmissions
of different users. Scheduling algorithms for wireless networks
have been widely studied since Tassiulas and Ephremides [1]
proposed the max weight algorithm for single-hop wireless
networks and its extension to multihop networks using the
notion of back-pressure or differential backlog. Such algo-
rithms assign a weight to each link as a function of the
number of packets queued at the link, and then, at each
instant of time, select the schedule with the maximum weight,
where the weight of a schedule is computed by summing the
weights of the links that the schedule will serve. Tassiulas and
Ephremides establish that the back-pressure algorithm (and
hence, the max weight algorithm) is throughput optimal in the
sense that it can stabilize the queues of the network for the
largest set of arrival rates possible without actually knowing
the arrival rates. The back-pressure algorithm works under
very general conditions but it does not consider flow-level
dynamics. It considers packet-level dynamics assuming that
there is a fixed set of users/flows and packets are generated
by each flow according to some stochastic process. In real
networks however, flows arrive randomly to the network, have
only a finite amount of data, and depart the network after
the data transfer is completed. Moreover, there is no notion
of congestion control in the back-pressure algorithm while
most modern communication networks use some congestion
control mechanism for fairness purposes or to avoid excessive
congestion inside the network [2].

There is a rich body of literature on the packet-level stability
of scheduling algorithms, e.g., [1], [7], [8], [9]. Stability of

The authors are with the Department of Electrical and Computer En-
gineering, and the Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign, Urbana, IL 61801, USA (emails:{jghaderi, tji2,
rsrikant}@illinois.edu).

The research was supported in part by ARO MURIs W911NF-07-1-0287
and W911NF-08-1-0233 and AFOSR MURI FA 9550-10-1-0573.

wireless networks under flow-level dynamics has been studied
in, e.g., [2], [3], [4]. Here, by stability, we mean that the
number of flows in the network and the queue sizes at each
node in the network remain finite.

Under flow-level dynamics, if the scheduler has access to
the total queue-length information at nodes, then it can use
max weight/back-pressure algorithm to achieve throughput
optimality, but this information is not typically available to
the scheduler because it is implemented as part of the MAC
layer. Moreover, without congestion control, queue sizes at
different nodes could be widely different. This could lead to
long periods of unfairness among flows because links with
long flows/files (large weights) will get priority over links
with short flows/files (small weights) for long periods of time.
Therefore, we need to use congestion control to provide better
Quality-of-Service (QoS). With congestion control, only a few
packets from each file are released to the MAC layer at each
time instant, and scheduling is done based on these MAC layer
packets. Specifically, the network control policy consists of
two parts: (a) “congestion control” which determines the rate
of service provided to each flow, and (b) “packet scheduling”
which determines the rate of service provided to each link in
the network.

However, to achieve flow-level stability, prior works [2],
[3], [4] require that a specific form of congestion control
has to be used, namely, ingress queue based rate adaptation
using α-fair utility functions. More accurately, (a) the rate at
which a flow/file generates packets into its ingress queue must
maximize its utility subject to a linear penalty (price). The
utility function of each flow is assumed to be in the form
x1−α/(1 − α), for some α > 0, with x the flow rate, and
the penalty (price) charged is the number of packets queued
at the ingress queue associated with the flow, (b) scheduling
of packets is performed using the max weight/back-pressure
algorithm, where the weight of each link is the queue size (or
the queue size raised to the power α).

In this paper, we show that α-fair congestion control is not
necessary for flow-level stability, and, in fact, very general
congestion control mechanisms are sufficient to ensure flow-
level stability. The result suggests that ingress queue-based
congestion control is more important than α-fairness to ensure
network stability, when congestion control is used in conjunc-
tion with max weight scheduling/routing. As an example, a
simple fixed window size scheme which limits the maximum
number of packets allowed into the ingress queue of each flow
can provide flow-level stability.

In establishing the above result, we have used the max
weight algorithm with link weights which are log-differentials
of MAC-layer queue lengths, i.e., the weight of a link (i, j) is

2

chosen to be in the form of log(1+qi)− log(1+qj), where qi
and qj are the MAC-layer queue lengths of nodes i and j. Such
a choice of link weights is crucial in establishing our stability
result. Note that we only use MAC-layer queue lengths that
are readily available at the nodes and do not involve knowing
the number of existing files at Transport layers.

The use of logarithmic functions of queue lengths naturally
suggests the use of a CSMA (Carrier Sense Multiple Access)-
type algorithm to implement the scheduling algorithm in a
distributed fashion [12], [13], [10]. The main difference here
is that the weights are log-differential of queue lengths rather
than log of queue lengths themselves, and thus results in
[12], [13], [10] are not directly applicable. We show that
the stability results for CSMA without time-scale separation
can be extended to the multihop model in this paper with
log-differential of queue lengths as weights, and the type of
congestion control mechanism considered here.

The main contributions of this paper can be summarized as
follows:

1) We show that α-fair congestion control is not necessary
for stability, and, in fact, very general ingress queue
based congestion control mechanisms are sufficient to
ensure stability. A key ingredient of our result is the
use of the difference between the logarithms of queue
lengths as the link weights.

2) The design of efficient scheduling and congestion con-
trol algorithms can be decoupled. This separation result
would allow using different congestion control mecha-
nisms at the edge of the network for providing different
fairness or QoS considerations without need to change
the scheduling algorithm implemented at internal routers
of the network.

3) A by-product of the weight function that we use for
each link is that one can use CSMA to implement
the scheduling algorithm in a distributed fashion. In
particular, unlike [5] which also considers flow-level
stability, we do not have to assume time-scale separation
between the dynamics of flows, packets, and CSMA
algorithm.

We note that earlier versions of this paper appeared in [21],
[23] without many of the details and the proofs included here.
In particular, all three time-scales (flow, packet, and MAC
algorithm) are considered in the analytical results here unlike
the earlier versions. One interesting aspect of the simulations
in [21] is that it suggests that the advantage of using only
MAC-layer queue length for scheduling is that it reduces
delays dramatically for short flows. However, due to space
limitations, simulation results are not presented here, but the
interested reader can find them in [21].

The rest of the paper is organized as follows. In Section II,
we describe our models for the wireless network, file arrivals,
and Transport and MAC layers. We propose our scheduling
algorithm in Section III. Section IV is devoted to the formal
statement about the throughput-optimality of the algorithm and
its proof. In Section V, we consider the distributed implemen-
tation of our algorithm. Section VI contains conclusions and
possible future research directions. The appendices at the end
of the paper contain some of the proofs.

II. SYSTEM MODEL

Wireless network model

Consider a multihop wireless network consisting of a set
of nodes N = {1, 2, .., N} and a set of links L between
the nodes. There is a link from i to j, i.e., (i, j) ∈ L,
if transmission from i to j is allowed. There is a set of
users/source nodes U ⊆ N and each user/source transfers
data to a destination over a fixed route in the network1. For a
user/source u ∈ U , we use d(u)(6= u) to denote its destination.
Let D := d(U) denote the set of all destinations.

We consider a time-slotted system. At each time slot t,
files of different sizes arrive at the source nodes. As in the
standard congestion control algorithm, TCP, files inject packets
into their MAC-layer queues. The packets then travel to their
respective destinations in a multihop fashion, i.e., along links
in the network with queueing in buffers at intermediate nodes.
Transmission of each packet along its route is subject to
physical layer constraints such as interference and limited link
capacity.

Let R denote the set of available rate vectors (or trans-
mission schedules) r = [rij : (i, j) ∈ L] at each time slot.
Thus, rij is the number of packets that can be transmitted
from i to j during time slot t if the transmission schedule r is
selected at time slot t. Note that each transmission schedule r
corresponds to a set of node power assignments chosen by the
network. Also let Co(R) denote the convex hull of R which
corresponds to time-sharing between different rate vectors.
Hence, if γ = [γij : (i, j) ∈ L] denotes the average rate
of service provided to the links, then in general, γ ∈ Co(R).

Traffic model

We use as(t) to denote the number of files that arrive at
source s at time t and assume that the process {as(t); s ∈
U}{t=1,2,··· } is i.i.d. over time and independent across users
with rate [κs; s ∈ U] and has bounded second moments.
Moreover, we assume that there are K possible file types
where the files of type i are geometrically distributed with
mean 1/ηi packets. The file arrived at source s can belong
to type i with probability psi, i = 1, 2, ..,K, psi ≥ 0,∑k
i=1 psi = 1. Our motivation for selecting such a model

is due to the large variance distribution of file sizes in the
Internet. It is believed, see e.g., [15], that most of bytes are
generated by long files while most of the files are short files.
By controlling the probabilities psi, for the same average file
size, we can obtain distributions with very large variance. Let
ms :=

∑K
i=1 psi/ηi denote the mean file size at node s,

and define the work load at source s by ρs := κsms. Let
ρ := [ρs : s ∈ U] be the vector of such work loads in the
network .

Transport and MAC layers

Upon arrival of a file at a source Transport layer, a TCP-
connection is established that regulates the injection of packets

1The final results can be extended to case when each source has multiple
destinations or to the cases of multi-path routing and adaptive routing. Here,
to expose the main features, we have considered a simpler model.

