
Overlap Graph Clustering via Successive Removal

Avik Ray†, Javad Ghaderi‡, Sujay Sanghavi†, Sanjay Shakkottai†

University of Texas at Austin†, and Columbia University‡

Abstract— One of the fundamental questions in the study of
complex networks is community detection, i.e., given a graph
that represents interactions in a real system, can we group
vertices with similar interests together? In many applications,
we are often in a setting where vertices may potentially belong
to multiple communities. In this paper, we propose an efficient
algorithm for overlapping community detection which can
successively recover all the communities. We provide theoretical
guarantees on the performance of the algorithm by leveraging
convex relaxation and exploiting the fact that in many networks
there are often vertices that only belong to one community.

I. INTRODUCTION

The study of community structure in graphs has been of
great interest in several domains (e.g., sociology, biology,
computer science, machine learning). The problem can be
briefly described as follows: Given a graph in which edges
represent similarities among various vertices, can we group
related vertices with similar interests together?

The majority of research in community detection in graphs
is for the setting where each node is constrained to be in
only one community (i.e., communities do not overlap).
The canonical model here is the planted partition or the
stochastic block model [1], [2], where two nodes in the same
community are more likely to share an edge compared to two
nodes in different communities. Hence, a community can be
thought of as a subgraph with greater edge density than the
edge density across the communities. A more practical and
difficult problem is the case where the communities overlap,
thus enabling nodes to be part of multiple communities.

The theoretical study of models and algorithms for over-
lapping communities is very limited. In this paper, we
consider a natural extension of stochastic block model to
the overlapping communities: two nodes that share at least
one community are more likely to be connected that two
nodes that do not share any communities. We present a new
overlapping community detection algorithm and theoretically
show that it can successively recover all the communities
under this model.

The main ideas behind our algorithm can be explained
as follows. Suppose an oracle identifies a subset of nodes
from each community, call these as labeled nodes. Then
the community membership of an unlabeled node can be
determined by computing the number of edges that it shares
with each of the labeled subset of nodes. If each community
contains a sufficient number of such labeled nodes, then we
can ensure to correctly identify the community membership

This research was supported by ARO grants W911NF-11-1-0265 and
W911NF-14-1-0387, and NSF grant CNS-1320175.

of all unlabeled nodes. However, recovering the so-called
labeled nodes from each community in the absence of any
oracle is a non-trivial task. The key observation is that in
many real networks each community has a subset of pure
nodes which do not belong to any other community. We
propose an algorithm that can efficiently identify the subsets
of labeled nodes in these graphs through an iterative proce-
dure of degree thresholding and clustering, by exploiting the
existence of pure nodes.

Contributions: The main contributions of this paper can
be summarized as follows.

• We propose a new overlapping community detection al-
gorithm called DetectOverlapComm to recover over-
lapping communities in a graph when each community
has a set of pure nodes.

• Under a simple random graph generating model for
overlapping communities, we evaluate the performance
of the DetectOverlapComm algorithm, proving that
it can successfully recover all the communities with
high probability for both dense graphs (O(n) average
degree) and sparse graphs (O(log n) average degree)
with n nodes.

• We further test the performance of our algorithm on
both real and synthetic data sets to validate the analyt-
ical results.

Related work: Community detection and graph clustering
have been well studied in literature. Community detection
algorithms have been studied for cases when the communi-
ties are disjoint or overlapping. Here, we briefly highlight
the most relevant studies that provide analytical results for
the corresponding algorithms. An extensive survey of these
algorithms can be found in [3], [4], [12]. Several generative
models for graphs with communities have been proposed
to study the theoretical performance of these algorithms. In
the disjoint community case, and with the planted partition
or the stochastic block model [1], [2], several spectral [2],
[5]–[7] and convex optimization based algorithms [8]–[10]
have been shown to provably recover all the underlying
communities in the graph. However generative models for
overlapping communities have been less studied. In [11]
Arora et al. describe an expected degree random graph model
where nodes in each community have a fixed affinity to
connect to other nodes in the same community. Then they
propose randomized algorithms to recover the communities
for dense graphs. Anandkumar et al. in [12], [13] study a
mixed membership model for overlapping communities [14]
where each node can probabilistically identify with multiple

communities. They propose a tensor based algorithm which
guarantees to find these mixed community membership of the
nodes. For this type of mixed membership model, variational
inference based algorithms have been proposed in [16], [17].
In [15] Balcan et al. propose a search and refinement based
algorithm for detecting endogenously formed overlapping
communities. We finally refer to [12] for a detailed discus-
sion of various approaches.

Basic notations and definitions: We consider a graph
G = (V,E) with K overlapping communities. Vk is used
to denote the set of nodes in the k-th community. Uk ⊂ Vk
denotes the set of pure nodes for each community k, i.e.,
the set of nodes that belong to only community k. Nodes
which belong to multiple communities are referred to as
mixed nodes. The subgraph of G restricted to the nodes in
S ⊂ V is denoted as GS = (S,ES). For any node i ∈ V
and A ⊂ V, dA(i) denotes the number of edges from i to
the set A and d(i) = dV (i) is the degree of node i.

