
On the Design of Efficient CSMA Algorithms for
Wireless Networks

J. Ghaderi and R. Srikant
Department of ECE and Coordinated Science Lab.

University of Illinois at Urbana-Champaign
{jghaderi, rsrikant}@illinois.edu

Abstract—Recently, it has been shown that CSMA algorithms
which use queue length-based link weights can achieve through-
put optimality in wireless networks. In particular, a key result
by Rajagopalan, Shah, and Shin (2009) shows that, if the link
weights are chosen to be of the form log log(q) (where q is the
queue-length), then throughput optimality is achieved. In this pa-
per, we tighten their result by showing that throughput optimality
is preserved even with weight functions of the form log(q)/g(q),
where g(q) can be a function that increases arbitrarily slowly. The
significance of the result is due to the fact that weight functions of
the form log(q)/g(q) seem to achieve the best delay performance
in practice.

I. INTRODUCTION

Efficient operation of wireless networks has always been a
difficult task due to the inherent broadcast nature of the wire-
less medium. Transmission by a user can cause an interference
for its neighbors. If two neighboring users transmit at the same
time, the Signal-to-Noise-plus-Interference Ratio (SINR) of
the users’ links could go below the required SINR for the
successful decoding of data packets at their corresponding
receivers. In this case, we say that their messages collide with
each other. Therefore, multiple users can transmit at the same
time provided that they do not cause significant interference
for each other. The users need a distributed Medium Access
Control (MAC) protocol to determine which users should
transmit which makes the optimal operation even harder.

CSMA (Carrier sense Multiple access) type protocols are an
important class of MAC protocols due to their simplicity of
implementation, and have been widely used in practice. e.g.,
in WLANs (IEEE 802.11 Wi-Fi) or emerging wireless mesh
networks. In these protocols, each user listens to the channel
and can transmit, with some probability, only when the channel
is not busy. Despite the extreme simplicity of the CSMA-type
algorithms, their efficiency have been always questionable. In
this paper, we consider efficient design of such CSMA-type
algorithms that can achieve maximum throughput and good
delay performance.

The wireless network can be modeled by its conflict graph
(or interference model), where two communication links form
two neighboring nodes in the conflict graph, if they cannot
transmit simultaneously. The well-known result of Tassiulas
and Ephremides [1] states that the Maximum Weight Schedul-
ing (MWS) algorithm is throughput optimal, where weights
are queue-lengths. However, for a general network, MWS

involves finding the maximum weight independent set of the
conflict graph in each time slot which is a formidable task, and
hence, is not implementable. This has led to a rich amount of
literature on design of approximate algorithms to alleviate the
computational complexity of the MWS algorithm.

Recently, it has been shown that it is possible to design
CSMA algorithms that are throughput-optimal. Reference [9]
develops an algorithm that adaptively chooses the CSMA
parameters under a time-scale separation assumption, i.e., the
CSMA Markov chain converges to its stationary distribution
instantaneously compared to the time-scale of adaptation of
the CSMA parameters. This time-scale separation assumption
was later verified by a stochastic approximation type argu-
ment [10], [11]. In particular, an important recent work by
Rajagopalan, Shah, and Shin [4] builds an algorithm upon a
Metropolis-Hastings sampling mechanism (Glauber dynamics
over the set of feasible schedules) along with selection of link
weights to be of the form log log(q) (q is the queue-length). To
establish the efficiency of the algorithm, they present a novel
adiabatic-like theorem for the underlying queueing network:
by choosing the weights to be of the form log log q, the
underlying Markov chain behaves in an adiabatic manner such
that it remains close to its equilibrium distribution. Similar
algorithms with fixed link weights were developed earlier in
[8] and [12].

