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Abstract

We consider decentralized learning over a network of work-
ers with heterogeneous datasets, in the presence of Byzan-
tine workers. Byzantine workers may transmit arbitrary or
malicious values to neighboring workers, leading to degra-
dation in overall performance. The heterogeneous nature of
the training data across various workers complicates the iden-
tification and mitigation of Byzantine workers. To address
this complex problem, we introduce a resilient decentralized
learning approach that combines the gradient descent algo-
rithm with a novel robust aggregator. Specifically, we propose
a remove-then-clip aggregator, whereby each benign worker
meticulously filters the neighbors’ values and subsequently
projects the remaining values to a sphere centered at its lo-
cal value, with an appropriately selected radius. We prove
that our proposed method converges to a neighborhood of a
stationary point for non-convex objectives under standard as-
sumptions. Furthermore, empirical evaluations are provided
to demonstrate the superior performance of our method in
comparison to existing algorithms, under various Byzantine
attack models.

Introduction
Modern machine learning (ML) applications rely on pro-
cessing massive amounts of data, which are often generated
and held by devices and users worldwide. Training machine
learning models on distributed data provides many advan-
tages over traditional centralized approaches in core aspects
such as data ownership, privacy and fault-tolerance (Kairouz
et al. 2021). In this direction, federated learning (FL) has
gained significant traction (Konečnỳ et al. 2016; McMahan
et al. 2017), where edge devices collaborate to train a model
without sharing their local data. In centralized FL, devices
send their model updates to a centralized server (called pa-
rameter server) which aggregates the updates and coordi-
nates the devices during the learning process. The parameter
server poses a single point of failure and may cause a com-
munication bottleneck as the number of devices increases.
This problem has motivated the design of decentralized ma-
chine learning methods (Lian et al. 2017; Lalitha et al. 2018;
Roy et al. 2019), that can achieve comparable model ac-
curacy as the state-of-the-art FL approaches while boast-
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ing several significant advantages over FL, such as fault-
resilience and self-scalability.

Despite the benefits of decentralized training approaches,
their performance can be significantly degraded due to vul-
nerability to malicious devices or data heterogeneity across
the devices. In particular, some devices can be faulty, re-
ferred to as Byzantine workers (Hegedűs, Danner, and Je-
lasity 2021), due to software/hardware errors or getting
hacked, and send arbitrary or malicious model updates to
other devices, thus severely degrading the overall perfor-
mance. To address Byzantine attacks in the training process,
a few Byzantine-robust decentralized learning algorithms
have been introduced recently (Yang and Bajwa 2019; Guo
et al. 2022; Fang, Yang, and Bajwa 2022; He, Karimireddy,
and Jaggi 2022), where benign workers attempt to combine
the updates received from their neighbors by using robust
aggregation rules to mitigate the impact of potential Byzan-
tine workers. Most current algorithms deal with Byzantine
attacks under independent and identically distributed (IID)
data across the devices; however, in reality, the data can
vary dramatically across the devices in terms of quantity,
label distribution, and feature distribution (Zhao et al. 2018;
Hsieh et al. 2020). Data heterogeneity makes the detection
of Byzantine workers more challenging compared to the
IID data setting, as the divergent local models might be at-
tributed to either Byzantine workers or the heterogeneous
nature of the data. Most proposed Byzantine-robust decen-
tralized learning algorithms cannot handle such non-IID data
settings and result in slow convergence or degraded accuracy
of the global model (Zhang and Yang 2021).

In this paper, we study the problem of decentralized learn-
ing in non-IID and Byzantine environments. We propose a
robust decentralized learning algorithm to address the defi-
ciencies of the prior algorithms. Specifically, the main con-
tributions of our work can be summarized as follows:
• We present a decentralized learning method by utilizing

the distributed stochastic gradient descent (DSGD) algo-
rithm combined with a novel robust aggregator. The pro-
posed robust aggregator, based on a Remove-then-Clip
(RTC) idea, enables the application of DSGD algorithm
to Byzantine non-IID settings.

• Given a general weighted network topology, we prove
the convergence to a neighborhood of a stationary point
for non-convex objectives in the Byzantine and non-IID



setting.
• We provide extensive evaluations that demonstrate the

superior performance of our method compared to the
prior approaches, under various Byzantine attacks. In
particular, our method can lead to 3%-35% improvement
over the prior approaches in the specific scenarios ana-
lyzed.