3

into the MAC layer. Once transmission of a file ends, the file
departs and the corresponding TCP-connection will be closed.
The MAC-layer is responsible for making the scheduling de-
cisions to deliver the MAC-layer packets to their destinations
over their corresponding routes. Each node has a fixed routing
table that determines the next hop for each destination.

At each source node, we index the files according to their
arriving order such that the index 1 is given to the earliest
file. This means that once transmission of a file ends, the
indices of the remaining files are updated such that indices
again start from 1 and are consecutive. Note that the indexing
rule is not part of the algorithm implementation and it is
used here only for the purpose of analysis. We use Wsf (t)
to denote the TCP congestion window size for file f at
source s at time t. Hence, Wsf is a time-varying sequence
which changes as a result of TCP congestion control. If the
congestion window of file f is not full, TCP will continue
injecting packets from the remainder of file f to the congestion
window until file f has no packets remaining at the Transport
layer or the congestion window becomes full. We consider
ingress queue-based congestion control meaning that when a
packet of congestion window departs the ingress queue, it is
replaced with a new packet from its corresponding file at the
Transport layer. It is important to note that the MAC layer does
not know the number of remaining packets at the Transport
layer, so scheduling decisions have to be made based on the
MAC-layers information only. It is reasonable to assume that
1 ≤ Wsf (t) ≤ Wcong , i.e., each file has at least one packet
waiting to be transferred and all congestion window sizes are
bounded from above by a constant Wcong .

Routing and queue dynamics
At the MAC layer of each node n ∈ N , we consider

separate queues for the packets of different destinations. Let
q
(d)
n , d ∈ D, denote the packets of destination d at the

MAC-layer of n. Also let R(d)
N×N be the routing matrix

corresponding to packets of destination d where R
(d)
ij = 1

if the next hop of node i for destination d is node j, for some
j such that (i, j) ∈ L, and 0 otherwise. Routes are acyclic
meaning that each packet eventually reaches its destination
and leaves the network. A packet of destination d that is
transmitted from i to j is removed from q

(d)
i and added to

q
(d)
j . Packet that reaches its destination is removed from the

network. Note that packets in q(d)n could be generated at node
n itself (if n is a source with destination d) or belong to other
sources that use n as an intermediate relay along their routes
to destination d.

III. DESCRIPTION OF SCHEDULING ALGORITHM

The algorithm is essentially the back-pressure algorithm [1]
but it only uses the MAC-layer information. The key step in
establishing the optimality of such an algorithm is using an
appropriate weight function of the MAC-layer queues instead
of using the total queues. In particular, consider a log-type
function

g(x) :=
log(1 + x)
h(x)

, (1)

where h(x) is an arbitrary increasing function which makes
g(x) an increasing concave function. Assume that h(0) > 0
and g(x) is continuously differentiable on (0,∞): For exam-
ple, h(x) = log(e + log(1 + x)) or h(x) = logθ(e + x) for
some 0 < θ < 1. For each link (i, j) with R(d)

ij = 1, define

w
(d)
ij (t) := g

(
q
(d)
i (t)

)
− g
(
q
(d)
j (t)

)
. (2)

Note that if {d ∈ D : R(d)
ij = 1} = ∅, then we can remove

the link (i, j) from the network without reducing the capacity
region since no packets are forwarded over it. So without loss
of generality, we assume that {d ∈ D : R(d)

ij = 1} 6= ∅, for
every (i, j) ∈ L.

Let x(d)
ij (t) denote the scheduling variable that shows the

rate at which the packets of destination d can be forwarded
over the link (i, j) at time slot t. The scheduling algorithm is
as follows.

At each time t:

• Each node n observes the MAC-layer queue sizes of itself
and its next hop, i.e., for each d ∈ D, it observes q(d)n

and q(d)j for a j such that R(d)
ij = 1.

• For each link (i, j), calculate a weight

wij(t) := max
d∈D:R

(d)
ij =1

w
(d)
ij (t), (3)

and

d̃∗ij(t) := arg max
d∈D:R

(d)
ij =1

wdij(t). (4)

• Find the optimal rate vector x̃∗ ∈ R that solves

x̃∗(t) = arg max
r∈R

∑
(i,j)∈L

rijwij(t). (5)

• Finally, assign x
(d)
ij (t) = x̃∗ij if d = d̃∗ij(t), and zero

otherwise (break ties at random).

IV. SYSTEM STABILITY

In this section, we analyze the system and prove its stability
under the algorithm described in Section III.

For the analysis, we use Q(d)
n (with capital Q) to denote the

total per-destination queues, i.e., the total number of packets
of destination d at node n, in its MAC or Transport layer.
Note that, for each node n, the MAC (or total) per-destination
queues q(d)n (or Q(d)

n) fall into three cases: (i) n is source and d
is its destination, (ii) n is a source but d is not its destination,
and (iii) n is not a source. In the case (i), it is important to
distinguish between the MAC-layer queue and the total queue
associated with d, i.e., Q(d)

n 6= q
(d)
n , because of the existing

packets of destination d at the Transport layer of n. However,
Q

(d)
n = q

(d)
n holds in case (ii), and for all destinations in case

(iii).
Let zij(t) denote the number of packets transmitted over

link (i, j) ∈ L at time t. Then, the total-queue dynamics for

4

a destination d, at each node n, is given by

Q(d)
n (t+ 1) = Q(d)

n (t)−
N∑
j=1

R
(d)
nj z

(d)
nj (t)

+
N∑
i=1

R
(d)
in z

(d)
in (t) +A(d)

n (t), (6)

where A(d)
n (t) is the total number of packets for destination

d that new files bring to node n at time slot t. Note that
A

(d)
n (t) ≡ 0 in the cases (ii) and (iii) above. With minor abuse

of notation, we write E
[
A

(d)
n (t)

]
= ρ

(d)
n with ρ

(d)
n := ρn

in the case (i) and ρ
(d)
n := 0 otherwise. Also z

(d)
ij (t) =

min
{
x

(d)
ij (t), q(d)i (t)

}
obviously, because i cannot send more

than its MAC-layer queue content at each time.

Definition 1. The capacity region of the network C is defined
as the set of all load vectors ρ that under which the total
queues in the network can be stabilized. Note that under our
flow-level model, stability of total queues will imply that the
number of files in the network is also stable. It is well-known,
see e.g. [7], that a vector ρ belongs to C if and only if there
exits an average service rate vector γ ∈ Co(R) such that

γ
(d)
ij ≥ 0; ∀d ∈ D and ∀(i, j) ∈ L,

ρ(d)
n −

N∑
j=1

R
(d)
nj γ

(d)
nj +

N∑
i=1

R
(d)
in γ

(d)
in ≤ 0; ∀d ∈ D, ∀n 6= d,∑

d∈D

γ
(d)
ij ≤ γij ; ∀(i, j) ∈ L.

Theorem 1. For any ρ strictly inside C, the scheduling
algorithm in Section III, can stabilize the network indepen-
dent of transport-layer ingress queue-based congestion control
mechanism (as long as the minimum window size is one and
the window sizes are bounded) and the (non-idling) service
discipline used to transmit packets from active nodes.

Remark 1. Theorem 1 holds even when h ≡ 1 in (1), however,
for the distributed implementation of the algorithm in Section
V, we need g to grow slightly slower than log.

Theorem 1 shows that it is possible to design the ingress
queue-based congestion controller regardless of the scheduling
algorithm implemented in the core network. This will allow
using different congestion control mechanisms at the edge
of the network for different fairness or QoS considerations
without need to change the scheduling algorithm implemented
at internal routers of the network. As we will see, a key ingre-
dient of such a decomposition result is the use of difference
between the logarithms of queue lengths, as in (2), for the link
weights in the scheduling algorithm.

The rest of this section is devoted to proof of Theorem 1.

A. Proof of Theorem 1

1) Order of events: Since we use a discrete-time model,
we have to specify the order in which files/packets arrive and
depart, which we do below:

1) At the beginning of each time slot, a scheduling decision
is made by the scheduling algorithm. Packets depart
from the MAC layers of scheduled links.

2) File arrivals occur next. Once a file arrives, a new TCP
connection is set up for that file with an initial pre-
determined congestion window size.

3) For each TCP connection, if the congestion window is
not full, packets are injected into the MAC layer from
the Transport layer until the window size is fully used
or there are no more packets at the Transport layer.

We re-index the files at the beginning of each time slot because
some files might have been departed during the last time slot.