Although a weight function of the form log log q stabilizes
the network, the resulting scheduling algorithm reacts very
slowly to changes in queue lengths which, in turn, results
in a poor delay performance. In this paper, we show that,
by choosing weights to be of the form log q/g(q), a network
adiabatic property still holds. As a result, we prove that the
CSMA algorithms with such weight functions are throughput
optimal. The function g can grow arbitrarily slowly such that
log q/g(q) behaves very similarly to log(q). The significance
of the result is due to the fact that such weight functions seem
to also achieve the best delay performance in practice.

The remainder of the paper is organized as follows. In
section II, we briefly describe our model of wireless networks.
The main results of the paper are presented in section III.
Section IV is devoted to the proofs. Finally, we will end the
paper with some concluding remarks.

II. WIRELESS NETWORK MODEL

Consider a set of nodes where each node could be a
source and/or a destination for another source. For now, we
assume a single hop communication scheme but the results
are naturally extendable to the multihop case. Therefore, there
are N communication links, each of which corresponds to a
source-destination pair.

Time is slotted and arrival process to each link is assumed to
be discrete-time, where al(t) is the number of packets arriving
at link l in time slot t. For simplicity, assume that {al(t)}∞t=0,
for l = 1, .., N , are independent Bernoulli processes with
parameter λ = [λl; l = 1, .., N]. In each time slot, one packet
could be successfully transmitted over a link if the link Signal-
to-Interference-plus-Noise-Ratio (SINR) is high enough. We
use the notion of the conflict graph to capture the interference
constraints or technological ones1. Let G(V,E) denote the
conflict graph of the wireless network, where each node in
the conflict graph is a communication link in the wireless
network. There is an edge (l, k) ∈ E between nodes l and
k if simultaneous transmissions over communication links l
and k are not successful. Therefore, at each time slot, the
active links should form an independent set of G, i.e., no two
scheduled nodes can share an edge in G. Formally, a schedule
can be represented by a vector X = [xs : s = 1, ..., N] such
that xs ∈ {0, 1} and xi + xj ≤ 1 for all (i, j) ∈ E. let M
denote the set of all feasible schedules.

Each link l is associated with a queue ql, where the queue
dynamics are given by

ql(t) = (q(t− 1)− xl(t))
+ + al(t)

for t ≥ 0 and l = 1, ..., N . The vector of queue lengths is
denoted by q(t) = [ql(t) : l = 1, ..., N].

A scheduling algorithm is a policy to determine which
schedule to be used in each time slot. The capacity region
of the network is defined to be the set of all arrival rates λ
that can be supported by the network, i.e., for which there
exists a scheduling algorithm that can stabilize the queues. It
is known, e.g.[1], that the capacity region is given by

Λ = {λ ≥ 0 : ∃µ ∈ Co(M), λ < µ}
where Co(.) is the convex hull operator. When dealing with
vectors, inequalities are interpreted component-wise.

A scheduling algorithm is throughput-optimal if it can
stabilize the network for any arrival rate in Λ. An important
class of the throughput-optimal algorithms is the maximum-
weight scheduling (MWS) algorithm where at each time slot
t, the scheduling decision ρ(t) satisfies

ρ(t) = arg max
X∈M

N∑

l=1

xlwl(t).

where wl(t) is the weight of link l at time slot t. In [1], it
was proved that the MWS algorithm is throughput-optimal for
wl(t) = ql(t). A natural generalization of the MWS algorithm

1For example, a node cannot transmit and receive at the same time.

in [2] uses a weight f(ql(.)) instead of ql(.) with the following
properties.

1) f : [0,∞] → [0,∞] is a nondecreasing continuous
function with limql→∞ f(ql) = ∞.

2) Given any M1,M2 > 0, and 0 < ε < 1, there must exist
a Q < ∞ such that for ql > Q:

(1−ε)f(ql) ≤ f(ql−M1) ≤ f(ql +M2) ≤ (1+ε)f(ql)

Lemma 1. Suppose f is a strictly concave and monotonically
increasing function, with f(0) = 0, then it satisfies the
conditions (1) and (2) above.

See the appendix of [14] for the proof. In this paper, we
use a function f with properties of Lemma 1.