Related Work
There has been a tremendous amount of work on Byzantine-
robust learning in the parameter-server model (Blanchard
et al. 2017; Yin et al. 2018; Chen, Su, and Xu 2017;
Xie, Koyejo, and Gupta 2019, 2020b; Regatti, Chen, and
Gupta 2020). Most of the proposed robust aggregation rules
are distance-based rules, including Krum (Blanchard et al.
2017), trimmed mean (Yin et al. 2018) and geometric me-
dian (Chen, Su, and Xu 2017), which filter the gradients/-
parameters far from the average. It has been shown that
these methods are vulnerable to some sophisticated at-
tacks (Baruch, Baruch, and Goldberg 2019). On the other
hand, there have been performance-based filtering strate-
gies (Xie, Koyejo, and Gupta 2019, 2020b; Regatti, Chen,
and Gupta 2020), which evaluate the model received from
each worker on data sampled by the server and filter the
abnormal one. However, such methods depend on auxil-
iary datasets at the server and cannot defend against time-
coupled attacks (Xie, Koyejo, and Gupta 2020a). To ad-
dress this issue, a clipping-based method has been pro-
posed (Karimireddy, He, and Jaggi 2021), where the server
projects all received values onto a sphere centered at its last
updated value with a proper radius. This process, referred to
as clipping, acts as a defense mechanism against sophisti-
cated attacks including time-coupled attacks.

In the context of decentralized machine learning, there
is a rich literature on compression techniques for reduc-
ing the size of messages exchanged between the work-
ers (Koloskova et al. 2020), optimizing the communication
topology (Assran et al. 2019; Ying et al. 2021), and ad-
dressing data heterogeneity (Shi et al. 2015; Di Lorenzo and
Scutari 2016; Mateos, Bazerque, and Giannakis 2010; Al-
ghunaim and Sayed 2020). In the Byzantine setting, there
has been work on decentralized machine learning that uses
trimmed mean aggregators at benign workers to aggregate
models received from their neighbors (Su and Vaidya 2016;
Yang and Bajwa 2019). Guo et al. (2022) have demonstrated
that such an aggregation method is defeated by the so-called
hidden attack (Guerraoui, Rouault et al. 2018). To solve this
limitation, Guo et al. (2022) propose an algorithm called
uniform Byzantine-resilient aggregation rule (UBAR) that
combines distance-based and performance-based aggrega-
tors. However, this method will fail in the non-IID data set-
ting (He, Karimireddy, and Jaggi 2022). There are only a
few works on Byzantine-robust decentralized learning in the
non-IID data setting (He, Karimireddy, and Jaggi 2022; Wu,
Chen, and Ling 2023; Li et al. 2017). He, Karimireddy, and
Jaggi (2022) propose a self-centered clipping (SCCLIP) ag-
gregation rule, yet obtaining the clipping threshold in SC-
CLIP relies on actually knowing the set of benign workers

in each neighborhood that is not feasible in a Byzantine en-
vironment. Wu, Chen, and Ling (2023) propose an iterative
filtering-based aggregation rule, however, this rule encoun-
ters computational difficulties especially when the number
of Byzantine workers is proportional to the total number
of workers. Li et al. (2017) show that alternating direc-
tion method of multipliers (ADMM) converges linearly to
a neighborhood of the optimal solution, under certain con-
ditions, and proposes a robust variant of ADMM; however,
no proof of convergence is provided for the robust variant.
To fill the research gap, we propose a Byzantine-robust de-
centralized learning method, based on the combination of
DSGD algorithm and a novel robust aggregator RTC. We
prove that the proposed method converges to a neighborhood
of a stationary point in non-IID and Byzantine settings.

Problem Formulation
Network Model
The network is modeled as an undirected graph G = (V, E)
with a set of n workers V = {1, · · · , n} and a set of undi-
rected edges E . If (i, j) ∈ E , workers i and j are neigh-
bors and can communicate with each other. Let W =
[wij ]i,j∈V ∈ Rn×n be a non-negative symmetric matrix
whose positive entry wij is the weight of edge (i, j) ∈ E .
It is assumed that not all workers are benign. An unknown
group of workers are Byzantine which can send faulty/mali-
cious values to their neighbors during the learning process.
We use R and B to denote the sets of benign workers and
Byzantine workers, respectively. We define the numbers of
benign and Byzantine workers by R = |R| and B = |B|.
For worker i, we use Ni to denote the set of all its neighbors
and further define N i := Ni ∪ {i}. We next provide a few
standard definitions and assumptions.

Definition 1. A subgraph GR of G is called the Byzantine-
free graph if it is generated by removing all Byzantine work-
ers along with their edges from G.

Assumption 1. The Byzantine-free graph GR generated
from G(V, E) is connected.