2) State of the system: Define the state of node n as

Sn(t) =
{

(q(d)n (t), I(d)
n (t)) : d ∈ D,

(ξnf (t),Wnf (t), σnf (t)) : 1 ≤ f ≤ Nn(t)
}
,(7)

where Nn(t) is the number of existing files at node n at
the beginning of time slot t, σnf (t) ∈ {1/η1, · · · , 1/ηK}
is its mean size (or type), and Wnf (t) is its corresponding
congestion window size. Note that σnf (t) is a function of
time only because of re-indexing since a file might change its
index from slot to slot. ξnf (t) ∈ {0, 1} indicates whether file
f has still packets in the Transport layer. More accurately, if
Unf (t) is the number of remaining packets of file f at node
n, then ξnf (t) = 1{Unf (t) > Wnf (t)}. Obviously, if n is
not a source node, then we can remove (ξnf ,Wnf , σnf) from
the description of Sn. I(d)

n (t) denotes the information required
about q(d)n (t) to serve the MAC-layer packets which depends
on the specific service discipline implemented in MAC-layer
queues. In the rest of the paper, we consider the case of FIFO
(First In-First Out) service discipline in MAC-layer queues.
In this case, I(d)

n (t) is simply the ordering of packets in
q
(d)
n (t) according to their entrance times. As it will turn out

from the proof, the system stability will hold for any none-
idling service discipline. Define the state of the system to be
S(t) = {Sn(t) : n ∈ N}. Now, given the scheduling algorithm
in section III, and our system model in Section II, S(t) evolves
as a discrete-time Markov chain.

Remark 2. We only require that the congestion window
dynamics could be described as a function of queue lengths
of the network so that the network Markov chain is well-
defined. Even in the case that the congestion window is a
function of the delayed queue lengths of the network up to T
time slots earlier, due to the feedback delay of at most T from
destination to source, the network state could be modified, to
include the queues up to T time slots before, so that the same
proof technique still applies.

Next, we analyze the Lyapunov drift to show that the
network Markov chain is positive recurrent and, as a result,
the number of files in the system and queue sizes are stable.

3) Lyapunov analysis: Define Q̄
(d)
n (t) :=

E
[
Q

(d)
n (t)|Sn(t)

]
to be the expected total queue length

at node n given the state Sn(t). Then, if n is a source, and d

5

is its destination,

Q̄(d)
n (t) = q(d)n (t) +

Nn(t)∑
f=1

[
σnf (t)ξnf (t)

]
. (8)

Otherwise, if d 6= d(n) or n is not a source, then Q̄
(d)
n (t) =

q
(d)
n (t). Note that given the state S(t), Q̄(d)

n is known.
The dynamics of Q̄(d)

n (t) involves the dynamics of q(d)n (t),
ξn(t), and Nn(t), and, thus, it consists of: (i) departure of
MAC-layer packets, (ii) new file arrivals (if n is a source),
(iii) arrival of packets from previous hops that use n as an
intermediate relay, (iv) injection of packets into the MAC layer
(if n is a source), and (v) departure of files from the Transport
layer (if n is a source). Hence,

Q̄(d)
n (t+ 1) = Q̄(d)

n (t)−
N∑
j=1

R
(d)
nj z

(d)
nj (t) + Ā(d)

n (t)

+
N∑
i=1

R
(d)
in z

(d)
in (t) + Â(d)

n (t)− D̂(d)
n (t), (9)

where Ā(d)
n (t) =

∑Nn(t)+an(t)
f=Nn(t)+1 σnf (t) is the expected number

of packet arrivals due to new files, Â
(d)
n (t) is the total

number of packets injected into the MAC layer to fill up
the congestion window after scheduling and new file arrivals,
and D̂

(d)
n (t) =

∑Nn(t)+an(t)
f=1 σnf (t)Inf (t) is the Transport-

layer “expected packet departure” because of the MAC-layer
injections. Here, Inf (t) = 1 indicates that the last packet of
file f leaves the Transport layer during time slot t; otherwise,
Inf (t) = 02. Note that E

[
Ā

(d)
n (t)

]
= ρ

(d)
n .

Let B(d)
n (t) := Â

(d)
n (t) − D̂

(d)
n (t) in (9), and ES [·] :=

ES [·|S(t)]. It should be clear that when n is a source but
d 6= d(n), or when n is not a source, Ā(d)

n (t) = Â
(d)
n (t) =

D̂
(d)
n (t) = B

(d)
n (t) ≡ 0. Let rmax denote the maximum

link capacity over all the links in the network. Lemma 1
characterizes the first and second moments of B(d)

n (t).

Lemma 1. For the process {B(d)
n (t)},

(i) ES(t)

[
B

(d)
n (t)

]
= 0.

(ii) Let ηmin = min1≤i≤K ηi, then

ES(t)

[
B(d)
n (t)2

]
≤ (κn+N2r2max) max{W2

cong, 1/η
2
min}.

Therefore, we can write

Q̄(d)
n (t+ 1) = Q̄(d)

n (t)−
N∑
j=1

R
(d)
nj z

(d)
nj (t) + Ã(d)

n (t)

+
N∑
i=1

R
(d)
in z

(d)
in (t), (10)

where Ã
(d)
n (t) := Ā

(d)
n (t) + B

(d)
n (t). Note that Ã(d)

n (t) has
mean ρ(d)

n and finite second moment.

2To notice the difference between the indicators Inf (t) and ξnf (t),
consider a specific file and assume that its last packet enters the Transport
layer at time slot t0, departs the Transport layer during time slot t1 and
departs the MAC layer during time slot t2, then its corresponding indicator I
is 1 at time t1 and is 0 for t0 ≤ t < t1 and t1 < t ≤ t2, while its indicator
ξ is 0 for all time t1 ≤ t ≤ t2, and 1 for t0 ≤ t < t1.

Let G(u) :=
∫ u
0
g(x)dx for the function g defined in (1).

Then G is a strictly convex and increasing function. Consider
a Lyapunov function

V (S(t)) =
N∑
n=1

∑
d∈D

G(Q̄(d)
n (t)).

Let ∆V (t) := V (S(t + 1)) − V (S(t)). Using convexity and
monotonicity of G, we get

∆V (t) ≤
N∑
n=1

∑
d∈D

g(Q̄(d)
n (t+ 1))

(
Q̄(d)
n (t+ 1)− Q̄(d)

n (t)
)
.

Next, observe that, using (10),

|Q̄(d)
n (t+ 1)− Q̄(d)

n | ≤ Ã(d)
n (t) +Nrmax.

Hence, because g is strictly increasing,

g(Q̄(d)
n (t+ 1)) ≤ g

(
Q̄(d)
n (t) + Ã(d)

n (t) +Nrmax

)
≤ g(Q̄(d)

n (t)) + (Ã(d)
n (t) +Nrmax)

where the last inequality follows from concavity of g and the
fact that g′ ≤ 1. Hence,

∆V (t) ≤
N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))(Q̄(d)

n (t+ 1)− Q̄(d)
n (t))

+
N∑
n=1

∑
d∈D

(Ã(d)
n (t) +Nrmax)2.

Define u
(d)
n (t) := max

{∑N
j=1R

(d)
nj x

(d)
nj (t)− q(d)n (t), 0

}
, to

be the wasted service for packets of destination d, i.e., when
n is included in the schedule but it does not have enough
packets of destination d to transmit. Then, we have

∆V (t) ≤
N∑
n=1

∑
d∈D

{
g(Q̄(d)

n (t))
[N∑
i=1

R
(d)
in x

(d)
in (t) + Ã(d)

n (t)

−
N∑
j=1

R
(d)
nj x

(d)
nj (t)

]}
+

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))u(d)

n (t)

+
N∑
n=1

∑
d∈D

(Ã(d)
n (t) +Nrmax)2.

Taking the expectation of both sides, given the state at time
t is known, yields

ES(t)

[
∆V (t)

]
≤

N∑
n=1

∑
d∈D

{
g(Q̄(d)

n (t))ES(t)[ρ(d)
n

+
N∑
i=1

R
(d)
in x

(d)
in (t)−

N∑
j=1

R
(d)
nj x

(d)
nj (t)]

}
+ ES(t)

[N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))u(d)

n (t)
]

+ C1,

where C1 = E
[∑N

n=1

∑
d∈D(Ã(d)

n (t) + Nrmax)2
]
< ∞,

because E
[
Ã

(d)
n (t)2

]
<∞.

6

Lemma 2. There exists a positive constant C2 such that, for
all S(t),

∑N
n=1

∑
d∈D ES(t)

[
g(Q̄(d)

n (t))u(d)
n (t)

]
≤ C2.

Using Lemma 2 and changing the order of summations, we
have

ES(t)

[
∆V (t)

]
≤ C1 + C2 +

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))ρ(d)

n

−ES(t)

[∑
(i,j)∈L

∑
d∈D

x
(d)
ij (t)(g(Q̄(d)

i (t))− g(Q̄(d)
j (t)))

]
. (11)

Recall that the link weight that is actually used in the algorithm
is based on the MAC-layer queues as in (2)-(3). For the
analysis, we also define a new link weight based on the state
as

Wij(t) = max
d∈D:R

(d)
ij =1

W
(d)
ij (t), (12)

where, for a link (i, j) ∈ L with R(d)
ij = 1,

W
(d)
ij (t) := g(Q̄di (t))− g(Q̄dj (t)). (13)

Then, the two types of link weights only differ by a constant
as stated by the following lemma.

Lemma 3. Let Wij(t) and wij(t), (i, j) ∈ L, be the link
weights defined by (12)-(13) and (2)-(3) respectively. Then at
all times

|Wij(t)− wij(t)| ≤
log(1 + 1/ηmin)

h(0)
.