III. MAIN RESULT

A. Basic Algorithm

For our algorithm, we choose the wight of link l to be

w̃l(t) = max (wl(t), wmin(t)) (1)

where

wl(t) = f(ql(t)), (2)

wmin(t) =
ε

2N
f(qmax(t)), (3)

f(x) =
log(1 + x)

g(x)
, (4)

and qmax(t) is the length of the largest queue in the network at
time t and assumed to be known. The function g(x) is a strictly
increasing function chosen such that f is a strictly concave
increasing function, for example g(x) = log(e + log(1 + x))
or g(x) = (log(1 + x))θ for some 0 < θ < 1. In this paper,
all log’s are in base e

Consider the conflict graph G(V, E) of the network as
defined earlier. Denote the neighbors of i by a set N (i) =
{k ∈ V : (i, k) ∈ E}. At each time slot t, a node i is chosen
uniformly at random, with probability 1

N , then

(i) If xj(t− 1) = 0 for all nodes j ∈ N (i), then xi(t) = 1
with probability exp(w̃i(t))

1+exp(w̃i(t))
, and xi(t) = 0 with proba-

bility 1
1+exp(w̃i(t))

.
Otherwise, xi(t)=0.

(iii) xj(t) = xj(t− 1) for all j 6= i.

The following theorem states the main result regarding the
throughput optimality of the algorithm.

Theorem 1. Consider any ε > 0. The algorithm can stabilize
the network for any λ ∈ (1 − ε)Λ, if the weight function is
chosen to be in the form of f(x) = log(1+x)

g(x) . The function g(x)
is a strictly increasing function chosen such that f is a strictly
concave increasing function. In particular, the algorithm with
the following weight functions is throughput-optimal: f(x) =

log(1+x)
log(e+log(1+x)) or f(x) = (log(1+x))1−θ for some 0 < θ < 1.

B. Distributed Implementation

The basic algorithm is based on Glauber-Dynamics with
one site update at each time. For distributed implementation,
we need a randomized mechanism to select a link uniformly
at each time slot. We use the Q-CSMA idea [3] to perform
the link selection as follows. Each time slot is divided into a
control slot and a data slot. The control slot, which is much
smaller than the data slot, is used to generate a transmission
schedule for the data slot. First, the network selects a set
of links m(t) that do not conflict with each other. Then,
it performs the Glauber-Dynamics updates, in parallel, over
links m(t) to produce a transmission schedule X(t) for data
transmission. m(t) is called the decision schedule at time t.
For example, a simple randomized mechanism to generate
m(t) is as follows. In control slot t, each link l sends an
INTENT message with probability 1/2. If l does not hear
any INTENT messages from its neighboring links N (l), it
will be included in m(t), otherwise it will not be included in
m(t). Therefore, by the end of the control slot, any feasible
decision schedule m(t) ⊆M could be selected with a positive
probability α(m(t)). Once a link knows whether it is included
in the decision schedule, it can determine its state in the data
slot based on its carrier sensing information (i.e., whether its
conflicting links were active in the previous data slot) and the
activation probability for the current slot (based on its queue
length).

To determine the weight at each link l, qmax(t) is needed.
Instead, each link l can maintain an estimate of qmax(t). We
can use the procedure suggested in [4] to estimate qmax(t),
and use Lemma 2 of [4] to complete the stability proof. So we
do not pursue this issue here. In practical networks ε

2N log(1+
qmax) is small and we can use the weight function f directly,
and thus, there may not be any need to know qmax(t).

Corollary 1. Under the weight function f specified in Theo-
rem 1, the distributed algorithm can stabilize the network for
any λ ∈ (1− ε)Λ.

IV. PROOF OF THE MAIN RESULT

Before we start the proof, some preliminaries, regarding
stationary distribution and mixing time of Glauber dynamics,
are needed.