Compared to the setting in prior works (Su and Vaidya
2016; Yang and Bajwa 2019) that assume each benign
worker receives messages with an honest majority, Assump-
tion 1 is weaker and has also been used before (Peng and
Ling 2020; He, Karimireddy, and Jaggi 2022). The above as-
sumption implies that the original graph G is also connected.

Byzantine-Robust Decentralized Learning
We consider the following optimization problem

min
x∈Rd

f(x) :=
1

R

∑
i∈R

{fi(x) := Eξi∼Di
Fi (x; ξi)} , (1)

where x ∈ Rd is the model parameter, fi is the local ob-
jective function of benign worker i and Fi (x; ξi) denotes
the loss function for model parameter x for the random data
sample ξi drawn from distribution Di. Note that the data dis-
tribution is non-IID across the workers, i.e., Di ̸= Dj for
i, j ∈ V , i ̸= j.



We assume that the gradients and the local objective func-
tions satisfy the following properties.

Assumption 2 (L-smooth). For i ∈ R, fi(x) : Rd → R is
differentiable and there exists a constant L ≥ 0 such that for
any x,y ∈ Rd :

∥∇fi(x)−∇fi(y)∥2 ≤ L∥x− y∥2. (2)

Assumption 3 (Bounded gradient noise). There is a σ < ∞
such that for all i ∈ R and x ∈ Rd,

max
i∈R

∥∇Fi (x; ξi)−∇fi(x)∥22 ≤ σ2. (3)

Assumption 4 (Bounded heterogeneity). There is a ζ < ∞
such that for all i ∈ R and x ∈ Rd,

max
i∈R

∥∇fi(x)−∇f(x)∥22 ≤ ζ2. (4)

Assumption 2 is the commonly used smoothness condi-
tion. Assumption 3 limits the divergence of the stochastic
gradient ∇Fi(x) from the true gradient ∇fi(x). Assump-
tion 4, on the other hand, restricts the deviation of the local
gradient ∇fi(x) from the averaged gradient ∇f(x).

To solve the optimization problem (1) in a distributed
manner, each benign worker will update its local model pa-
rameter and collaborate with neighboring workers according
to a specific decentralized learning algorithm. However, it is
crucial to note that some workers within the system may be
Byzantine. Byzantine workers may broadcast malicious pa-
rameters to their neighbors to make the learning process fail.
We make the following assumption on Byzantine workers.

Assumption 5. There is a fixed set of Byzantine workers
which are omniscient.

Under this assumption, Byzantine workers know the en-
tire state of all benign workers and can take advantage of
this information to manipulate the models generated by the
learning algorithms. Defense against such powerful Byzan-
tine workers is very challenging. During the learning pro-
cess, each benign worker communicates with its neighbors.
One method of facilitating this collaboration is through
the mean weighted aggregation, which can be modeled as
xt+1
i =

∑
j∈N i

wijx
t
j , where xt

i denotes the model param-
eter vector of worker i at time t. A few definitions and as-
sumptions on the matrix W and weights are provided below.

Assumption 6. We assume that W ∈ [0, 1]n×n is a sym-
metric doubly stochastic matrix.

Note that
∑

j∈V wij = 1 for any worker i ∈ V and wij >

0 if and only if j ∈ N i.

Definition 2. The total weight of Byzantine workers in the
neighborhood of benign worker i ∈ R is defined by δi :=∑

j∈B∩Ni
wij . We further define δmax := maxi∈R δi.

In this work, we consider a more general setting where
there is a bound δmax on the total weight of Byzantine work-
ers in the neighborhood of any benign worker, rather than
a bound on the number of Byzantine workers in any such
neighborhood, similar to the setting in He, Karimireddy, and
Jaggi (2022).

Definition 3. Given the Byzantine-free graph GR of G, we
define a Byzantine-free weight matrix W̃ ∈ R(n−B)×(n−B),
where w̃ij , for i, j ∈ R, is defined by

w̃ij =

{
wij , if i ̸= j,
wii + δi, otherwise.

(5)

By construction, W̃ is doubly stochastic and has a posi-
tive spectral gap γ guaranteed by Assumption 1. W̃ will be
used in the analysis and upper bound calculations.

