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Abstract
Social distancing can reduce infection rates in respiratory pan-

demics such as COVID-19, especially in dense urban areas. To assess
pedestrians’ compliance with social distancing policies, we use the
pilot site of the PAWR COSMOS wireless edge-cloud testbed in
New York City to design and evaluate an Automated video-based
Social Distancing Analyzer (Auto-SDA) pipeline. Auto-SDA de-
rives pedestrians’ trajectories and measures the duration of close
proximity events. It relies on an object detector and a tracker, how-
ever, to achieve highly accurate social distancing analysis, we design
and incorporate 3 modules into Auto-SDA: (i) a calibration module
that converts 2D pixel distances to 3D on-ground distances with less
than 10 cm error, (ii) a correction module that identifies pedestrians
who were missed or assigned duplicate IDs by the object detection-
tracker and rectifies their IDs, and (iii) a group detection module that
identifies affiliated pedestrians (i.e., pedestrians who walk together
as a social group) and excludes them from the social distancing
violation analysis. We applied Auto-SDA to videos recorded at the
COSMOS pilot site before the pandemic, soon after the lockdown,
and after the vaccines became broadly available, and analyzed the
impacts of the social distancing protocols on pedestrians’ behaviors
and their evolution. For example, the analysis shows that after the
lockdown, less than 55% of the pedestrians violated the social dis-
tancing protocols, whereas this percentage increased to 65% after
the vaccines became available. Moreover, after the lockdown, 0-20%
of the pedestrians were affiliated with a social group, compared
to 10-45% once the vaccines became available. Finally, following
the lockdown, the density of the pedestrians at the intersection
decreased by almost 50%.

CCS Concepts
•Computingmethodologies→Object detection;Activity recog-
nition and understanding; Tracking.
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Figure 1: The NSF PAWRCOSMOS pilot site at 120th St. and Amster-
damAve. intersection, NYC. Cameras are deployed on the Columbia
University’sMudd building and connected to the edge-cloud servers
via dedicated fibers.

Figure 2: Different stages in the Auto-SDA pipeline.

January 31-February 4 2022, New Orleans, LA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3477083.3480154

1 Introduction
Social distancing is one of the primary tools to reduce the trans-

mission of the SARS-CoV-2 virus that causes COVID-19. A way to
obtain information about pedestrian density and behavior, which
can be critical in assessing and controlling respiratory pandemics
such as COVID-19, is through smart-city infrastructures. In this
paper, we use the NSF PAWR COSMOS wireless edge-cloud testbed,
which is being deployed in West Harlem, New York City (NYC) [18,
25], to develop a video-based object detection, tracking, and density
estimation pipeline, that can provide such information. Specifi-
cally, we use one of the cameras in the testbed’s pilot site (see
Fig. 1) to design and evaluate a fully Automated video-based Social
Distancing Analyzer (Auto-SDA) pipeline (shown in Fig. 2). This
pipeline measures the distance between unaffiliated pedestrians
(i.e., the pedestrians who do not walk together as a social group)
and assesses if they maintain 6 ft distance.

The main goal of this paper is to design a highly accurate social
distancing analyzer pipeline, whose performance is not sensitive
to the camera’s viewpoint and scene dynamics. As illustrated in
Fig. 2, the pipeline includes an object detector model (YOLOv4 [4])
and a tracker model (Nvidia DCF-based tracker) that extracts the
trajectory of pedestrians. These trajectories are eventually used to
compute the proximity duration of each two unaffiliated pedestrians
separately. While these are off-the-shelf components, achieving
accurate social distancing analysis calls for the design of tailored
components. Specifically, we achieve this goal by incorporating
three modules in Auto-SDA, as outlined below and in Section 3:
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Table 1: A comparison of prior work to Auto-SDA

Framework Object Detection Tracking Calibration Method On-Ground Distance
Computation Error Correction Group Detection Real-World COVID-19

Pandemic Impact Analysis
[24] ✓ X Homography trans. ≫ 10 cm X X X
[17] ✓ ✓ Depth information ≫ 10 cm X X X