A. Preliminaries

Consider a time-homogenous discrete-time Markov chain
over the finite state-space M. For simplicity, we index the
elements of M by 1, 2, ..., r, where r = |M|. Assume the
Markov chain is irreducible and aperiodic, so that a unique
stationary distribution π = [π(1), ..., π(r)] always exists.

1) Distance between probability distributions: First, we
introduce two convenient norms on Rr that are linked to the
stationary distribution. Let `2(π) be the real vector space Rr

endowed with the scalar product

〈z, y〉π =
r∑

i=1

z(i)y(i)π(i).

Then, the norm of z with respect to π is defined as

‖z‖π =

(
r∑

i=1

z(i)2π(i)

)1/2

.

We shall also use `2(1
π), the real vector space Rr endowed

with the scalar product

〈z, y〉 1
π

=
r∑

i=1

z(i)y(i)
1

π(i)

and its corresponding norm. For any two strictly positive
probability vectors µ and π, the following relationship holds

‖µ− π‖ 1
π

= ‖µ

π
− 1‖π ≥ 2‖µ− π‖TV ,

where ‖π − µ‖TV is the total variation distance

‖π − µ‖TV =
1
2

r∑

i=1

|π(i)− µ(i)|.

2) Glauber dynamics: Consider a graph G(V,E). Glauber
dynamics is a Markov chain to generate the independent sets
of G. So, the state space M consists of all independent sets of
G. Let |V | = N . Given a weight vector W̃ = [w̃1, w̃2, ..., w̃N],
at each time t, a node i is chosen uniformly at random, with
probability 1

N , then
(i) If xj(t− 1) = 0 for all nodes j ∈ N (i), then xi(t) = 1

with probability exp(w̃i)
1+exp(w̃i)

, or xi(t) = 0 with probability
1

1+exp(w̃i)
.

Otherwise, xi(t)=0.
(iii) xj(t) = xj(t− 1) for all j 6= i.
The corresponding Markov chain is irreducible, aperiodic, and
reversible over M, and its stationary distribution is given by

π(ρ) =
1
Z

exp(
∑

i∈ρ

w̃i); ρ ∈M, (5)

where Z is the normalizing constant.
The basic algorithm uses a time-varying version of the

above Glauber dynamics, where the weights change with time.
This yields a time-inhomogeneous Markov chain but we will
see that, for the proper choice of weights, it behaves similarly
to the Glauber dynamics.

3) Mixing time of Glauber dynamics: The convergence to
steady state distribution is geometric with a rate equal to the
second largest eigenvalue modulus (SLEM) of the transition
matrix as it is described next [6].

Lemma 2. Let P be an irreducible, aperiodic, and reversible
transition matrix on the finite state space M with the station-
ary distribution π. Then, the eigenvalues of P are ordered in
such a way that

λ1 = 1 > λ2 ≥ ... ≥ λr > −1,

and for any initial probability distribution µ0 on M, and for
all n ≥ 1

‖µ0Pn − π‖ 1
π
≤ σn‖µ0 − π‖ 1

π
, (6)

where σ = max{λ2, |λr|} is the SLEM of P .

The following Lemma gives an upper bound on the SLEM
σ(P) of Glauber dynamics.

Lemma 3. For the Glauber Dynamics with the weight vector
W̃ on a graph G(V, E) with |V | = N ,

σ ≤ 1− 1
16N exp(4Nw̃max)

,

where w̃max = maxi∈V w̃i.

See [14] for the proof. We define the mixing time as T =
1

1−σ , so
T ≤ 16N exp(4Nw̃max) (7)

Simple calculation, based on Lemma 2, reveals that the amount
of time needed to get close to the stationary distribution is
proportional to T .

B. A key lemma

At any time slot t, given the weight vector W̃ (t) =
[w̃1(t), ..., w̃N (t)], the MWS algorithm should solve

max
ρ∈M

∑

i∈ρ

w̃i(t),

instead, our algorithm tries to simulate a distribution

πt(ρ) =
1
Z

exp(
∑

i∈ρ

w̃i(t)); ρ ∈M, (8)

i.e., the stationary distribution of Glauber dynamics with the
weight vector W̃ (t) at time t.