Organization: The rest of this paper is organized as
follows. We describe our algorithm in Section II. The main
results are presented in Section III. Our experimental results
are discussed in Section IV. Section V contains the proofs of
the key results. We finally end the paper with conclusions.

II. ALGORITHM DESCRIPTION

In this section we give an overview of our main algorithm
called DetectOverlapComm.

A. Overlapping Community Detection

The task of the overlapping community detection algo-
rithm is to find the true community membership of each
node i ∈ V from the graph G. This is also equiva-
lent to finding the sets V1, . . . , VK . The main idea of the
DetectOverlapComm algorithm is as follows. The algo-
rithm has three main steps. In the first step it calls a
subroutine called FindPureNode which detects a set Ûk
of pure nodes from each community k. Then in the second
step two edge density parameters p̂, q̂ are estimated using
these pure node sets. Since the edge density1 within the
nodes of a community is higher than the average density
in the graph, the parameter p̂ quantifies this edge density
so that we can determine which subgraph qualifies as a
community. Real graphs can be noisy resulting in edges
also between nodes which do not share any community. This
noise level edge density is quantified by the second parameter
q̂. Finally in the third step the community membership
of the remaining nodes are estimated by thresholding the
number of edges they share with each of these pure node sets
Û1, . . . , ÛK , where the thresholds are determined by p̂, q̂ and
the size of the pure node sets. The DetectOverlapComm
algorithm takes as input the graph G, a parameter γ that
characterizes the minimum size of the pure node sets to be
recovered, initial edge density estimates p0, q0, and outputs
the community estimates V̂1, . . . , V̂K . The pseudo-code is
given in Algorithm 1.

1The edge density of a set of nodes A is the ratio of number of actual
edges shared between nodes in A to the number of all possible edges.

Algorithm 1 DetectOverlapComm(G, γ, p0, q0)

1: Û1, . . . , ÛK ← FindPureNode(G, γ, p0, q0)
2: p̂← 1

K

∑K
k=1

1

|Ûk|

∑
i∈Ûk

dÛk
(i)

3: q̂ ← 1

(K
2)

∑
k1,k2∈[K]

1

|Ûk1
||Ûk2

|

∑
i∈Ûk1

,j∈Ûk2
(dÛk2

(i)+

dÛk1
(j))

4: for k = 1 to K do
5: V̂k ← Ûk
6: θk ← |Ûk|(p̂+ q̂)/2
7: for i ∈ V \ ∪Kk=1 Ûk do
8: if dÛk

(i) ≥ θk then
9: V̂k ← V̂k ∪ {i}

10: end if
11: end for
12: end for
13: Output V̂1, . . . , V̂K

Note that Algorithm 1 works even if lines 1, 2, 3 are
replaced by an oracle which returns non-overlapping sets of
nodes from each community and also returns appropriate p̂, q̂.

B. Recovering pure node clusters

Before we describe the FindPureNode algorithm to de-
tect pure node sets, we briefly review the convex optimization
based method for clustering non-overlapping communities
in a graph. This method is used as a subroutine by the
FindPureNode algorithm.

Non-overlapping community detection via convex optimiza-
tion:

Let A denote the adjacency matrix for the graph G, Ω(A)
be its support (i.e., the set of nonzero elements of A), and
Ω(A)c be the complement of this support. Let PΩ(A)B
be the projection of the matrix B on the support of A.
||Y ||∗ denotes the nuclear norm (singular values’ sum) of
matrix Y. Further, the `1 norm of a matrix M is defined as
||M ||1 =

∑
i,j |M(i, j)|. A convex optimization based algo-

rithm [8], [10] clusters a set of nodes into non-overlapping
communities by solving the following optimization problem
(CP1)

(CP1) min
Y,B

||Y ||∗ + c1||PΩ(A)B||1 + c2||PΩ(A)cB||1

s.t. Y +B = A

0 ≤ Yi,j ≤ 1,∀(i, j)

Here c1, c2 are some suitably chosen weights. For a graph,
with non-overlapping communities, (CP1) can recover the
ideal cluster matrix Y ∗ where Y ∗i,j = 1 if nodes i, j belong
to the same cluster and Y ∗i,j = 0 otherwise.

By solving (CP1) we can recover all communities of
size greater than Ω(

√
n) [8]. In fact, even in presence

of communities of size less than
√
n, solving (CP1) with

appropriate parameters can still recover the larger com-
munities [10]. We will use this particular version of the
algorithm for (CP1) called RecoverBigFullObs in [10] as a

subroutine for our FindPureNodes algorithm. We rename
RecoverBigFullObs as ClusterCP in our algorithm for
the ease of exposition. Note that we can solve (CP1) without
the knowledge of the number of non-overlapping communi-
ties present in the graph.