Proof: Recall that, at each node n, for all destinations
d 6= d(n), we have Q̄dn(t) = qdn(t). If d = d(n) is the
destination of n, then Q̄dn(t) consists of: (i) packets of d
received from upstream flows that use n as an intermediate
relay, and (ii) MAC-layer packets received from the files
generated at n itself. Since 1 ≤ Wnf (t) ≤ Wcong , the number
of files with destination d that are generated at node n or have
packets at node n as an intermediate relay, is at most q(d)n (t).
Therefore, it is clear that qdn(t) ≤ Q̄dn(t) ≤ qdn(t)+qdn(t) 1

ηmin
.

In the rest of the proof, we drop the dependence of queues on
t for compactness. For all n and d, using a log-type function,
as the function g in (1), yields

g(qdn) ≤ g(Q̄dn) ≤ g
(
qdn(1 + 1/ηmin)

)
≤

log
(
(1 + qdn)(1 + 1/ηmin)

)
h(qdn(1 + 1/ηmin))

≤ g(qdn) +
log(1 + 1/ηmin)

h(0)
. (14)

It then follows that, ∀d ∈ D, and ∀(i, j) ∈ L with R(d)
ij = 1,

|W (d)
ij − w

(d)
ij | ≤ log(1 + 1/ηmin)/h(0). (15)

Let d∗ij := arg max
d:R

(d)
ij =1

W
(d)
ij and d̃∗ij as in (4). Then,

using (15)

wij ≥ w
(d∗ij)

ij ≥Wij − log(1 + 1/ηmin)/h(0),

and, similarly,

Wij ≥W
(d̃∗ij)

ij ≥ wij − log(1 + 1/ηmin)/h(0).

This concludes the proof.
Let x∗(t) be the max weight schedule based on weights

{Wij(t) : (i, j) ∈ L}, i.e.,

x∗(t) = arg max
x∈R

∑
(i,j)∈L

xijWij(t). (16)

Note the distinction between x∗ and x̃∗ as we used x̃∗(t) in
(5) to denote the max weight schedule based on MAC-layer
queues. The weights of the schedules x̃∗ and x∗ differ only
by a constant for all queue values as we show next. From
definition of x∗, in (16),∑

(i,j)∈L

x∗ijWij(t)−
∑

(i,j)∈L

x̃∗ijWij(t) ≥ 0. (17)

On the other hand,∑
(i,j)∈L

x∗ijWij(t)−
∑

(i,j)∈L

x̃∗ijWij(t) =

∑
(i,j)∈L

x∗ijWij(t)−
∑

(i,j)∈L

x∗ijwij(t) (18)

+
∑

(i,j)∈L

x∗ijwij(t)−
∑

(i,j)∈L

x̃∗ijwij(t) (19)

+
∑

(i,j)∈L

x̃∗ijwij(t)−
∑

(i,j)∈L

x̃∗ijWij(t) (20)

≤ 2N2rmax log(1 + 1/ηmin)/h(0), (21)

because, by Lemma 3, (18) and (20) are less than
N2rmax log(1 + 1/ηmin)/h(0) each, and (19) is negative by
definition of x̃∗ in (5). Hence, using (11), (12), and (21), under
MAC scheduling x̃∗, the Lyapunov drift is bounded as follows

ES(t)

[
∆V (t)

]
≤

N∑
n=1

∑
d∈D

{
g(Q̄(d)

n (t))ρ(d)
n

}
− ES(t)

[∑
(i,j)∈L

x∗ij(t)Wij

]
+ C,

where C = C1 + C2 + 2N2rmax log(1 + 1/ηmin)/h(0).
Accordingly, using (12)-(13), and changing the order of

summations in the right hand side of the above inequality
yields

ES(t)

[
∆V (t)

]
≤

N∑
n=1

∑
d∈D

{
g(Q̄(d)

n (t))ES(t)

[
ρ(d)
n +

N∑
i=1

R
(d)
in x

∗(d)
in (t)

−
N∑
j=1

R
(d)
nj x

∗(d)
nj (t)

]+ C,

where x∗
(d)
ij (t) = x∗ij(t) for d = d∗ij(t) (ties are broken

at random) and is zero otherwise. The rest of the proof is
standard. Since load ρ is strictly inside the capacity region,
there must exist a ε > 0 and a γ ∈ Co(R) such that

ρ(d)
n + ε ≤

N∑
j=1

R
(d)
nj γ

(d)
nj −

N∑
i=1

R
(d)
in γ

(d)
in ;∀n ∈ N ,∀d ∈ D. (22)

7

Hence, for any δ > 0,

ES(t)

[
∆V (t)

]
≤

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))

 N∑
i=1

R
(d)
in x

∗(d)
in (t)−

N∑
j=1

R
(d)
nj x

∗(d)
nj (t)


−

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))

 N∑
i=1

R
(d)
in γ

(d)
in (t)−

N∑
j=1

R
(d)
in γ

(d)
nj (t)


− ε

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t)) + C.

But from definition of x∗(t) and convexity of Co(R),∑
(i,j)∈L x

∗
ijWij(t) ≥

∑
(i,j)∈L γijWij(t), ∀γ ∈ Co(R),

hence,

ES(t)

[
∆V (t)

]
≤ −ε

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t)) + C ≤ −δ,

whenever maxn,d Q̄
(d)
n ≥ g−1

(
C2+δ
ε

)
or, as a sufficient

condition, whenever maxn,d q
(d)
n ≥ g−1

(
C2+δ
ε

)
. Therefore, it

follows that the system is stable by an extension of the Foster-
Lyapunov criteria [16] (Theorem 3.1 in [1]). In particular,
queue sizes and the number of files in the system are stable.

Remark 3. Although we have assumed that file sizes follow a
mixture of geometric distributions, our results also hold for the
case of bounded file sizes with general distribution. The proof
argument for the latter case is obtained by minor modifications
of the proof presented in this paper (see [23]) and, hence, has
been omitted for brevity.

V. DISTRIBUTED IMPLEMENTATION

The optimal scheduling algorithm in Section III requires us
to find a maximum weight-type schedule at each time, i.e.,
we need to solve (5) at every time. This is a formidable task,
hence, in this section, we design a distributed version of the
algorithm based on Glauber dynamics.

For simplicity, we consider the following criterion for
successful packet reception: packet transmission over link
(i, j) ∈ L is successful if none of the neighbors of node
j are transmitting. Furthermore, we assume that every node
can transmit to at most one node at each time, receive from
at most one node at each time, and cannot transmit and
receive simultaneously (over the same frequency band). This
especially models the packet reception in the case that the
set of neighbors of node i, i.e., C(i) = {j : (i, j) ∈ L},
is the set of nodes that are within the transmission range of
i and the interference caused by i at all other nodes, except
its neighbors, is negligible. Moreover, the packet transmission
over (i, j) is usually followed by an ACK transmission from
receiver to sender, over (j, i). Hence, for a synchronized
data/ACK system, we can define a Conflict Set (CS) for link
(i, j) as

CS(i,j) = {(a, b) ∈ L : a ∈ C(j), or b ∈ C(i),
or a ∈ {i, j}, or b ∈ {i, j}}. (23)

This ensures that when the links in CS(i,j) are inactive, the
data/ACK transmission over (i, j)/(j, i) is successful.

Furthermore, for simplicity, assume that in each time slot, at
most one packet could be successfully transmitted over a link
(i, j), i.e., xij(t) ∈ {0, 1}. We can represent the interference
constraints by using a conflict graph G(V, E), where each
vertex in V is a communication link in the wireless network.
There is an edge ((i, j), (a, b)) ∈ E between vertices (i, j)
and (a, b) if simultaneous transmissions over communication
links (i, j) and (a, b) are not successful. Therefore, at each
time slot, the active links should form an independent set of
G, i.e., no two scheduled vertices can share an edge in G. Let
R be the set of all such feasible schedules and |L| denote the
number of communication links in the wireless network.

We say that a node is active if it is a sender or a receiver for
some active link. Inactive nodes can sense the wireless medium
and know if there is an active node in their neighborhood.
This is possible because we use a synchronized data/ACK
system and detecting active nodes can be performed by sensing
the data transmission of active senders and sensing the ACK
transmission of active receivers. Hence, using such carrier
sensing, nodes i and j know if the channel is idle, i.e.,∑

(a,b)∈CS(i,j)
xab(t) = 0, or if the channel is busy, i.e.,∑

(a,b)∈CS(i,j)
xab(t) ≥ 1.

Remark 4. For the case of single hop networks, the link
weight (3) is reduced to wij(t) = g(1+qi(t))/h(qi(t)) where i
is the source and j is the destination of flow over (i, j). Such a
weight function is exactly the one that under which throughput
optimality of CSMA has been established in [10]. Next, we will
propose a version of CSMA that is suitable for the general case
of multihop flows and will prove its throughput optimality. The
proof uses techniques originally developed in [12], [13] for
continuous-time CSMA algorithms, and adapted in [10] for
the discrete-time model considered here.