[2, 3, 6, 7] ✓ X Planar camera persp.
trans. ≫ 10 cm X X X

Auto-SDA ✓ ✓ Multi-area calibration < 10 cm ✓ ✓ ✓

• Camera calibration module: Our measurements show that us-
ing a single set of photogrammetry parameters for the whole
scene leads to imprecise on-ground distance computation. There-
fore, this module breaks the view of the camera into multiple
areas and computes the corresponding photogrammetry parame-
ters for each area individually. These parameters are then used to
convert the 2D on-image distances into 3D on-ground distances
with less than 10 cm error.
• ID correction module: It compensates for the inaccuracies of
the object detector and tracking model caused by the camera’s
tilt angle and the obstacles on the road. For instance, if multiple
IDs are assigned to a single pedestrian, this module removes the
redundant IDs and derives the entire trajectory of that pedestrian.
• Group detection module: This module detects the pedestrians
affiliated with a single social group (e.g., members of a family)
and excludes them from social distancing violation.
We applied Auto-SDA to our dataset collected by a camera lo-

cated on the 2nd floor of Columbia’s Mudd building (see Fig. 1)1. The
dataset consists of 180 sec videos recorded at different times of the
day (9 AM, 2 PM, 5:30 PM, 7:30 PM, and 10 PM) in about one month
periods, soon after the lockdown (June 17 to July 20, 2020), and
after the vaccines became broadly available (May 2021). In addition,
the dataset includes 16 videos collected (less methodically) before
the pandemic (June 2019) which are used as a reference point2. The
detailed results (described in Section 4) show, for example, that after
the lockdown, the density of pedestrians seen at the intersection
decreased by almost 50%. Moreover, after the lockdown, less than
55% of the pedestrians violated the social distancing protocols com-
pared to 65% post-vaccine. The results also show that the fraction
of pedestrians walking as a social group has grown from 0-20%
(after the lockdown) to 10-45% (post-vaccine). We discuss potential
extensions and future work in Section 5.

2 Related Work
Auto-SDA uses an object detector and a tracker. Several detectors

are available, including Mask R-CNN [9], SSD [12], YOLOv3 [19],
and (YOLOv4) [4]. Auto-SDA uses the state-of-the-art object de-
tector YOLOv4, which provides adequate speed and accuracy for
social distancing analysis. Auto-SDA also uses the NVIDIA DCF
tracker, which based on our experiments provides higher accuracy
than other trackers, such as DeepSORT [23].

We now review related work that focuses on monitoring the
COVID-19 pandemic and compare Auto-SDA to social distancing
frameworks (see Table 1). A survey on enabling wireless technolo-
gies for monitoring social distancing appears in [14]. The work [8]
explores using smart city technologies in pandemic management.

1The use of the videos by Columbia researchers is IRB-exempt. The videos are
solely used for research-related purposes, and they will not be shared in any way.

2You can find a sample video in https://bit.ly/2Rt36S2.

The work [24] proposes the use of monocular cameras and deep
learning-based object detectors to monitor social distancing and
emit warnings, however since it does not use a tracker, it can only
provide instantaneous warnings. Moreover, [24] uses homography
transformation to convert 2D on-image coordinates to their 3D
counterparts, which can only be used to estimate the camera pose
for planar objects. Thus, a more advanced method is required to cal-
ibrate the cameras and compute the on-ground distances from the
pixel distances on an image. The framework in [17] uses YOLOv3
for object detection and DeepSORT for tracking. The obtained
bounding boxes are utilized to obtain depth information of the
pedestrians (i.e., their distance from the camera lens) and identify
clusters of pedestrians violating social distancing. However, the
depth information-based method is not sufficiently accurate for
measuring the distance between pedestrians, and a more precise
camera calibration along with group detection is needed.

The frameworks in [2, 3, 6, 7] employ an object detector, but
do not use a tracker to derive trajectories. Moreover, they per-
form planar camera perspective transformation for calibration,
which yields an inaccurate estimation of the on-ground coordinates,
thereby limiting the social distancing measurements accuracy. Fi-
nally, [2, 3, 6, 7, 17, 24] do not provide evaluations on real-world
data recorded during the COVID-19 pandemic. Table 1 summarizes
the main features of Auto-SDA compared to the prior work.

3 Pipeline Modules

3.1 Camera Calibration
Camera calibration is a necessary step for extracting on-ground

distances between pedestrians. The goal is to determine the in-
trinsic and extrinsic parameters of the camera to convert the 2D
on-image coordinates, viewed by the camera, to the 3D on-ground
coordinates. Intrinsic parameters are (i) principal point (𝑐𝑥 , 𝑐𝑦), (ii)
focal length in pixel units (𝑓𝑥 , 𝑓𝑦), (iii) radial distortion coefficients
(𝑘1, 𝑘2, ..., 𝑘6), and (iv) tangential distortion coefficients (𝑝1, 𝑝2).
Extrinsic parameters are (i) rotation matrix 𝑅, and (ii) translation
vector 𝑡 .3

Since the testbed cameras are fixed, we needed to calibrate them
once. As part of this process, we captured multiple photos of a
checkerboard with known square sizes, posed in different tilt and
rotation angles (see Fig. 3). Then, we fed the 2D on-image pixel
coordinates of the checkerboard corners and their corresponding
3D coordinates into OpenCV [5], that runs the global Levenberg-
Marquardt optimization algorithm, to calculate the required param-
eters.