Finding pure nodes:

We now describe the algorithm FindPureNode to re-
cover sets of the pure node clusters Û1, . . . , Ûk. The al-
gorithm is based on successive degree thresholding and
clustering using the RecoverBigFullObs subroutine (called
ClusterCP in Algorithm 2). The key idea is that, for any
community k, a pure node i ∈ Vk is likely to have a
lower degree than a mixed node j ∈ Vk. This is because
a pure node is part of only one community k and shares
more edges with only nodes in Vk. On the other hand, a
mixed node j is also part of at least one more community
l besides k, hence it shares large number of edges with
nodes in Vk ∪ Vl. However note that there may still be
pure nodes in larger communities with degree higher than
a mixed node in a smaller community. Nevertheless, some
of the smallest degree nodes in the entire graph will be pure
nodes (those from the smallest communities). By choosing
an appropriate threshold degree θ, nodes with degree less
than θ in V will only be pure nodes from some of these
smallest communities. Now clustering or grouping these
pure nodes into communities is equivalent to clustering for
non-overlapping communities since a pure node belongs to
only one community. This can be achieved using convex
optimization based clustering algorithms discussed above
(CP1). Once we recover a pure node cluster Ûk ⊂ Vk, we
can use this set of nodes as a labeled reference set to find
all other pure and mixed node in this community since these
nodes will share many edges with the pure node set Ûk.
Therefore, we can recover this community Vk.

By removing the nodes in Vk from V , we now have a
reduced problem with one less community. Therefore, by
successively applying these three steps of degree threshold-
ing, clustering, and removing communities, we can recover
pure node sets Ûk from all communities k ∈ [K].

Note that we do not recover all the communities
V1, . . . , VK but only pure node sets from each of these
communities. To see this, suppose in the first iteration we
recover pure node set from community 1, then we identify
and remove all nodes from V1. However since many of these
nodes are mixed nodes, such nodes also get removed from the
remaining communities. In the second iteration, suppose we
recover pure node set from community 2, we then identify
and remove all remaining nodes from V2, many of them
may have already been removed in the first iteration through
V1. Therefore we cannot identify the entire community
V2. This algorithm has analogs to Successive Interference
Cancellation in multiuser communication [18]. Let dmax be
the maximum degree of a node in G. The FindPureNode
algorithm takes as input the graph G, the pure node cluster
size parameter γ, initial edge density estimates p0, q0, and

outputs the pure node sets Û1, . . . , ÛK . The pseudo-code is
presented in Algorithm 2.

Algorithm 2 FindPureNode(G, γ, p0, q0)

1: V ′ ← V, continue← 1
2: U ← ∅
3: while V ′ 6= ∅ and continue = 1 do
4: θ ← 1
5: Split V ′ randomly into two sets P and Q each of

size |V ′|/2
6: For each i ∈ P compute dQ(i)
7: γ0 ← 0
8: while γ0 < γ/4 and θ ≤ dmax do
9: θ ← θ + 1

10: U ′ ← {i ∈ P : dQ(i) ≤ θ}
11: Estimate p̂, q̂ from U , p0, q0

12: U ′1, . . . , U
′
r ← ClusterCP (U ′, AU ′ , p̂, q̂)

13: γ0 ← maxj=1,...,r |U ′j |
14: if γ0 ≥ γ/4 then
15: U ← U ∪j:|U ′

j |≥γ/4 U
′
j

16: end if
17: end while
18: W ← {j ∈ V : ∃U ∈ U , dU (j) ≥ |U |(p̂+ q̂)/2}
19: V ′ ← V \W
20: if V ′ remain unchanged then
21: continue← 0
22: end if
23: end while
24: Output U = Û1, . . . , ÛK

Recall that the convex optimization based clustering algo-
rithm ClusterCP (RecoverBigFullObs in [10]) requires
as input the graph, its adjacency matrix and edge density es-
timates p̂, q̂ but does not require the number of communities.
Hence, in line 12 of Algorithm 2, r is the number of non-
overlapping clusters found by the ClusterCP algorithm, the
sets being U ′1, . . . , U

′
r

2.
The ClusterCP algorithm also requires edge density esti-

mates p̂, q̂ as input. This is computed in line 11 of Algorithm
2. This can be done in several ways. The FindPureNode
algorithm is provided with initial edge density estimates
p0, q0 as input. This can be estimated from a labeled training
dataset where we know a small subset of nodes from a few
communities. Until at least two pure node sets have been
recovered this p0, q0 can be used as estimates p̂, q̂. However
once two pure node sets are recovered p̂, q̂ can be estimated
as in lines 2,3 of Algorithm 1. Another way to find initial
estimates of p̂, q̂ is by using the first two eigenvalues of the
matrix AU ′ − IU ′ as shown in [8], where IU ′ is the identity
matrix of size |U ′|.

III. MAIN RESULTS

In this section, we present out main results. The proofs are
provided in Section V. First, we describe three sufficient con-

2Note that r can vary in each iteration depending on number of pure
node clusters currently in the set U ′.

ditions under which the DetectOverlapComm algorithm is
guaranteed to recover all overlapping communities from the
graph. We use the following notations: αk := |Vk|,∀k ∈ [K],
α := mink∈[K] αk, and γ := mink∈[K] |Uk|.

A. Sufficient Conditions

Random graph generative model. For every node i ∈ V ,
define its community membership set Ci = {k ∈ [K] : i ∈
Vk}. We know that the nodes within each community are
more densely connected than nodes in separate communi-
ties. To capture this, we consider a simple random graph
generative model as follows.

(A1) The edges in G are generated independently, where
the probability of an edge (i, j) is p when Ci ∩Cj 6= ∅, and
is q when Ci ∩ Cj = ∅, for 0 < q < p < 1.