A. Basic CSMA Algorithm for Multihop Networks

For our algorithm, based on the MAC layer information, we
define a modified weight for each link (i, j) as

w̃ij(t) = max
d:R

(d)
ij =1

w̃
(d)
ij (t), (24)

where

w̃
(d)
ij (t) = g̃

(
q
(d)
i (t)

)
− g̃

(
q
(d)
j (t)

)
, (25)

and,

g̃
(
q
(d)
i (t)

)
= max

{
g
(
q
(d)
i (t)

)
, g∗(t)

}
, (26)

where the function g is the same as (1) defined for the
centralized algorithm, and

g∗(t) :=
ε

4N3
g(qmax(t)), (27)

where qmax(t) := maxi,d q
(d)
i (t) is the maximum MAC-layer

queue length in the network at time t and assumed to be
known, and ε is an arbitrary small but fixed positive number.
Note that if we remove g∗(t) from the above definition, then
w̃ij is equal to wij in (2)-(3).

8

Consider the conflict graph G(V, E) of the network as
defined earlier. At each time slot t, a link (i, j) is chosen
uniformly at random, then
(i) If x̃ab(t − 1) = 0 for all links (a, b) ∈ CS(i,j), then

x̃ij(t) = 1 with probability pij(t), and x̃ij(t) = 0 with
probability 1− pij(t) .
Otherwise, x̃ij(t)=0.

(ii) x̃ab(t) = xab(t− 1) for all (a, b) 6= (i, j).
(iii) x

(d)
ij (t) = x̃ij(t) if d = arg max

d:R
(d)
ij =1

w̃
(d)
ij (t) (break

ties at random), and zero otherwise.
We choose pij(t) to be

pij(t) =
exp(w̃ij(t))

1 + exp(w̃ij(t))
. (28)

It turns out that the choice of function g is crucial in
establishing the throughput optimality of the algorithm for
general networks. The following theorem states the main
result regarding the throughput optimality of the basic CSMA
algorithm.

Theorem 2. Under the function g specified in (1), the basic
CSMA algorithm, with any ε > 0, can stabilize the network
for any ρ ∈ (1−3ε)C, independent of Transport-layer ingress
queue-based congestion control (as long as the minimum
window size is one and the window sizes are bounded) and the
(non-idling) service discipline used to serve packets of active
queues.

B. Distributed Implementation

The basic algorithm is based on Glauber-Dynamics with
one site update at each time. For distributed implementation,
we need a randomized mechanism to select a link uniformly
at random at each time slot. We use the Q-CSMA idea [11]
to perform the link selection: each time slot is divided into a
control slot and a data slot. In the control slot, nodes exchange
short control messages, similar to RTS/CTS packets in IEEE
802.11 protocol, to come up with a collision-free decision
schedule m. In the data slot, each link (i, j) that is included
in the decision schedule performs the basic CSMA algorithm.
See [11], [25] for complete details.

The control message sent from node j to i in time slot t,
contains the carrier sense information of node j at time t− 1,
and the vector of MAC-layer queue sizes of node j at time t,
i.e., [q(d)j (t) : d ∈ D], to determine the weight of link (i, j).

Remark 5. To determine the weight at each link, qmax(t) is
also needed. Instead, each node can maintain an estimate of
qmax(t) similar to the procedure suggested in [12]. In fact, it
is easy to incorporate such a procedure in our algorithm be-
cause, in the control slot, each node can include its estimate of
qmax(t) in the control messages and update its estimate based
on the received control messages. Then we can use Lemma 2
of [12] to complete the stability proof. So we do not pursue
this issue here. In practical networks ε

4N3 log(1 + qmax(t)) is
small and we can use the weight function g directly, and thus,
there may not be any need to know qmax(t).

Corollary 1. Under the weight function g specified in (1),
the distributed algorithm can stabilize the network for any
ρ ∈ (1− 3ε)C.

The rest of this section is devoted to proof of Theorem 2.
The proof of Corollary 1 is almost identical and omitted for
brevity (see [10] and [25] for all the details).

C. Proof of Theorem 2

First, suppose the weights are constants, i.e., the basic
algorithm uses a weight vector w̃ = [w̃ij : (i, j) ∈ L] at all
times. Then, the basic algorithm is essentially an irreducible,
aperiodic, and reversible Markov chain (called Glauber dy-
namics) to generate the independent sets of G(V, E). So, the
state space R consists of all independent sets of G. The
stationary distribution of the chain is given by

π(s) =
1
Z

exp
(∑

(i,j)∈s

w̃ij

)
; s ∈ R, (29)

where Z is the normalizing constant.
We start with the following lemma that relates the modified

link weight and the original link weight.

Lemma 4. For all links (i, j) ∈ L, the link weights (24) and
(3) differ at most by g∗(t), i.e.,

|w̃ij(t)− wij(t)| ≤ g∗(t). (30)

Proof is simple and has been omitted for brevity (see [25]).
The basic algorithm uses a time-varying version of the Glauber
dynamics, where the weights change with time. This yields a
time-inhomogeneous Markov chain but we will prove that,
for the choice of function g in (1), it behaves similarly to the
Glauber dynamics. The proof consists of 4 steps; steps 1-3 are
concentred with properties of the basic CSMA algorithm and
step 4 is the Lyapunov analysis.

1) Mixing time of Glauber dynamics: The eigenvalues
of the corresponding transition probability matrix P can be
ordered in such a way that

λ1 = 1 > λ2 ≥ ... ≥ λ|R| > −1.

The convergence to steady state distribution is geometric
with a rate equal to the Second Largest Eigenvalue Modulus
(SLEM) of P [14]. In fact, for any initial probability distribu-
tion µ0 on R, and for all t ≥ 1,

‖µ0Pt − π‖ 1
π
≤ (λ∗)t‖µ0 − π‖ 1

π
, (31)

where λ∗ = max{λ2, |λ|R||} is the SLEM. Note that, by

definition, ‖z‖1/π =
(∑r

i=1 z(i)
2 1
π(i)

)1/2

.

The following lemma gives an upper bound on the SLEM
λ∗ of Glauber dynamics.

Lemma 5. For the Glauber dynamics with the weight vector
w̃ on a graph G(V, E),

λ∗ ≤ 1− 1
16|V| exp(4|V|w̃max)

,

where w̃max = max(i,j)∈L w̃ij .

9

See the appendix of [25] or [10] for the proof. We define
the mixing time as T = 1

1−λ∗ , so

T ≤ 16|L| exp(4|L|w̃max) (32)

Simple calculation, based on (31), reveals that the amount
of time needed to get close to the stationary distribution is
approximately proportional to T .

2) A key proposition: At any time slot t, given the
weight vector w̃(t) = [w̃ij(t) : (i, j) ∈ L], the cen-
tralized algorithm, described in Section III, should solve
maxs∈R

∑
(i,j)∈s w̃ij(t), instead, the distributed algorithm

tries to simulate a distribution

πt(s) =
1
Zt

exp
(∑

(i,j)∈s

w̃ij(t)
)

; s ∈ R, (33)

i.e., the stationary distribution of Glauber dynamics with the
weight vector w̃(t) at time t.

Let Pt denote the transition probability matrix of Glauber
dynamics with the weight vector w̃(t). Also let µt be the true
probability distribution of the time-inhomogeneous chain, over
the set of schedules R, at time t. Therefore, µt = µt−1Pt. Let
πt denote the stationary distribution of the time-homogenous
Markov chain with P = Pt as in (33). By choosing proper g∗

and g(·), we aim to ensure that µt and πt are close enough,
i.e., ‖πt−µt‖TV ≤ δ for some δ arbitrary small, where ‖π−
µ‖TV := 1

2

∑r
i=1 |π(i)− µ(i)|. Note that ‖µ− π‖ 1

π
≥ 2‖µ−

π‖TV . Next, we characterize the amount of change in the
stationary distribution as a result of queue evolutions.

Lemma 6. For any schedule s ∈ R, e−αt ≤ πt+1(s)
πt(s)

≤ eαt ,
where,

αt = 2(1+Wcong)|L|g′
(
g−1(g∗(t+1))−1−Wcong

)
, (34)

and Wcong is the maximum congestion window size.

Now, equipped with Lemmas 5 and 6, we make use of the
results in [12], [13] and [10] in the final step of the proof.
Specifically, we will use the following key Proposition from
[10].

Proposition 1. Given any δ > 0, ‖πt − µt‖TV ≤ δ/4 holds
when qmax(t) ≥ qth + t∗, if there exists a qth such that

αtTt+1 ≤ δ/16 whenever qmax(t) > qth, (35)

where
(i) Tt ≤ 16|L| exp(4|L|w̃max(t)),

(ii) t∗ is the smallest t such that

1√
mins πt1(s)

exp(−
t1+t

∗∑
k=t1

1
T 2
k

) ≤ δ/4, (36)

with qmax(t1) = qth.

In other words, Proposition 1 states that when queue lengths
are large, the observed distribution of the schedules is close to
the desired stationary distribution. The key idea in the proof is
that, for αt small, the weights change at the rate αt while the
system responds to these changes at the rate 1/Tt+1. Condition
(35) is to ensure that the weight dynamics are slow enough

compared to response time of the chain such that the chain
remains close to its equilibrium (stationary distribution).