Moreover, we split the view of the intersection into 10 areas (as
shown in Fig. 4) and for each area, we determined the extrinsic
parameters individually. This can further mitigate the impact of

3The effects of higher order coefficients are negligible, see [22].
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Table 2: A comparison of calibration methods used in the prior work to Auto-SDA’s multi-area calibration

Pixel Coordinates of a Pair of
Points on a 4 K Frame

On-Ground
Distance (cm)

Distance Calculated by
Multi-area Calibration (cm)

Distance Calculated by
Homography Trans. [24]

(cm)

Distance Calculated by
Planar Camera Persp.
Trans. [2, 3, 6, 7] (cm)

[1093, 715], [1065, 685] 320 325 209 339
[1785, 572], [1862, 566] 183 178 140 128
[1680, 582], [1588, 552] 503 508 368 457
[2153, 598], [2077, 582] 259 256 201 146
[1121, 746], [1093, 714] 320 314 201 229

camera distortion and obtain the on-ground distances with less
than 10 cm error (ground-truth obtained from actual distance mea-
surements on the COSMOS pilot site). The number of areas can
increase to improve the accuracy but for our use-case, using 10
areas proved to be adequate. For each area, we determined a few
points on the ground with known coordinates (w.r.t. a predefined
center point which should be on the edge of the area) and found
their corresponding pixel coordinates from the perspective of the
camera. These sample points along with the intrinsic parameters
of the camera are then used to determine the extrinsic parameters
(using OpenCV).

Auto-SDA plugs these parameters into the photogrammetry
equations [1, 5, 11], given below, and completes the 2D-3D coordi-
nates conversion:[

𝑥 𝑦 𝑧
]𝑇

= 𝑹
[
𝑋 𝑌 𝑍

]𝑇 + 𝑡, 𝑥′ =
𝑥

𝑧
, 𝑦′ =

𝑦

𝑧

𝑥′′ = 𝑥′
1 + 𝑘1𝑟 2 + 𝑘2𝑟 4 + 𝑘3𝑟 6

1 + 𝑘4𝑟 2 + 𝑘5𝑟 4 + 𝑘6𝑟 6 + 2𝑝1𝑥
′𝑦′ + 𝑝2 (𝑟 2 + 2𝑥′2)

𝑦′′ = 𝑦′
1 + 𝑘1𝑟 2 + 𝑘2𝑟 4 + 𝑘3𝑟 6

1 + 𝑘4𝑟 2 + 𝑘5𝑟 4 + 𝑘6𝑟 6 + 𝑝1 (𝑟 2 + 2𝑦′2) + 2𝑝2𝑥
′𝑦′

𝑟 2 = 𝑥′2 + 𝑦′2, 𝑢 = 𝑓𝑥𝑥
′′ + 𝑐𝑥 , 𝑣 = 𝑓𝑦𝑦

′′ + 𝑐𝑦 .

In the equations above, [𝑢, 𝑣] are the 2D pixel coordinates and
[𝑋,𝑌, 𝑍 ] are the 3D on-ground coordinates. Since there are no
closed-form equations to map the 2D points to 3D points, Auto-
SDA uses Newton’s method to solve the above system of equations
(it sets the ground level to 𝑍 = 0 and solves for 𝑋 and 𝑌 ).

In Table 2, we compare the accuracy of on-ground distance cal-
culation of the multi-area calibration method used in Auto-SDA
with the calibration methods used in [2, 3, 6, 7, 24]. As the results
show, there could be more than 1m error in calculating the on-
ground distances when using the homography and planar camera
perspective transformation method, used in previous work. While it
may be sufficient for other applications, such an error is inadequate
for social distancing monitoring. Moreover, in [17] the distance
between pedestrians is determined by using a method proposed
in [16]. In this method, first, the distance of a pedestrian from the
camera lens is obtained using the coordinates, width, and height of
its bounding box provided by an object detector. Then, the distance
between every two pedestrians is calculated. In Fig. 5 we represent
the results of calculating the pedestrians distances from the camera
lens using the calibration method proposed in [16]. The camera’s
(vertical and horizontal) distance from the pedestrians is more than
10m. However, due to the oblique view of the camera, the calculated
distances (displayed near the bounding boxes) are inaccurate, and
one cannot simply fix them (e.g., using scaling factor).