Therefore any two nodes which share at least one commu-
nity are connected with a higher probability than nodes which
do not share any common community3. Note that when the
communities are non-overlapping this model reduces to the
classical planted partition model [1], [7], [8].

Overlap size. This condition specifies the size of overlap
between any pair of communities. Two communities with
very large overlaps are inherently difficult to learn since
it becomes statistically harder to differentiate between the
two. Recall α = mink∈[K] αk is the size of the smallest
community. Let d̄max = maxk∈[K] αkp+ (n− αk)q be the
maximum expected degree of a node. The condition is as
follows.

(A2) For any two communities k1, k2 ∈ [K], there exists
β > 0 such that

|Vk1 ∩ V ck2 | ≥ β = Ω

(
d̄max

(p− q)

√
log n

min(αp, (n− 2α)q)

)
.

Consequently, the maximum number of nodes that com-
munity k1 shares with another community k2 is upper
bounded by αk1 − β.

Pure nodes. The third condition guarantees that every
community has a set of pure nodes which only belong to
that community. This assumption is reasonable in large-scale
networks with several communities. Examples include a co-
authorship network (authors with sole-area interests) [19],
and a protein-protein interaction network (proteins with only
one functionality) [20].

(A3) For any community k ∈ [K], there exists a subset of
nodes Uk ⊆ Vk which belong to only community k. There
exists γ > 0 such that mink∈[K] |Uk| ≥ γ, where

γ = max

(
C1

√
p(1− q)Γ

(p− q)
log2 Γ,

C2p
2

(p− q)2q
log n

)
,

where Γ =
∑
k∈[K] |Uk| and C1, C2 are constants.

3Our results also extend to the setting where probability of en edge
between nodes i, j is an increasing function of the number of communities
they share, i.e., |Ci ∩ Cj |.

B. Results

We will now present our main theorem. First we state
the following lemma which guarantees that under conditions
(A1) and (A2), with high probability, the degree of any pure
nodes will be less than a mixed node in the same community.
This is the main reason why the degree thresholding can
separate pure nodes from mixed nodes of same community.

Lemma 1 Consider a graph with K overlapping communi-
ties satisfying assumption (A1), (A2). Let P,Q be a random
unbiased split of V. Consider a community k, and let i ∈
P ∩ Vk be a pure node and j ∈ P ∩ Vk be a mixed node.
Then there exists θ ∈ R such that dQ(j) > θ > dQ(i) with
high probability.

We comment that the random split in line 5 of Algorithm
2 is mainly required for the proof. This makes the out-degree
dQ(i) of nodes i ∈ P statistically independent of the edges
within subgraph GP . This is a standard technique used in
many community detection algorithms [7], [12]. Lemma 1
shows that the degree properties of a pure node i and mixed
node j are also reflected in the out-degrees dQ(i), dQ(j) after
the random split. Theorem 1 shows that with high probability
the FindPureNode algorithm correctly recovers subsets of
pure nodes from each community. We can then ensure that
these sets of pure nodes can be used as reference nodes to
find the community membership of all the mixed nodes in
DetectOverlapComm algorithm.

Theorem 1 Consider a graph with K overlapping commu-
nities satisfying assumptions (A1), (A2), and (A3). Given
p0 = p, q0 = q, the FindPureNodes algorithm can
correctly recover the pure node clusters Û1, . . . , ÛK , with
high probability, such that Ûk ⊆ Uk and mink∈[K] |Ûk| ≥
γ/4.

Theorem 2 guarantees recovery of all communities under
conditions (A1), (A2) and (A3) with high probability. For
the Theorem we assume p0 = p, q0 = q are given as input.
Proposition 2 in section V shows that with K pure nodes sets
of size at least γ, we can estimate p, q with high accuracy.

Theorem 2 Consider graph G with K overlapping commu-
nities satisfying assumptions (A1), (A2), and (A3). Then with
high probability DetectOverlapComm algorithm correctly
recovers the communities V1, . . . , VK with p0 = p, q0 = q.

Remark 1 For a graph G with non-overlapping commu-
nities the DetectOverlapComm algorithm has the same
performance as the convex optimization based clustering
algorithm in [10]. Since there are no mixed nodes, any
choice of threshold θ suffices. The algorithm still choose
θ depending on relative size of the communities until it
recovers at least γ/4 nodes from one community. However
we can take γ = α and obtain the guarantees in [10].

Remark 2 For dense graphs when p = Θ(1), q =
Θ(1), (p − q) = Θ(1), let α = Ω

(
n2/3

)
, K = O(1).

Then Theorem 2 requires β = Ω
(
n2/3

)
, γ = Ω(log n) to

guarantee successful recovery.

Remark 3 For sparse graphs for p = Θ
(

logn
n

)
, q =

Θ
(

logn
n

)
, p − q = Θ

(
logn
n

)
Theorem 2 requires α =

Θ(n), β = Θ(n), γ = Θ(n).

The following proposition characterizes the runtime of the
DetectOverlapComm algorithm.

Proposition 1 Under assumptions (A1), (A2), (A3)
in a graph G with K overlapping communities the
DetectOverlapComm algorithm has a runtime of
O
(
dmaxKΓ3 + nΓ

)
with high probability.