We will also use the following lemma that relates the
maximum queue length and the maximum weight in the
network. Hence, when one grows, the other one increases as
well.

Lemma 7. Let wmax(t) = max(i,j)∈L wij(t). Then

1
N
g (qmax(t)) ≤ wmax(t) ≤ g (qmax(t)) .

3) Some useful properties of the basic CSMA algorithm:

Lemma 8. The Basic CSMA algorithm, with function g as in
(1), satisfies the requirements of Proposition 1.

The formal proof can be found in the appendix. Roughly
speaking, since the mixing time T is exponential in g(qmax),
g′(g−1(g∗)) must be in the form of e−g

∗
; otherwise it will be

impossible to satisfy αtTt+1 < δ/16 in Proposition 1 for any
arbitrarily small δ as qmax(t) → ∞. The only function with
such a property is the log(·) function. In fact, g must grow
slightly slower than log(·) to satisfy (35), and to ensure the
existence of a finite t∗ in Lemma 1. For example, by choosing
functions that grow much slower than log(1 +x), like h(x) =
log(e+ log(1 +x)), we can make g(x) behave approximately
like log(1 +x) for large ranges of x (correspondingly, for the
range of practical queue lengths).

Next, the following lemma states that, with high probabil-
ity, the basic CSMA algorithm chooses schedules that their
weights are close to the max weight schedule.

Lemma 9. Given any 0 < ε < 1 and 0 < δ < 1, there exists a
B(δ, ε) > 0 such that whenever qmax(t) > B(δ, ε), the basic
CSMA algorithm chooses a schedule s(t) ∈ R such that∑

(i,j)∈s(t)

wij(t) ≥ (1− ε) max
s∈R

∑
(i,j)∈s

wij(t),

with probability larger than 1− δ.

Proof: Let w∗(t) = maxs∈R
∑

(i,j)∈s wij(t) and define

χt :=
{
s ∈ R :

∑
(i,j)∈s

wij(t) < (1− ε)w∗(t)
}
.

Therefore, we need to show that µt(χt) ≤ δ, for qmax(t) large
enough. For our choice of g(·) and g∗, it follows from Proposi-
tion 1 that, whenever qmax(t) > qth+t∗, 2‖µt−πt‖TV ≤ δ/2,
and consequently,

∑
s∈R

∣∣∣µt(s)− πt(s)∣∣∣ ≤ δ/2. Thus,∑
s∈χt

µt(s) ≤
∑
s∈χt

πt(s) + δ/2.

Therefore, to ensure that
∑
s∈χt µt(s) ≤ δ, it suffices to have∑

s∈χt πt(s) ≤ δ/2. But, by Lemma 4, w̃ij(t) ≤ wij(t) +
g∗(t), so,∑

s∈χt

πt(s) ≤
∑
s∈χt

1
Zt
e
∑

(i,j)∈s wij(t)e|s|g
∗(t)

≤
∑
s∈χt

1
Zt
e(1−ε)w

∗(t)e|L|g
∗(t),

10

and

Zt =
∑
s∈R

e
∑

(i,j)∈s w̃ij(t) >
∑
s∈R

e
∑

(i,j)∈s(wij(t)−g
∗(t))

> ew
∗(t)−|L|g∗(t).

Therefore, ∑
s∈χt

πt(s) ≤ 2|L|e2|L|g
∗(t)−εw∗(t),

when qmax(t) > qth + t∗. Note that w∗(t) ≥ wmax(t) ≥
g(qmax(t))/N , and g∗(t) = ε

4N3 g(qmax(t)), so∑
s∈χt

πt(s) ≤ 2N
2
e−

ε
2N g(qmax(t)) ≤ δ/2

whenever qmax(t) > B(δ, ε) with

B(δ, ε) = max
{
qth + t∗, g−1

(2N
ε

(N2 log 2 + log
2
δ

)
)}

.

4) Lyapunov analysis: Now we are ready to prove the
stability of the network under the basic CSMA algorithm. Let
x∗ and x̃∗ be the optimal schedules based on total queues
and MAC queues respectively, given by (16) and (5), and x̃
be the schedule generated by the basic CSMA algorithm. The
proof is parallel to the stability argument of the centralized
algorithm. In particular, the inequality (11) still holds, which
is

ES(t)

[
∆V (t)

]
≤ C1 + C2 +

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))ρ(d)

n

− ES(t)

[∑
(i,j)∈L

∑
d∈D

x
(d)
ij (t)W (d)

ij

]

= C1 + C2 +
N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))ρ(d)

n

− ES(t)

[∑
(i,j)∈L

x̃ij(t)Wij(t)
]
. (37)

Next, observe that∑
(i,j)∈L

x∗ijWij(t)− ES(t)

[∑
(i,j)∈L

x̃ijWij(t)
]

=

= ES(t)

[∑
(i,j)∈L

x∗ijWij(t)−
∑

(i,j)∈L

x∗ijwij(t)
]

(38)

+ ES(t)

[∑
(i,j)∈L

x∗ijwij(t)−
∑

(i,j)∈L

x̃ijwij(t)
]

(39)

+ ES(t)

[∑
(i,j)∈L

x̃ijwij(t)−
∑

(i,j)∈L

x̃ijWij(t)
]
. (40)

Each of the terms (38) and (40) are less than |L| log(1 +
1/ηmin)/h(0) by Lemma 3. The term (39) is bounded from

above, by using Lemma 9, as follows.

(39) ≤
∑

(i,j)∈L

x∗ijwij(t)− (1− δ)(1− ε)
∑

(i,j)∈L

x̃∗ijwij(t)

≤
∑

(i,j)∈L

x∗ijwij(t)− (1− δ)(1− ε)
∑

(i,j)∈L

x∗ijwij(t)

≤ (1− (1− δ)(1− ε))
∑

(i,j)∈L

x∗ijWij(t)

+|L| log(1 + 1/ηmin)/h(0),

whenever qmax(t) ≥ B(δ, ε), for any δ > 0. Thus, using the
above bounds for terms (38), (39) and (40), we get

ES(t)

[∑
(i,j)∈L

x̃ijWij(t)
]
≥ (1− δ)(1− ε)

∑
(i,j)∈L

x∗ijWij(t)

− 3|L| log(1 + 1/ηmin)/h(0).(41)

Using (41) in (37) yields

ES(t)

[
∆V (t)

]
≤ C3 +

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))ρ(d)

n

− (1− δ)(1− ε)
∑

(i,j)∈L

x∗ijWij(t) (42)

where C3 := C1 + C2 + 3|L| log(1 + 1/ηmin)/h(0). Using
(12) and rewriting the right-hand-side of (42), by changing
the order of summations, yields

ES(t)

[
∆V (t)

]
≤ C3 +

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))

[
ρ(d)
n

+(1− δ)(1− ε)
(N∑
i=1

R
(d)
in x

∗(d)
in (t)−

N∑
j=1

R
(d)
nj x

∗(d)
nj (t)

)]
.

whenever qmax(t) ≥ B(δ, ε). The rest of the proof is standard.
For any load ρ strictly inside (1 − 3ε)C, there must exist a
γ ∈ Co(R) such that for all 1 ≤ n ≤ N , and all d ∈ D,

ρ(d)
n < (1− 3ε)

(N∑
j=1

R
(d)
nj γ

(d)
nj −

N∑
i=1

R
(d)
in γ

(d)
in

)
. (43)

Let ρ∗

1−3ε = minn∈N ,d∈D
(∑

j R
(d)
nj γ

(d)
nj −

∑
iR

(d)
in γ

(d)
in

)
for

some positive ρ∗. Hence,

ES(t)

[
∆V (t)

]
≤ (1− δ)(1− ε)

N∑
n=1

∑
d∈D

{
g(Q̄(d)

n (t))×

[N∑
i=1

R
(d)
in x

∗(d)
in (t)−

N∑
j=1

R
(d)
nj x

∗(d)
nj (t)

]}
+ (1− 3ε)

N∑
n=1

∑
d∈D

{
g(Q̄(d)

n (t))×

[N∑
j=1

R
(d)
nj γ

(d)
nj −

N∑
i=1

R
(d)
in γ

(d)
in

]}
+ C3.

For any fixed small ε > 0, we can choose δ < ε/(1 − ε) to
ensure (1− δ)(1− ε) > 1− 2ε. Moreover, from definition of

11

x∗(t) and convexity of Co(R), it follows that

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))

[N∑
j=1

R
(d)
nj x

∗(d)
nj (t)−

N∑
i=1

R
(d)
in x

∗(d)
in (t)

]
≥

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))

[N∑
j=1

R
(d)
nj γ

(d)
nj −

N∑
i=1

R
(d)
in γ

(d)
in

]
, (44)

for any γ ∈ Co(R). Hence,

ES(t)

[
∆V (t)

]
≤

− ε
N∑
n=1

∑
d∈D

g(Q̄(d)
n (t))

[N∑
j=1

R
(d)
nj γ

(d)

nj
−

N∑
i=1

R
(d)
in γ

(d)
in

]
+ C3

≤ −ρ∗ ε

1− 3ε

N∑
n=1

∑
d∈D

g(Q̄(d)
n (t)) + C3 ≤ −ε′,

whenever maxn,d Q̄
(d)
n ≥ g−1

(
C3+ε

′

ρ∗
1−3ε
ε

)
and qmax(t) ≥

B(δ, ε) or, as a sufficient condition, whenever

qmax(t) ≥ max
{
B(δ, ε), g−1

(C3 + ε′

ρ∗
1− 3ε
ε

)}
.