3.2 Pedestrians Detection and Tracking
Auto-SDA uses the YOLOv4 object detector [4] to detect the

pedestrians. It is also equipped with a tracker (NvDCF) that extracts

Figure 3: Calibration of the COSMOS cameras using a checkerboard:
more than 20 images of the checkerboard in different poses were
provided to the OpenCV library to obtain the intrinsic parameters
of the camera.

Figure 4: Division of the camera scene into 10 areas. The extrinsic
parameters of the camera were calculated for each area individu-
ally.

Figure 5: Computed distances of pedestrians from the camera us-
ing objects’ depth information proposed in [16]. The real distances
(both vertically and horizontally) of the pedestrians from the cam-
era is more than 10m. However, due to the oblique view of the cam-
era, the obtained distances deviate from their real values and it is
not straightforward to rectify them (e.g., using a scaling factor.)

the trajectory of each pedestrian and uses that to trace the number
of pedestrians they are in contact with (within a radius of 6 ft) and
the duration of each contact. Both models are set as building blocks
inside the Deepstream pipeline which is an optimized architecture
built using the Gstreamer framework [15].

3.3 ID Correction
The COSMOS cameras are located at relatively high altitudes and

have an oblique view of the intersection. Therefore, the pedestrians
are small and might be blocked by the obstacles such as vehicles,
traffic lights, and other pedestrians. As a result, the object detector
and tracker have degraded performance (i.e., it is likely that the
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Algorithm 1 ID Correction
1: Input: 𝐼𝐷vec, 𝑒1, 𝑒2, 𝑛 ⊲ 𝐼𝐷vec is the output of NvDCF tracker
2: Output: corrected 𝐼𝐷vec
3: for 𝑖𝑑 ∈ 𝐼𝐷vec do
4: Compute 𝑖𝑑.𝑇𝑟 𝑗 ⊲ vector of points on id’s path
5: Compute 𝑖𝑑.𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝.𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ⊲ detection time
6: Compute 𝑖𝑑.𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝.𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒 ⊲ Lost time
7: Compute (𝑖𝑑.𝑇𝑎𝑖𝑙𝐸𝑠𝑡, 𝑖𝑑.𝑇𝑎𝑖𝑙𝐷𝑖𝑟 ) ⊲ Linear Regression of 𝑖𝑑.𝑇𝑟 𝑗 .𝑡𝑎𝑖𝑙 (𝑛)
8: Compute (𝑖𝑑.𝐻𝑒𝑎𝑑𝐸𝑠𝑡, 𝑖𝑑.𝐻𝑒𝑎𝑑𝐷𝑖𝑟 ) ⊲ Linear Regression of 𝑖𝑑.𝑇𝑟 𝑗 .ℎ𝑒𝑎𝑑 (𝑛)
9: for (𝑖𝑑1, 𝑖𝑑2) ∈ 𝐼𝐷vec do
10: 𝑡1← 𝑖𝑑1 .𝑇 𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝.𝑆𝑡𝑜𝑝𝑇𝑖𝑚𝑒

11: 𝑡2← 𝑖𝑑2 .𝑇 𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝.𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

12: 𝑝1 ← 𝑖𝑑1 .𝑇𝑎𝑖𝑙𝐸𝑠𝑡 .at(𝑡 = 𝑡2), 𝑝2 ← 𝑖𝑑1 .𝑇𝑟 𝑗 .at(𝑡2)
13: 𝑣1 ← 𝑖𝑑1 .𝑇𝑎𝑖𝑙𝐷𝑖𝑟, 𝑣2 ← 𝑖𝑑2 .𝐻𝑒𝑎𝑑𝐷𝑖𝑟
14: if 𝑡2 − 𝑡1 < 𝑒1 && |𝑝1 − 𝑝2 | < 𝑒2 && ∠ (𝑣1, 𝑣2) < 90° then
15: 𝑖𝑑1 and 𝑖𝑑2 belongs to same person

Figure 6: Demonstration of detection and removal of redundant IDs
by the ID Correction algorithm when the tracker assigns 3 IDs to a
single pedestrian.

tracker loses a pedestrian along the way or assigns multiple IDs to
a single person).