C. Performance Comparison

A good theoretical performance comparison of various
overlapping community detection algorithms is presented
in [12], Section 1.3. In comparison, DetectOverlapComm
algorithm has the following performance.
• Compared to the randomized algorithms by Arora et

al. in [11] where the results focus on dense graphs,
the DetectOverlapComm algorithm can recover com-
munities even in sparse graphs with O(n log n) edges.
It also has a much smaller runtime with Θ(n) sized
communities.

• In dense graphs with O(log n) pure nodes, the
DetectOverlapComm algorithm has a runtime of
O
(
nK log3 n

)
, which is smaller than O(n2K) runtime

of the tensor based algorithm by Anandkumar et al.
[12].

• The overlapping community detection algorithm by
Balcan et al. in [15] requires that for any node, the
number of its edges within its community is larger than
its number of edges out of the community. Our algo-
rithm does not require such restrictions. Also in sparse
graphs these algorithms require a quasi-polynomial run-
time in n (with O(log n) average degree) unlike the
DetectOverlapComm algorithm whose runtime is at
most polynomial.

IV. NUMERICAL EXPERIMENTS

In this section we evaluate the performance of the
DetectOverlapComm (OCD) algorithm on both real and
synthetic datasets. We compare the performance of our
algorithm with the popular Link Partition (LP) algorithm
for overlapping community detection [21]. We use the C++
implementation of the LP algorithm from [22]. Recall that
the split in line 5 of Algorithm 2 is mainly required for the
analysis. Hence for these experiments we skip this step and
take dQ(i) as the degree of node i in Algorithm 2.

A. Real Dataset

We run both DetectOverlapComm and LP algorithms
in a co-authorship network dataset (1589 network science
researchers) used in [23]. Since the overall graph is dis-
connected, we run both algorithms on the largest connected

component having 379 nodes. The graph is sparse having just
914 edges. Since the actual ground truth communities are not
known, we evaluate the results based on five different widely
used performance score functions in community detection
[24]. The score functions are Cut Ratio (CR), Conductance
(C), Fraction over median degree (FOMD), Triangle Par-
ticipation Ratio (TPR) and Modularity (MOD) which were
shown to be good representative community scoring func-
tions in [24]. We run the DetectOverlapComm algorithm
with different values of input parameters. Table I shows
the various scores obtained (averaged over all communities)
using γ = 5, p0 = .5, q0 = .01 when the algorithm recovers
48 communities with 331 nodes. 48 nodes were not assigned
to any communities as these were found to be outliers. For
LP algorithm note that we can obtain different number of
communities by varying the threshold in the hierarchical
edge clustering step. To make a fair comparison we choose
a threshold such that the number of recovered communities
is closest to one obtained by Algorithm 1 since scores like
CR and C are expected to be better (less) as the number
of communities decrease. Hence for threshold of .15 the LP
outputs 42 communities which is also when the communities
have the highest modularity score. The average scores over
all 42 communities are shown in Table I. In comparison we
see that the communities obtained by DetectOverlapComm
algorithm has a better CR, C, FOMD and TPR while that of
LP algorithm has a better MOD.

Algorithm CR C FOMD MOD TPR
DOC .0058 .3120 .3894 .6125 .9028
LP .0072 .3265 .1706 .7415 .7620

TABLE I
TABLE SHOWING THE PERFORMANCE OF DetectOverlapComm

(DOC) AND LINK PARTITION (LP) [21] ALGORITHMS ON REAL

CO-AUTHORSHIP NETWORK DATASET [23] WITH 379 NODES. THE

PERFORMANCE IS COMPARED IN TERMS OF AVERAGE COMMUNITY

SCORING METRICS CUT RATIO (CR), CONDUCTANCE (C), FRACTION

OVER MEDIAN DEGREE (FOMD), TRIANGLE PARTICIPATION RATIO

(TPR) AND MODULARITY (MOD) FOR THE CASE WHEN DOC AND LP
OUTPUTS 48 AND 42 COMMUNITIES RESPECTIVELY. COMMUNITIES

OBTAINED BY DOC HAVE A BETTER C, CR, TPR AND FOMD WHILE

LP COMMUNITIES HAVE A BETTER MOD.

B. Synthetic Dataset

We further test the performance of DetectOverlapComm
(DOC) and Link Partition (LP) algorithm [21] on synthetic
graphs generated according to the model in section III-A.
We generated graphs with n = 1000,K = 5 and 50 − 70
pure nodes per community. The size of the communities vary
between 430−470. As we showed in section III, the perfor-
mance of DOC (Algorithm 1) is governed by the difference
p− q. Figure 1 shows the average error performance of both
algorithms as a function of the difference p − q for two
different values of p. For DOC, we further consider two cases
which are depicted by blue curves and red curves in Figure1:
The blue curve shows the performance when the probabilities

p and q are known and hence we simple choose p0 = p and
q0 = q. The red curve shows the performance when p and q
are not known and hence we estimate p0 and q0 based on the
graph using the approach discussed in section II. As it can be
observed, the error performance in the latter case (i.e., when
the algorithm use the estimated values) is only marginally
poorer than the performance when the exact p, q are known,
showing that our algorithm is quite robust against such
estimation errors. For the LP algorithm, we choose different
values of the threshold in the hierarchical clustering step and
we plot the minimum error obtained corresponding to the
best threshold. The DetectOverlapComm (DOC) algorithm
demonstrates a significantly better error performance than the
Link Partition (LP) algorithm.