Let Pt denote the transition probability matrix of Glauber
dynamics with the weight vector W̃ (t). Also let µt be the
true probability distribution of the inhomogeneous-time chain,
over the set of schedules M, at time t. Therefore, we have
µt = µt−1Pt. Let πt denote the stationary distribution of the
time-homogenous Markov chain with P = Pt as in (8). By
choosing proper wmin and f(.), we aim to ensure that µt and
πt are close enough, i.e.,

‖πt − µt‖TV ≤ δ/4

for some δ arbitrary small.
Let wmax(t) = f(qmax(t)). The following lemma gives a

sufficient condition under which the probability distribution
of the inhomogeneous Markov chain is close to the stationary
distribution of the homogenous chain.

Lemma 4. Given any δ > 0, ‖πt − µt‖TV ≤ δ
4 holds for all

t ≥ t∗, if
αtTt+1 ≤ δ/16 for all t > 0, (9)

where
(i) αt = 2Nf ′(f−1(wmin(t + 1))− 1),

(ii) t∗ is the smallest t such that
t∑

k=1

1
T 2

k

≥ ln(4/δ) + N(wmax(0) + log 2)/2, (10)

and Tt+1 is the mixing time of the Glauber dynamics with the
weight vector W̃ (t + 1).

See [14] for the proof. Lemma 4 states a condition under
which ‖πt − µt‖TV ≤ δ

4 for all t ≥ t∗. Instead, assume that
(9) holds only when ‖q(t)‖ ≥ qth

2 for a constant qth > 0.
Let t1 be the first time that ‖q(t)‖ hits qth. Then, after that,
it takes t∗ time slots for the chain to get close to πt if ‖q(t)‖
remains above qth for t1 ≤ t ≤ t1 + t∗. Alternatively, we
can say that ‖πt − µt‖TV ≤ δ

4 if ‖q(t)‖ ≥ qth + t∗ since
at each time slot at most one departure can happen and this
guarantees that ‖q(t)‖ ≥ qth for, at least, the past t∗ time
slots. This immediately implies the following Lemma that we
will use in the proof of the main result.

Lemma 5. Given any δ > 0, ‖πt − µt‖TV ≤ δ
4 holds when

‖q(t)‖ ≥ qth + t∗, if there exists a qth such that

αtTt+1 ≤ δ/16 whenever ‖q(t)‖ > qth, (11)

where
(i) αt = 2Nf ′(f−1(wmin(t + 1))− 1)

(ii) Tt ≤ 16N exp(4Nwmax(t))
(ii) t∗ is the smallest t such that

t1+t∗∑

k=t1:‖q(t1)‖=qth

1
T 2

k

≥ ln(4/δ) + N(f(qth) + log 2)/2.

(12)

In the above Lemma, condition (ii) is based on the upper
bound of (7) and the fact that w̃max(t) = wmax(t).

In other words, Lemma 5 states that when queue lengths
are large, the observed distribution of the schedules is close
to the desired stationary distribution.

Remark 1. We will later see that, to satisfy condition (11) and
to find a finite t∗ satisfying (12) in Lemma 5, the function f(.)
cannot be faster than log(.). In fact, the function f must be
slightly slower than log(.) to make the weight dynamics slow
enough such that the distribution of the schedules remains
close to the stationary distribution.

Remark 2. The above Lemma is a generalization of Lemma 12
(Network Adiabatic Theorem) of [4]. Here we consider general
functions f(.), whereas [4] considers a particular function
log log(.). The generalization allows us to use functions which
are close to log(.) and perform much better than log log(.) in
simulations. The proof of Lemma 4 is presented in the appendix
of [14].

C. Throughput optimality

Throughput optimality follows from the following Lemma
[2]. (The proof has been eliminated due to page constraints,
see [14] for the complete proof.)