In particular, to get negative drift, −ε′, for some positive
constant ε′, it suffices that

max
n

Nn > max
{
g−1

(C3 + ε′

ρ∗
1− 3ε
ε

)
, B(δ, ε)

}
because qmax(t) ≥ maxnNn, and g is an increasing function.
This concludes the proof of Theorem 2.

VI. CONCLUDING REMARKS

In this paper, we showed that α-fair congestion control is
not necessary for flow-level stability. In fact, by using back-
pressure with link weights that are log-differentials of (MAC-
layer) queue lengths, the network stability is guaranteed for
very general congestion control mechanisms. Hence, one can
use different congestion control mechanisms for providing dif-
ferent QoS, without need to change the scheduling algorithm
implemented at the internal routers of the network. The choice
of log-differential link weights also enables us to implement
our algorithm in a distributed fashion using CSMA schemes,
without loss of throughput optimality.

Our constraining assumptions regarding the congestion con-
trol mechanisms are very mild and compatible with the stan-
dard implementations like TCP. It is observed in [20] in the
context of multiclass queueing systems that a fixed congestion
window size implicitly solves an optimization problem in
an asymptotic regime. It would be interesting to investigate
how the congestion window dynamics and the links weights
impact the system QoS performance for wireless networks.
Our simulation results in [21] show that log-differential link
weights, with a fixed congestion window size, reduce the file
transfer delays. It will be certainly interesting to establish the
validity of such an observation rigorously as a future research.

REFERENCES

[1] L. Tassiulas and A. Ephremides, Stability properties of constrained
queueing systems and scheduling algorithms for maximal throughput
in multihop radio networks, IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, 1992.

[2] X. Lin, N. Shroff, and R. Srikant, On the connection-level stability of
congestion-controlled communication networks, IEEE Transactions on
Information Theory, vol. 54, no. 5, pp. 2317-2338, 2008.

[3] J. Liu, A. Proutiere, Y. Yi, M. Chiang, and V. Poor, Flow-level stability
of data networks with non-convex and time-varying rate regions, Proc.
ACM SIGMETRICS, 2007.

[4] C. Moallemi and D. Shah, On the flow-level dynamics of a packet-
switched network, Proc. ACM SIGMETRICS, pp. 83-94, June 2010.

[5] T. Bonald and M. Feuillet, On the stability of flow-aware CSMA,
Performance Evaluation, vol. 67, no. 11, pp. 1219-1229, 2010.

[6] X. Lin, N. Shroff and R. Srikant, A tutorial on cross-layer optimization in
wireless networks, IEEE Journal on Selected Areas in Communications,
vol. 25, no. 8, pp. 1452-1463, 2006,

[7] M. J. Neely, E. Modiano, and C. E. Rohrs, Dynamic power allocation
and routing for time varying wireless networks, IEEE Journal on
Selected Areas in Communications, vol. 23, no. 1, pp. 89-103, 2005.

[8] I. Keslassy and N. McKeown, Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches, Proc. Allerton
Conference on Communication, Control, and Computing, 2001.

[9] A. Eryilmaz, R. Srikant, and J. R. Perkins, Stable scheduling algorithms
for fading wireless channels. IEEE/ACM Transactions on Networking,
vol. 13, no. 2, pp. 411-424, 2005.

[10] J. Ghaderi and R. Srikant, On the design of efficient CSMA algorithms
for wireless networks, IEEE Conference on Decision and Control, 2010.

[11] J. Ni, B. Tan, R. Srikant, Q-CSMA: Queue-length based CSMA/CA
algorithms for achieving maximum throughput and low delay in wireless
networks, Proc. IEEE INFOCOM Mini-Conference, 2010.

[12] S. Rajagopalan, D. Shah and J. Shin, Network adiabatic theorem: an
efficient randomized protocol for contention resolution, ACM SIGMET-
RICS/Performance, pp. 133-144, 2009.

[13] D. Shah and J. Shin, Randomized scheduling algorithm for queueing
networks, Annals of Applied Probability, vol. 22, no. 1, pp. 128-171,
2011.

[14] P. Bremaud, Markov chains, Gibbs fields, Monte Carlo simulation, and
queues, Springer-Verlag, New York 1999, 2nd edition, 2001.

[15] M. Crovella and A. Bestavros, Self-similarity in World Wide Web traffic:
evidence and possible causes, IEEE/ACM Transactions on Networking,
vol. 5, no. 6, pp. 835-846, 1997.

[16] S. Asmussen, Applied probability and queues, Springer, 2003.
[17] L. Jiang and J. Walrand, A distributed CSMA algorithm for throughput

and utility maximization in wireless networks, 46th Annual Allerton
Conference on Communication, Control and Computing, 2008.

[18] L. Jiang and J. Walrand, Convergence and stability of a distributed
CSMA algorithm for maximal network throughput, IEEE Conference
on Decision and Control, 2009.

[19] A. Proutiere, Y. Yi, and M. Chiang, Throughput of random access
without message passing, Proc. CISS, Princeton, 2008.

[20] N. S. Walton, Utility optimization in congested queueing networks,
Journal of Applied Probability, vol. 48, no. 1, pp. 68-89, 2011.

[21] J. Ghaderi, T. Ji, and R. Srikant, Connection-level scheduling in wireless
networks using only MAC-layer information, Proc. IEEE INFOCOM
2012 Mini-Conference.

[22] D. P. Bertsekas and R. G. Gallager, Data Networks, Prentice Hall, 2nd
edition, 1992

[23] J. Ghaderi and R. Srikant, Flow-level stability of multihop wireless
networks using only MAC-layer information, Proc. WiOpt 2012.

[24] T. Ji and R. Srikant, Scheduling in wireless networks with connection
arrivals and departures, Information Theory and Applications Workshop,
2011.

[25] J. Ghaderi and R. Srikant, Flow-level stability of multihop wireless
networks: Separation of congestion control and packet scheduling,
Technical Report, arXiv:1209.5464.

APPENDIX A
PROOF OF LEMMA 1

Let Â(d)
nf (t) denote the number of packets of file f injected

into the MAC layer of node n, and D̂
(d)
nf (t) = σnf (t)Inf (t)

denote the expected “packet departure” of file f from the

12

Transport layer. Let Bnf (t) = Â
(d)
nf (t) − D̂(d)

nf (t) for file f .
From the definition of Bn(t), we have

Bn(t) =
∑Nn(t)
f=1 Bnf (t) +

∑Nn(t)+an(t)
f=Nn(t)+1 Bnf (t).

Part (i): It suffices to show that for each individual file
1 ≤ f ≤ Nn(t), ES(t)

[
Bnf (t)

]
= 0. We only need to focus

on files f with ξnf (t) = 1, i.e., existing files in the Transport
layer, or new files, i.e, f ∈

(
Nn(t)+1, Nn(t)+an(t)

)
, because

ES(t)

[
Bnf (t)

]
= 0 if file f has no packets in the Transport

layer.
LetWr

nf (t) be the remaining window size of file f at node n
after MAC-layer departure but before the MAC-layer injection.
We want to show that, for any w ≥ 0,

ES(t)

[
Bnf (t)

∣∣∣Wr
nf (t) = w

]
= 0, (45)

then (45) implies ES(t)

[
Bnf (t)

]
= 0. Because the number

of remaining packets at the Transport layer at each time is
geometrically distributed with mean size σnf (t), the Transport
layer will continue to inject packets into the MAC layer with
probability ςnf (t) = 1 − 1/σnf (t) = 1 − ηnf (t) as long as
all previous packets are successfully injected and the window
size is not full.

Clearly, if w = 0, no packet can be injected into the MAC
layer. Therefore, Â(d)

nf (t) = 0 and D̂
(d)
nf (t) = 0, and (45) is

satisfied. Next, consider the case w > 0. Let

pw(k, j) := P
(
Â

(d)
nf (t) = k, Inf (t) = j|Wr

nf (t) = w
)
,

for j ∈ {0, 1} and k ≥ 1. For k ≤ w, pw(k, 1) directly follows
the geometric distribution of the remaining packets of file f ,
i.e., for 1 ≤ k ≤ w,

pw(k, 1) = P
(
Â

(d)
nf (t) = k|Wr

nf (t) = w
)

= ςk−1
nf (t)(1− ςnf (t)).

Note that from the definition of Inf (t), we have

P
(
Inf (t) = 0|Wr

nf (t) = w
)

= 1−
w∑
k=1

pw(k, 1) = ςwnf (t).