Fig. 1. Figure showing the error performance of DetectOverlapComm
(DOC) and Link Partition (LP) algorithm on synthetic graphs with n =
1000 and K = 5 and different values of p, p − q. The blue curve
corresponds to the case when p0 = p, q0 = q and the red curve corresponds
to the case when p0, q0 are estimated from the graph. In both case the DOC
algorithm shows a much better average error than LP algorithm.

V. PROOFS

Proposition 2 Under assumption (A1) with K ≥ 2, with
the pure node subsets U1, . . . , UK such that |Uk| ≥ γ, the
estimation error in p̂, q̂ (in lines 2, 3 of Algorithm 1) can be
bounded as follows

|p̂− p| ≤

√
6p log n

Kγ(γ − 1)
,

|q̂ − q| ≤ 1

γ

√
6q log n

K(K − 1)
,

with high probability.

Proof: Consider the estimation of p̂. Under assumption
(A1), the expected number of edges among the pure nodes
in the same community (i.e., the intra-cluster edges among
the pure nodes) is simply given by

S =

K∑
k=1

(
|Uk|

2

)
p.

Then by the Chernoff bound, with probability at least 1 −
e−ε

2Sp/3, we have |p̂ − p| ≤ εp. Now S ≥ K
(
γ
2

)
p since

|Uk| ≥ γ. Hence by taking

ε =

√
6 log n

Kγ(γ − 1)p
,

with probability greater than 1 − 1/n, we get the required
bound. For q̂, the expected number of inter-cluster edges
among the pure nodes is at least

(
K
2

)
γ2. Again by applying

the Chernoff bound, we get the required bound on the
estimation error.

Proof of Lemma 1
Proof: Let A = Vk ∩ Q. Now sets P and Q are formed
by a equally likely random split of V. Hence using Chernoff
bound it is easy to show that with high probability

|A| ≥ |Vk|/4 =
αk
4
≥ α

4
(1)

From (A1) the degree of any node is distributed as sum of
two binomial random variables. Therefore for a pure node
i ∈ P ∩ Vk using Chernoff bound with probability at least
1− e−ε2µ1/3 − e−ε2µ2/3,

dQ(i) ≤ (1 + ε)(µ1 + µ2), (2)

where µ1 = |A|p, µ2 = (|Q|− |A|)q. Now for a mixed node
j ∈ P∩Vk there exits at least another community Vl it is part
of. Hence node j shares an edge with probability p with any
other node in Vk ∪ Vl. From assumption (A2) we know that
|V ck ∩ Vl| ≥ β. Using Chernoff bound with high probability
|V ck ∩ Vl ∩ Q| ≥

β
4 . Again using Chernoff bound the out

degree of node j can be lower bounded as

dQ(j) ≥ (1− ε)(µ3 + µ4) (3)

with probability at least 1−e−ε2µ3/3−e−ε2µ4/3, where µ3 =
(|A|+ β/4)p, µ4 = (|Q| − |A| − β/4)q.

Let

µ = min{µ1, µ2, µ3, µ4} = min{µ1, µ4},

and

ε =

√
3

µ
log

4n

δ
,

then by the union bound we have for any pure node i ∈
P ∩Vk and mixed node j ∈ P ∩Vk for any k with probability
at least 1− δ,

dQ(j) ≥ (1− ε)(µ3 + µ4)

= (|A|+ β/4)(1− ε)p
+(|Q| − |A| − β/4)(1− ε)q

= (1− ε)(µ1 + µ2) +
β

4
(1− ε)(p− q).

Now from assumption (A2), let

β =
16ε(µ1 + µ2)

(1− ε)(p− q)
= Ω

(
dmax

(p− q)√µ

√
log

n

δ

)
.

Note that µ scales as µ = Ω (min(αp, (n− 2α)q)) since
|Q| = Θ(n), |A| = Ω(α) and β ≤ α. Hence, it follows that,

dQ(j) ≥ (1− ε)(µ1 + µ2) +
β

4
(1− ε)(p− q)

= (1− ε)(µ1 + µ2)

+
4ε(µ1 + µ2)

(1− ε)(p− q)
(1− ε)(p− q)

> (1− ε)(µ1 + µ2) + 2ε(µ1 + µ2)

= (1 + ε)(µ1 + µ2) ≥ dQ(i).

Therefore,

dQ(j) > θ > dQ(i), (4)

for

θ = ((1 + ε)(µ1 + µ2) + (1− ε)(µ3 + µ4))/2.

We will use the following lemma in the proof of Theorems 1
and 2.

Lemma 2 Consider any pair of nodes i ∈ Vk, j 6∈ Vk, and
a set A ⊂ Vk\i, for any k ∈ [K]. Under assumption (A1)
with probability greater than 1 − δ, δ ∈ (0, 1), we have
dA(i) > |A|(p+ q)/2 > dA(j) whenever

|A| ≥ 48p2

(p− q)2q
log

2n

δ
.