The ID Correction module is designed to mitigate this. It detects
the IDs that belong to a single pedestrian and extracts their entire
trajectory. Algorithm 1 describes our ID Correction algorithm. It
receives the results of the object detector and tracking module
as its input, and, for each ID, it creates a structure in which it
keeps the trajectory (𝑖𝑑 .𝑇𝑟 𝑗 ), the first and last time it was detected
by the tracker (𝑖𝑑 .𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝), and the parameters of the Linear
Regression approximation of the tail and head of the trajectory. The
algorithm then uses this information to predict the pedestrian’s
location before it was detected and after it was lost.

For each ID pair (𝑖𝑑1, 𝑖𝑑2), the ID Correction algorithm then
verifies three conditions to determine whether they are associated
with a single pedestrian or not. First, the gap between 𝑖𝑑1 lost time
(𝑡1) and 𝑖𝑑2 detected time (𝑡2) must be small enough (less than a
predefined threshold 𝑒1). Second, the distance between predicted
location of 𝑖𝑑1, at the time that 𝑖𝑑2 was first detected (𝑡2) using the
Linear Regression approximation for the tale of 𝑖𝑑1 trajectory, and
the location of 𝑖𝑑2 at that time (𝑡2) has to be less than a specified
threshold (𝑒2). Third, it measures the angle between 𝑖𝑑1’s tail di-
rection and 𝑖𝑑2 head direction. This angle must be less than 90°
to ensure that the algorithm does not consider two pedestrians
crossing each other in opposite direction as a single pedestrian. If
all three conditions hold, then 𝑖𝑑1 and 𝑖𝑑2 belong to a single per-
son. An example is shown in Fig. 6 where the tracker assigned 3
IDs to a single pedestrian. The ID correction module detects the
segments that belong to a single trajectory by using the Linear Re-
gression approximation corresponding to the tail of each segment
and comparing the estimated start point and the real start point of
the subsequent segment.

3.4 Group Detection
We enhance the social distancing analysis by distinguishing the

pedestrians walking together as a social group (e.g., friends/family)

Algorithm 2 Group Detection
1: Input: 𝐼𝐷vec, 𝑑max, 𝑑max, 𝜎max
2: Output: 𝐼𝐷vec Pdestrians belong to a group
3: for 𝑖𝑑 ∈ 𝐼𝐷vec do
4: 𝑖𝑑.𝑇𝑖𝑚𝑒𝑇𝑟 𝑗 = map(𝑖𝑑.𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑉𝑒𝑐, 𝑖𝑑.𝑇𝑟 𝑗)
5: for (𝑖𝑑1, 𝑖𝑑2) ∈ 𝐼𝐷vec do
6: 𝑛 = 0
7: for 𝑡 = 1 : 𝑇 do
8: 𝑝𝑜𝑠1 = 𝑖𝑑1 .𝑇 𝑖𝑚𝑒𝑇𝑟 𝑗 (𝑡 ), 𝑝𝑜𝑠2 = 𝑖𝑑2 .𝑇 𝑖𝑚𝑒𝑇𝑟 𝑗 (𝑡 )
9: 𝑑 = | |𝑝𝑜𝑠1 − 𝑝𝑜𝑠2 | |2
10: if 𝑑 > 𝑑max then
11: 𝑛 + +, continue
12: 𝐶𝑜𝑟𝑟vec (𝑖𝑑1, 𝑖𝑑2) .append(𝑑)
13: if 𝑛 > 𝑁max then
14: continue
15: 𝑑 = mean(𝐶𝑜𝑟𝑟vec (𝑖𝑑1, 𝑖𝑑2)) ⊲ calculate the mean distance between two pedestrians
16: 𝜎 = std(𝐶𝑜𝑟𝑟vec (𝑖𝑑1, 𝑖𝑑2)) ⊲ calculate the standard deviation of instantaneous

distances between two pedestrians
17: if 𝑑 < 𝑑max && 𝜎 < 𝜎max then
18: 𝑖𝑑1 and 𝑖𝑑2 belongs to the same group

and excluding them from social distancing violation. There are
several methods proposed for group-detection, e.g., see [10, 13,
20, 21]. All these group-detection methods require details such as
velocity, body and head orientation, and exact trajectory. However,
in our setting (and in many realistic deployments), the cameras
are mounted on a relatively high altitude, viewing the intersection
from a corner with a large tilt angle. Moreover, there are various
obstacles on the road that might block the view of pedestrians for
some periods. Therefore, that kind of detailed information cannot
be obtained from these cameras.