Lemma 6. For a scheduling algorithm, if given any 0 < ε < 1
and 0 < δ<1, there exists a B(δ, ε) > 0 such that: in any

2In this paper, ‖q(t)‖ = ‖q(t)‖∞ = maxi qi(t) = qmax(t).

time slot t, with probability larger than 1− δ, the scheduling
algorithm chooses a schedule X(t) ∈M that satisfies

∑

i∈X(t)

wi(t) ≥ (1− ε) max
ρ∈M

∑

i∈ρ

wi(t)

whenever ‖q(t)‖ > B(δ, ε), then the scheduling algorithm is
throughput-optimal.

Our algorithm satisfies the above condition for

B = max
{

qth + t∗, f−1

(
N log 2 + log 2

δ

ε/2

)}
. (13)

Remark 3. Throughput optimality in Lemma 6 means that,
for all the rates inside the capacity region, the Markov chain
describing the system will be positive recurrent.

D. A class of weight functions with the maximum throughput
property

In this section, we describe a family of weight functions f
that yield a maximum throughput algorithm.

The function f needs to satisfy Lemma 5. Roughly speak-
ing, since the mixing time T is exponential in wmax,
f ′(f−1(wmin)) must be in the form of e−wmin ; otherwise it
will be impossible to satisfy αtTt+1 < δ/16 for any arbitrarily
small δ as ‖q(t)‖ → ∞. The only function with such a
property is the log(.) function. In fact, it turns out that f must
grow slightly slower than log(.) as we show next to satisfy
(11), and to ensure the existence of a finite t∗ in Lemma 5.

Consider weight functions of the form f(x) = log(1+x)
g(x)

where g(x) is a strictly increasing function, chosen such that f
satisfies the conditions of Lemma 1. For example, by choosing
functions that grow much slower than log(1+x), like g(x) =
log(e+log(1+x)), we can make f(x) behave approximately
like log(1 + x) for large ranges of x.

Assume g(0) ≥ 1, then

f ′(x) ≤ 1
1 + x

. (14)

The inverse of f cannot be expressed explicitly, however, it
can be written as

f−1(x) = exp(xg(f−1(x)))− 1. (15)

Therefore,

f ′(f−1(wmin)− 1) ≤ 1
f−1(wmin)

(16)

=
1

exp(wming(f−1(wmin)))− 1
.(17)

Using (16), the conditions of Lemma 5 are satisfied if there
exists a qth large enough such that

2N16N exp(4Nwmax)
1

exp(wming(f−1(wmin)))− 1
≤ δ/16

(18)
for ‖q(t)‖ ≥ qth.

Using (15) and noting that wmin = ε
2N wmax, (18) can be

written as

2N16N exp
(

wmin

[
8N2

ε
− g(f−1(wmin))

])
(19)

×
(

1 +
1

f−1(wmin)

)
≤ δ/16 (20)

Consider fixed, but arbitrary, N and ε. As qmax →
∞, wmax → ∞, and consequently wmin → ∞
and f−1(wmin) → ∞. Therefore, the exponent 8N2

ε −
g(f−1(wmin)) is negative for qmax large enough, and thus,
there is a threshold qth such that for all qmax > qth, the
condition (19) is satisfied. To be more accurate, it suffices to
choose

qth = f−1

(
2N

ε
×max

{
log(

64N16N

δ
), f(g−1(

16N2

ε
))

})
.

(21)
Then, it follows from Lemma 5 that ‖πt − µt‖TV ≤ δ

4 ,
whenever ‖q(t)‖ > qth + t∗.

Remark 4. The assumption g(0) ≥ 1 is not required, since,
as we saw in the above analysis, only the asymptotic behavior
of g is important. If we choose qth large enough such that

g(f−1(wmin(t))− 1) ≥ 1 (22)

when ‖q(t)‖ ≥ qth, then (16) holds and the rest of the
analysis follows exactly. In particular, in order to get an
explicit formula for f−1, we can choose g(x) = log(1 + x)θ

for some 0 < θ < 1. The weight function for such a g is
f(x) = (log(1 + x))1−θ, and f−1 and has the closed form

f−1(x) = exp(x
1

1−θ)− 1.