Proof: Since i ∈ Vk and j 6∈ Vk any node l ∈ A shares
an edge with i with probability p and shares an edge with j
with probability q. Using Chernoff bound for ε = p−q

4p with
probability at least 1− e−ε2|A|p/3

dA(i) ≥ (1− ε)|A|p >

(
1− (p− q)

2p

)
|A|p

= (p+ q)|A|/2. (5)

Also with probability greater than 1− e−ε2|A|q/3,

dA(j) ≤ (1 + ε)|A|q <

(
1 +

p− q
2q

)
|A|q

= (p+ q)|A|/2 (6)

Therefore whenever |A| ≥ 48p2

(p−q)2q log 2n
δ , taking union

bound over all nodes, with probability greater than 1 − δ,
combining equations (5), (6) we have for any i ∈ Vk, j 6∈ Vk

dA(i) > (p+ q)|A|/2 > dA(j).

Proof of Theorem 1
Proof: The proof is by induction. From Lemma 1, for any
community Vk there exists θ(k) such that for any pure node
i ∈ P ∩ Vk and mixed node j ∈ P ∩ Vk,

dQ(i) < θ(k) < dQ(j),

with high probability. Without loss of generality, assume
θ(k) ∈ Z. Now let θ0 = mink∈[K] θ(k). Note that for

any θ ≤ θ0, the set U ′ does not contain any mixed node
since for any mixed node j ∈ Vk, dQ(j) > θ(k) > θ0.
Since all the nodes in U ′ are pure nodes, clustering the
nodes in U ′ is equivalent to clustering for non-overlapping
communities. If for some θ < θ0 the set U ′ contain at
least γ/4 pure nodes from a community and ClusterCP
/ RecoverBigFullObs algorithm successfully recovers this
set we are done. If not, then for θ = θ0 we know that there
exists a community l = arg mink∈[K] θ(k) for which any
pure node i ∈ P ∩Vl has dQ(i) < θl = θ0, therefore i ∈ U ′.
From assumption (A3) since the set of pure nodes Ul ⊂ Vl
has size at least γ, then using Chernoff bound with high
probability |P ∩ Ul| ≥ γ/4. Thus U ′ contains at least one
subset U ′l = P ∩Ul of pure nodes from a single community
of size at least γ/4. Note that since the edges within the
nodes in U ′ were not used to determine the out degrees
dQ(i), the distribution of edges within U ′ follows exactly the
same distribution as in the classical planted partition model
or stochastic block model [2], [8], [10], i.e., between any
two pure nodes from the same cluster there is an edge with
probability at least p and between pure nodes in different
clusters there is an edge with probability at most q. The
number of clusters K ′ in U ′ satisfies 1 ≤ K ′ ≤ K, but may
not have nodes from all K clusters since pure nodes from
bigger communities may have larger degree with dQ(i) > θ0.
Recall that Γ is the total number of pure nodes. Under
assumptions (A3) with initial threshold

`] = γ/4 ≥
b3κ
√
p(1− q)Γ

(p− q)
log2 Γ,

Theorem 3 in [10] guarantees that ClusterCP /
RecoverBigFullObs algorithm correctly recovers all clus-
ters of size greater than `] with high probability. Hence we
can successfully recover cluster U ′l . Now from Lemma 2 and
assumption (A3) for any node i ∈ Vl,

dU ′
l
(i) > (p+ q)|U ′l |/2.

Therefore Vl ⊆ W and community l is removed from V ′

for the next iteration. Similarly any other community k for
which ClusterCP / RecoverBigFullObs algorithm has
recovered a large enough pure node cluster U ′k are also
removed from V ′ in the next iteration. Therefore for the
next iteration we have a set of nodes V ′ with at most K− 1
overlapping communities. Using the same arguments we can
show that the number of communities in V ′ at the (t + 1)-
th iteration is strictly less than the number of communities
in the previous t-th iteration. Since the total number of
communities K is finite, therefore in at most K iterations
the algorithm stops when V ′ = ∅. This is when the set U has
pure node clusters Ûk ⊆ Uk from each community k with
|Ûk| ≥ γ/4. Note that when there are outlier nodes which do
not belong to any community, at the end of the last iteration
V ′ remain unchanged since ClusterCP algorithm cannot
find any more pure node clusters of size at least γ/4. Hence
variable continue is set to 0 and the algorithm terminates.

Proof of Theorem 2
Proof: The proof follows from Theorem 1 and Lemma
2. Under assumptions (A1), (A2), and (A3), Theorem 1
guarantees that with high probability we can recover a set
of pure nodes Ûk ⊆ Uk from each community k ∈ [K], and
for any k, |Ûk| ≥ γ/4. Now for any node j ∈ V \ ∪Kk=1 Ûk,
if l ∈ Cj then from Lemma 2, for

γ = Ω

(
p2

(p− q)2q
log n

)
,

with high probability

dÛl
(j) > (p+ q)|Ûl|/2.

Therefore node j will be assigned to set V̂l. Also if l 6∈ Cj
then dÛl

(j) < (p + q)|Ûl|/2 hence node l is not included
in the set V̂l. Therefore with high probability we correctly
recover the set of communities V1, . . . , VK .