We designed a group detection algorithm that can detect pedes-
trians that belong to a single social group with the limited data
that we can derive from cameras such as the ones in the COSMOS
pilot site. The Group Detection algorithm is given in Algorithm 2.
It uses IDs of the pedestrians rectified in the ID Correction module
to derive an approximation of each pedestrian trajectory. Then,
it calculates the correlation between these trajectories to check if
two pedestrians belong to a single social group. Specifically, the
algorithm calculates the distance between each pair of pedestrians
(𝑖𝑑1, 𝑖𝑑2) on all the frames and then calculates the average distance
(𝑑) and empirical standard deviation (𝜎). Two pedestrians are la-
beled as one social group, if their instantaneous distance (𝑑) does
not exceed 𝑑max in more than 𝑁max frames, and the mean and
standard deviation of their distance are less than 𝑑max and 𝜎max,
respectively. To evaluate the performance of the group detection
algorithm and fine-tune its parameters we applied the algorithm on
sample videos recorded from the COSMOS pilot site and compared
the results against the visually detected social groups.

4 Measurements and Evaluation
After obtaining the real distance between pedestrians, their IDs,

and their trajectories, Auto-SDA computes how often an individual
breaks the social distancing policies and how long this violation
lasts. We applied Auto-SDA to videos recorded from a camera de-
ployed on the 2nd floor of the Columbia University’s Mudd building
at the COSMOS pilot site. The camera is configured to record 180 sec
(which is two times the signal timing cycle of the traffic lights at the
intersection) videos, 5 times a day at 9 AM, 2 PM, 5:30 PM, 7:30 PM,
and 10 PM. We deployed Auto-SDA in one of the COSMOS edge
servers and applied it on videos recorded between June 17 and
July 20, 2020 (after the lockdown), and during May 2021 (after the
vaccines became broadly available). We also used 16 sample videos
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Figure 7: Normalized histogram of the duration of the detected so-
cial distancing violation incidents.

Figure 8: Normalized histogram of the percentage of pedestrians
considered social distancing violators in the recorded videos.

recorded before the COVID-19 outbreak (in June 2019) to evaluate
the impact of the pandemic on pedestrians’ density. Below, we pro-
vide the analysis results (results corresponding to June-July, 2020
and May 2021 are labeled as Pandemic and Post-vaccine, respec-
tively).

Fig. 7 compares the duration of social distancing violation in-
cidents during the pandemic and post-vaccine. As demonstrated,
a growth (of around 3 s) is observed post-vaccine. For each video,
we calculated the percentage of pedestrians who violate social dis-
tancing and plot a normalized histogram of the results in Fig. 8.
It can be seen that, after the lockdown, typically, less than 55% of
the pedestrians violated social distancing, compared to 65% post-
vaccine. Fig. 9 illustrates the normalized histogram of the number
of pedestrians who violate social distancing at different times of the
day. Fig. 10 shows the fraction of recorded videos in which a certain
percentage of pedestrians are walking as a group. One can see that
the fraction of pedestrians walking as a social group has grown
from 0-20% (after the lockdown) to 10-45% (post-vaccine). Fig. 11
shows the increase in the maximum duration of post-vaccine social
distancing violation incidents.

We compare the pre-pandemic, lockdown, and post-vaccine den-
sity of the crowd at the intersection in Fig. 12. One can observe
that density of the pedestrians has decreased by almost 50% after
the lockdown (compared to pre-pandemic), while it has slightly
increased recently.

5 Conclusions
We presented the Auto-SDA pipeline that evaluates if unaffiliated

pedestrians complywith the social distancing policies. It is equipped
with a group detection module and is capable of calculating the

Figure 9: Normalized histogram of the number of pedestrians vio-
lating social distancing protocols in different times of the day.

Figure 10: Normalized histogram of the percentage of pedestrians
affiliated with a social group.

Figure 11: Normalized histogram of the maximum duration of so-
cial distancing violation observed.

Figure 12: Comparison between the density of pedestrians walking
at the COSMOS pilot site in different periods.
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on-ground distance between pedestrians with less than 10 cm error.
We applied Auto-SDA to the videos recorded by a camera deployed
at the COSMOS pilot site. The results demonstrate the impact of
the COVID pandemic on pedestrians’ behaviors. This work is a
first step towards designing systems for evaluating compliance
with social distancing and for density assessment. Future work
will include the design of privacy preserving methods, integration
of information from multiple cameras and sensors, design of real
time algorithms, and extensive evaluation as the social distancing
policies change.
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