Then (21) yields

qth = exp

(
max

{
2N

ε
log(

64N16N

δ
),

2N

ε
(
16N2

ε
)

1
θ

} 1
1−θ

)
.

(23)
It is easy to check that for q(t) ≥ exp

(
(2N

ε)
1

1−θ log(1 + e)
)

,
wmin(t) ≥ f(e) which satisfies (22). Therefore, obviously,
(22) also holds for qth of (23).

The last step of the proof is to determine the constant B
in (13), so we need to find t∗. Let t1 be the first time that
qmax(t) hits qth, then

t1+t∑

k=t1

1
T 2

k

≥ 16−2N
t1+t∑

k=t1

e−8Nf(qmax(k))

= 16−2N
t1+t∑

k=t1

e−8N
log(1+qmax(k))

g(qmax(k))

= 16−2N
t1+t∑

k=t1

(1 + qmax(k))−
8N

g(qmax(k))

≥ 16−2N
t∑

k=1

(1 + qth + k)−
8N

g(qth)

≥ 16−2N t(1 + qth + t)−
8N

g(qth)

Therefore, by Lemma 5, it suffices to find the smallest t that
satisfies

16−2N t(1 + qth + t)−
8N

g(qth) ≥ log(4/δ) +
N

2
log(2(1 + qth))

for a threshold qth large enough satisfying (21). Recall that
g(.) is an increasing function, therefore, by choosing qth large
enough, 8N

g(qth) can be made arbitrary small. Then a finite t∗

always exists since

lim
t∗→∞

t∗(1 + qth + t∗)−
8N

g(qth) = ∞.

This concludes the proof of the main Theorem.

E. Extension of the proof to the distributed implementation

The distributed algorithm is based on multiple site-update
(or parallel operating) Glauber dynamics as defined next.
Consider the graph G(V,E) as before and a weight vector
W̃ = [w̃1, w̃2, ..., w̃N]. At each time t, a decision schedule
m(t) ⊆ M is selected at random with positive probability
α(m(t)). Then, for all i ∈ m(t),
(i) If xj(t− 1) = 0 for all nodes j ∈ N (i), then xi(t) = 1

with probability exp(w̃i)
1+exp(w̃i)

, or xi(t) = 0 with probability
1

1+exp(w̃i)
.

Otherwise, xi(t)=0.
(ii) xj(t) = xj(t− 1) for all j /∈ m(t).
The Markov chain X(t) is aperiodic and irreducible if
∪m∈M0 = V (See [3] for more detail). Also, it can be
shown that X(t) is reversible, and it has the same stationary
distribution as regular Glauber dynamics in (8). Here, we
will assume that αmin := minm α(m) ≥ (1/2)N . Then, the
mixing time of the chain is characterized by the following
Lemma.

Lemma 7. For the multiple site-update Glauber Dynamics
with the weight vector W̃ on a graph G(V,E) with |V | = N ,

T ≤ 64N

2
exp(4Nw̃max). (24)

where w̃max = maxi∈V w̃i.

See [14] for the proof. The distributed algorithm uses a time-
varying version of the multiple-site update Glauber dynamics,
where the weights change with time. Although the upperbound
of Lemma 7 is loose, it is sufficient to prove the optimality of
the algorithm. The analysis is the same as the argument for the
basic algorithm. Let D and W denote the lengths of the data
slot and the control slot. Thus, the distributed algorithm can
achieve a fraction D

D+W of the capacity region. In particular,
recall the simple randomized mechanism, in section III-B,
where each node joins the decison schedule by sending an
INTENT message with probability 1/2. Note that in this case
αmin ≥ (1/2)N , and also it sufficies to allocate a short mini-
slot at the begining of the slot for the purpose of control. By
choosing the data slot to be much larger than the control slot,
the algorithm can approach the full capacity.