Then, a simple calculation shows that

ES(t)

[
Bnf (t)|Wr

nf (t) = w
]

=
w∑
k=1

pw(k, 1)
(
k − σnf

)
+ P

(
Inf (t) = 0|Wr

nf (t) = w
)
w

=
w∑
k=1

kςk−1
nf (1− ςnf)− (1− ςwnf)σnf + wςwnf = 0,

because ςnf = 1− 1/σnf by definition.
Part (ii): Using the fact that new arriving files are mutually

independent, and are also independent of current network state,
we can write ES(t)

[
Bn(t)2

]
= “G” + “H” with

“G” := ES(t)

[(∑Nn(t)
f=1 Bnf (t)

)2]
,

“H” := ES(t)

[∑Nn(t)+an(t)
f=Nn(t)+1 Bnf (t)2

]
,

where we have also used the fact that ES(t)

[
Bnf (t)

]
= 0.

Note that Bnf (t)2 ≤ max{Â(d)
nf (t)2, D̂(d)

nf (t)2}. Since the
congestion window size is bounded by Wcong and the mean
file size is bounded by 1/ηmin, we get ES(t)

[
Bnf (t)2

]
≤

max{W2
cong, 1/η

2
min}. Thus

“H” < κn max{W2
cong, 1/η

2
min}.

Next, we bound the “G” term. Let Fn(t) denote the set of
files at node n that are served at time t. Because Bnf (t) = 0
if the existing file is not served, we have∣∣∣Nn(t)∑

f=1

Bnf (t)
∣∣∣ ≤ max

{ ∑
f∈Fn(t)

Â
(d)
nf (t),

∑
f∈Fn(t)

σnf (t)
}

≤
∣∣Fn(t)

∣∣ ·max
{
Wcong, 1/ηmin

}
.

Note that |Fn(t)| ≤
∑
j:(n,j)∈L xnj(t) ≤ Nrmax because the

number of existing files that are served cannot exceed the sum
of outgoing link capacities. Thus,

“G” ≤ N2r2max max
{
W2
cong, 1/η

2
min

}
.

This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Note that u(d)
n (t) = 0 if q(d)n (t) ≥ Nrmax, and u

(d)
n (t) ≤

Nrmax if q(d)n (t) ≤ Nrmax. In the latter case, since the
congestion window size for every file is at least one, there
are at most Nrmax files in the Transport layer of node n
intended for destination d. Hence, using the definition of
Q̄

(d)
n (t), Q̄(d)

n (t) ≤ Q0 := Nrmax +Nrmax/ηmin. So,

ES(t)

[
g(Q̄(d)

n (t))u(d)
n (t)

]
=

ES(t)

[
g(Q̄(d)

n (t))u(d)
n (t)1

{
q(d)n (t) ≤ Nrmax

}]
≤

ES(t)

[
g(Q̄(d)

n (t))Nrmax1
{
q(d)n (t) ≤ Nrmax

}]
≤

Nrmaxg(Q0).

Therefore C2 = N3rmaxg(Nrmax(1 + 1/ηmin)).

APPENDIX C
PROOF OF LEMMA 6

Note that

πt+1(s)
πt(s)

=
Zt
Zt+1

exp
(∑

(i,j)∈s

(w̃ij(t+ 1)− w̃ij(t))
)
,

where

Zt
Zt+1

=

∑
s∈R exp(

∑
(i,j)∈s w̃ij(t))∑

s∈R exp(
∑

(i,j)∈s w̃ij(t+ 1))

≤ max
s

exp
(∑

(i,j)∈s

(w̃ij(t)− w̃ij(t+ 1))
)

≤ exp
(∑

(i,j)∈L

(w̃ij(t)− w̃ij(t+ 1))
)
.

13

Let q∗(t) denote g−1(g∗(t)), and define q̃
(d)
i (t) :=

max{q∗(t), q(d)i (t)}. Then,

w̃
(d)
ij (t+ 1)− w̃(d)

ij (t) =

g(q̃(d)i (t+ 1))− g(q̃(d)j (t+ 1))− g(q̃(d)i (t)) + g(q̃(d)j (t)) =[
g(q̃(d)i (t+ 1))− g(q̃(d)i (t))

]
+
[
g(q̃(d)j (t))− g(q̃(d)j (t+ 1))

]
.

Recall that the link service rate is at most one and the
congestion window sizes are at most Wcong , thus ∀i ∈ N ,
∀d ∈ D, |q̃(d)i (t+ 1)− q̃(d)i (t)| ≤ 1 +Wcong. Hence,

|w̃(d)
ij (t+ 1)− w̃(d)

ij (t)|
1 +Wcong

≤ g′(q̃(d)i (t)) + g′(q̃(d)j (t+ 1))

≤ 2g′(q∗(t+ 1)− 1−Wcong),

where we have also used the fact that g is a concave increasing
function. Therefore,

πt+1(s)
πt(s)

≤ e2(1+Wcong)|L|g′(q∗(t+1)−1−Wcong).

A similar calculation shows that also

πt(s)
πt+1(s)

≤ e2(1+Wcong)|L|g′(q∗(t+1)−1−Wcong).

This concludes the proof.

APPENDIX D
PROOF OF LEMMA 7

The second inequality immediately follows from definition
of wij . To prove the first inequality, consider a destination
d, with routing matrix R(d) ∈ {0, 1}N×N , and let w(d) =
[w(d)
ij (t) : R(d)

ij = 1], then, based on (2), we have

w(d) = (I−R(d))g(q(d)),

where g(q(d)) = [g(q(d)i) : i ∈ N]. Note that every row of
R(d) has exactly one “1” entry except the row corresponding to
d which is all zero, so (R(d))N = 0. Therefore, (I−R(d))−1 =
I+R(d) +(R(d))2 + · · · exists and I−R(d) is nonsingular. So
g(q(d)) = (I−R(d))−1w(d). Let ‖ · ‖∞ denote the ∞-norm.
Then we have

‖(I−R(d))−1‖∞ = ‖
N∑
k=0

(R(d))k‖∞ ≤
N∑
k=0

‖(R(d))k‖∞

≤
N∑
k=0

‖R(d)‖k∞ ≤ N

where we have used the basic properties of the matrix norm,
and the fact that ‖R(d)‖∞ = 1. Therefore,

‖g(q(d))‖∞ ≤ ‖(I−R(d))−1‖∞‖w(d)‖∞ ≤ N‖w(d)‖∞,

for every d ∈ D. Taking the maximum over all d ∈ D, and
noting that g is a strictly increasing function, yields the result.

APPENDIX E
PROOF OF LEMMA 8

h is strictly increasing so h(x) ≥ 1 for all x ≥ h−1(1).
So g′(x) ≤ 1

1+x for x ≥ h−1(1). The inverse of g cannot be
expressed explicitly, however, it satisfies

g−1(x) = exp(xh(g−1(x)))− 1. (46)

Therefore,

αt ≤
2(1 +Wcong)|L|
g−1(g∗)−Wcong

(47)

=
2(1 +Wcong)|L|

exp(g∗h(g−1(g∗)))− 1−Wcong
. (48)

for g∗ ≥ g(1 +Wcong + h−1(1)). Next, note that

Tt+1 ≤ 16|L|e4|L|(wmax+g
∗) ≤

16|L|e4|L|(g(qmax)+
ε

4|L|N g(qmax)) ≤ 16|L|e8|L|g(qmax). (49)

Consider the product of (48) and (49) and let K := 2(Wcong+
1)|L|16|L|. Using (46) and (27), the condition (35) is satisfied
if

Keg
∗[

32|L|N3

ε −h(g−1(g∗))]

(
1 +

1 +Wm

g−1(g∗)−Wm

)
≤ δ/16.

(50)
Consider fixed, but arbitrary, |L|, N and ε. As qmax → ∞,
g(qmax)→∞, and consequently g∗ →∞ and g−1(g∗)→∞.
Therefore, the exponent 32|L|N3

ε − h(g−1(g∗)) is negative for
qmax large enough, and thus, there is a threshold qth such that
for all qmax > qth, the condition (50) is satisfied.

The last step of the proof is to determine t∗. Let t1 be the
first time that qmax(t) hits qth, then

t1+t∑
k=t1

1
T 2
k

≥ 16−2|L|
t1+t∑
k=t1

e−16|L|g(qmax(t))

= 16−2|L|
t1+t∑
k=t1

(1 + qmax(t))−
16|L|

h(qmax(t))

≥ 16−2|L|t(1 + qth + t)−
16|L|
h(qth) ,

and

min
s
πt1(s) ≥ 1∑

s exp(
∑
i∈s w̃ij(t1))

≥ 1
|R| exp(|L|(wmax(t1) + g∗(t1)))

≥ 1
2N2 exp(2N2g(qth))

.

Therefore, by Proposition 1, it suffices to find the smallest t
that satisfies

16−2N2
t(1 + qth + t)−

16N2
g(qth) ≥ log(4/δ)

+ N2 log(2(1 + qth))

for a threshold qth large enough. Recall that h(.) is an
increasing function, therefore, by choosing qth large enough,
16N2

h(qth) can be made arbitrary small. Then a finite t∗ always

exists since limt∗→∞ t∗(1 + qth + t∗)−
16N2
h(qth) =∞.