Proof of Proposition 1
Proof: In each iteration the ClusterCP /
RecoverBigFullObs subroutine has a runtime of O(KΓ3).
Now the iteration runs till pure node subsets from all
communities have been recovered. The pure nodes from the
largest community will be the ones to be recovered last. This
will happen when the threshold θ = O(dmax). Therefore
the FindPureNode algorithm will have a runtime of
O
(
dmaxKΓ3

)
with high probability. Computing out degree

to the recovered pure node sets take O(Γ) time. Hence
assigning communities to all the remaining nodes requires
a time of O(nΓ). Therefore the total runtime required is
O
(
dmaxKΓ3 + nΓ

)
with high probability.

VI. CONCLUSION

In this paper we presented a new algorithm for detecting
overlapping communities in a graph. Our algorithm recovers
a set of pure nodes from each community using successive
steps of degree thresholding, convex optimization based
clustering, and node removal. It then uses these sets of pure
nodes to find the community memberships of remaining
nodes in the graph. Our theoretical results show that the
algorithm can correctly recover communities in both dense
and sparse graphs. Further the algorithm performs well in
our experiments, on both real co-authorship network dataset
and synthetic datasets.

While our algorithm in this paper requires the presence
of pure nodes in each community, our two-step technique
itself is more general and is applicable to the more general
setting when the pure nodes do not necessarily exist. In this
setting, we can first try to detect a subset of nodes from
each community that does not completely overlap with the
rest of such subsets from the other communities. Then these
nodes can be used as reference sets to find the community
membership of remaining nodes. As a future work, we will
develop algorithms that can recover such reference set of
nodes even in the absence of pure nodes. We will also
develop a faster implementation of our algorithm and test
its performance on larger datasets.

REFERENCES

[1] R. Boppana. Eigenvalues and graph bisection: An average-case
analysis. In Foundations of Computer Science, 1987., 28th Annual
Symposium on, pages 280–285. IEEE, 1987.

[2] K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the
high-dimensional stochastic blockmodel. The Annals of Statistics,
39(4):1878–1915, 2011.

[3] S. Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[4] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community
detection in networks: The state-of-the-art and comparative study.
ACM Computing Surveys (CSUR), 45(4):43, 2013.

[5] F. McSherry. Spectral partitioning of random graphs. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on,
pages 529–537. IEEE, 2001.

[6] J. Giesen and D. Mitsche. Reconstructing many partitions using
spectral techniques. In Fundamentals of Computation Theory, pages
433–444. Springer, 2005.

[7] K. Chaudhuri, F. Chung, and A. Tsiatas. Spectral clustering of graphs
with general degrees in the extended planted partition model. Journal
of Machine Learning Research, 2012:1–23, 2012.

[8] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs. In
Advances in Neural Information Processing Systems, volume 25, 2012.

[9] S. Oymak and B. Hassibi. Finding dense clusters via” low rank+
sparse” decomposition. arXiv preprint arXiv:1104.5186, 2011.

[10] N. Ailon, Y. Chen, and H. Xu. Breaking the small cluster barrier of
graph clustering. arXiv preprint arXiv:1302.4549, 2013.

[11] S. Aurora, R. Ge, S. Sachdeva, and G. Schoenebeck. Finding over-
lapping communities in social network: Toward a rigorous approach.
In Proc. of the ACM Conf. on EC, 2012.

[12] A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A tensor spectral
approach to learning mixed membership community models, 2013.
http://arxiv.org/abs/1302.2684.

[13] F. Huang, UN. Niranjan, M. Hakeem, and A. Anandkumar. Fast
detection of overlapping communities via online tensor methods, 2013.
http://arxiv.org/abs/1309.0787.

[14] Edoardo M Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P.
Xing. Mixed membership stochastic blockmodels. Journal of Machine
Learning Research, 9:1981–2014, 2008.

[15] M. F. Balcan, C. Borgs, M. Braverman, J. Chayes, and S. H. Teng.
Finding endogenously formed communities. In Proc. of the 24th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 767–
783. SIAM, 2013.

[16] P. K. Gopalan and D. Blei. Efficient discovery of overlapping
communities in massive networks. Proc. of the National Academy
of Sciences, 110(36):14534–14539, 2013.

[17] P. Gopalan, C. Wang, and D. Blei. Modeling overlapping communities
with node popularities. In Advances in Neural Information Processing
Systems, pages 2850–2858, 2013.

[18] S. Verdu. Multiuser detection. Cambridge university press, 1998.
[19] M. Newman. Coauthorship networks and patterns of scientific collab-

oration. Proc. Natl. Acad. Sci. USA, 101:5200–5205, 2004.
[20] K. Voevodski, S. Teng, and Y. Xia. Finding local communities in

protein networks. BMC bioinformatics, 10(1):297, 2009.
[21] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal

multiscale complexity in networks. Nature, 466:761–764, 2010.
[22] J. P. Bagrow. Link partition code, 2010. http://barabasilab.

neu.edu/projects/linkcommunities/.
[23] M. E. Newman. Finding community structure in networks using the

eigenvectors of matrices. Physical review E, 74(3):036104, 2006.
[24] J. Yang and J. Leskovec. Defining and evaluating network communi-

ties based on ground-truth. In Proc. of the ACM SIGKDD Workshop
on Mining Data Semantics, page 3. ACM, 2012.