Remark 5. Since we completed the paper, we learned that
the authors of [4], [13] also know the fact that general

weight functions f(q) also achieve throughput optimality if the
function f(.) satisfies conditions very similar to our condition
in (18). However, since the result did not appear in the
published [4] or online version [13] of their paper, we were
unaware of this extension.

V. CONCLUSIONS

In this paper, we considered the design of efficient CSMA
algorithms that are throughput optimal and have a good delay
performance. The algorithm is essentially a Glauber Dynamics
with, potentially, multiple-site updates at each time-slot. Ac-
cess probabilities depend on links weights, where the weight
of each link is chosen to be an appropriate function of its
queue-length. In particular, we showed that weight functions of
the form f(q) = log(q)/g(q) yield throughput-optimality and
low delay performance. The function g(q) can grow arbitrarily
slowly such that f(q) ≈ log(q).

ACKNOWLEDGMENTS

The authors would like to thank Bo (Rambo) Tan, at the
Coordinated Science Lab., for his help with the simulations.
The research was funded by AFOSR Grant FA-9550-08-1-
0432, Army MURIs, DTRA Grant HDTRA1-08-1-0016, and
NSF Grant CNS 07-21286.

REFERENCES

[1] L. Tassiulas and A. Ephremides, Stability properties of constrained
queueing systems and scheduling policies for maximal throughput in
multihop radio networks, IEEE Transactions on Automatic Control, vol.
37, no. 12, pp. 1936-1948, December 1992.

[2] A. Eryilmaz, R. Srikant, and J. R. Perkins, Stable scheduling policies
for fading wireless channels. IEEE/ACM Transactions on Networking,
vol. 13, no. 2, pp. 411-424, April 2005.

[3] J. Ni, B. Tan and R. Srikant, Q-CSMA: Queue length-based CSMA/CA
algorithms for achieving maximum throughput and low delay in wireless
networks, IEEE INFOCOM Mini-Conference, 2010.

[4] S. Rajagopalan, D. Shah and J. Shin, Network adiabatic theorem: an
efficient randomized protocol for contention resolution, ACM SIGMET-
RICS/Performance, pp. 133-144, 2009.

[5] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM Journal
of Computing, vol. 18, pp. 1149-1178, 1989.

[6] P. Bremaud, Markov chains, Gibbs fields, Monte Carlo simulation, and
queues, Springer-Verlag, New York 1999, 2nd edition, 2001.

[7] S. P. Meyn and R. L. Tweedie, Criteria for stability of Markovian
processes I: Discrete time chains, Advances in Applied Probability, vol.
24, pp. 542-574, 1992.

[8] R. R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin, Throughput
analysis in multihop CSMA packet radio networks, IEEE Transactions
on Communications, vol. 35, no. 3, pp. 267-274, March 1987.

[9] L. Jiang and J. Walrand, A distributed CSMA algorithm for throughput
and utility maximization in wireless networks,46th Annual Allerton
Conference on Communication, Control and Computing, September
2008.

[10] L. Jiang and J. Walrand, Convergence and stability of a distributed
CSMA algorithm for maximal network throughput, IEEE Conference
on Decision and Control, 2009.

[11] A. Proutiere, Y. Yi, and M. Chiang, Throughput of random access
without message passing, Proc. of CISS, Princeton, NJ, March 2008.

[12] S. C. Liew, C. Kai, J. Leung, B. Wong, Back-of-the-envelope computa-
tion of throughput distributions in CSMA wireless networks, IEEE ICC,
June 2009.

[13] J. Shin and D. Shah, Randomized Scheduling Algorithm for Queueing
Networks, avaiable online at http://arxiv.org/abs/0908.3670v1.

[14] J. Ghaderi and R. Srikant, On the Design of Efficient CSMA Algorithms
for Wireless Networks, Technical Report, avaiable online at http://www.
ifp.illinois.edu/~jghaderi/csma-arxiv.pdf