Preliminary: Decentralized Stochastic
Gradient Descent

Following a decentralized learning method, workers in V it-
eratively optimize their local model parameters and collab-
orate to reach consensus. As a preliminary, we first describe
a widely used method, namely, decentralized stochastic gra-
dient descent (DSGD) (Nedic and Ozdaglar 2009). In gen-
eral, DSGD contains three steps at each iteration, including
computation, communication and aggregation. Specifically,
at the t-th iteration, worker i has its local model parameter
xt
i and updates an intermediate variable x

t+ 1
2

i as

x
t+ 1

2
i = xt

i − ηgt
i, (6)

where gt
i = ∇Fi(x

t
i; ξ

t
i) is the stochastic gradient of Fi at

xt
i and η is the step size. Then, worker i broadcasts x

t+ 1
2

i
to its neighbors. When receiving the model parameters from
the neighbors, worker i will update its model by the mean
weighted aggregation:

xt+1
i =

∑
j∈N i

wijx
t+ 1

2
j . (7)

However, in the presence of Byzantine workers, DSGD will
fail since messages sent from Byzantine workers can pre-
vent the convergence and such an aggregation rule is vul-
nerable to Byzantine attacks. To solve this problem, we
need to replace the weighted averaging in (7) by more ro-
bust aggregation rules, in order to mitigate the impact of
the Byzantine workers (Yang and Bajwa 2019; Guo et al.
2022; Fang, Yang, and Bajwa 2022; He, Karimireddy, and
Jaggi 2022). Specifically, benign worker i updates its esti-
mate at the (t + 1)-th iteration using a robust aggregation

rule AGGi

(
x
t+ 1

2
j , j ∈ N i

)
, under which (7) is replaced by

xt+1
i = AGGi

(
x
t+ 1

2
j , j ∈ N i

)
. (8)

Proposed Robust Decentralized Learning
Method: DSGD-RTC

In this section, we introduce our decentralized learning ap-
proach, by incorporating our novel robust aggregator in the
DSGD scheme with momentum.



Algorithm 1: RTC aggregator at benign worker i
Input: Model parameter xi ∈ Rd for worker i ∈ R, worker
i’s neighbor set N i, the set of weights {wij |j ∈ N i} and
bound δmax.
Output: RTCi

(
xj , j ∈ N i

)
.

1: Initialize a removing set U0
i = ∅ and k = 0

2: while
∑

j∈Uk
i
wij ≤ δmax do

3: Set k = k + 1
4: Choose index j = argmax

m∈N i

∥xm − xi∥2

5: Add j into the removing set Uk
i

6: end while
7: Construct the set of remaining neighbors Si =

N i\Uk−1
i

8: Centered at xi, clip the remaining neighbors’ values to
obtain RTCi

(
xj , j ∈ N i

)
according to (9)

9: return RTCi

(
xj , j ∈ N i

)
.

Robust Aggregation via Remove-then-Clip (RTC)
We present a novel robust aggregator, referred to as RTC,
designed explicitly to enhance the robustness and efficiency
of the DSGD algorithm. The RTC aggregator is described
in Algorithm 1. RTC involves a careful filtering phase and
a clipping phase. In the filtering phase, benign worker i re-
ceives messages from its neighbors and sequentially elimi-
nates the most distant ones. Specifically, it initializes a re-
moval set U0

i = ∅ at the beginning of the filtering process.
Then, iteratively, worker i identifies the neighbor whose
model is the farthest from its own (worker i’s) model and
adds it to the set Uk

i (Lines 2-6 in Algorithm 1). This pro-
cess continues until the total weight of the removed neigh-
bors reaches δmax (Definition 2).

After the filtering phase, a clipping process is applied
to the set of remaining neighbors Si that have survived
the filtering phase. The output of the aggregation rule
RTCi

(
xj , j ∈ N i

)
at worker i is obtained by clipping the

values of workers in Si centered at xi and replacing the val-
ues of removed neighbors with xi, i.e.,

RTCi

(
xj , j ∈ N i

)
=
∑
j∈Si

wij (xi +CLIP(xj − xi, τi)) +
∑

j∈N i\Si

wijxi,

(9)

where τi is a carefully chosen parameter defined as

τi =

√
1

δmax

∑
j∈Si

wijE ∥xi − xj∥22, (10)

and CLIP is defined as

CLIP (x, τ) = x ·min(1, τ/∥x∥22). (11)

Below, we describe how RTC distinguishes itself from
the existing methods and outline its key features. Com-
pared with methods such as robust federated aggregation
(RFA) (Pillutla, Kakade, and Harchaoui 2022), which pri-
marily focus on finding a median value, our proposed RTC

Algorithm 2: DSGD with RTC aggregator
Input: Initial model parameter x0

i ∈ Rd for worker i ∈ R,
communication graph G = (V, E) and mixing matrix W .
Parameter: Step sizes η and α.
Output: xT

i for worker i ∈ R.
1: Initialize x0

i = m0
i = 0 ∈ Rd in parallel for i ∈ R

2: for t = 0, 1, ..., T − 1 do
3: for i ∈ R do
4: Sample ξti , compute gradient gt

i = ∇Fi(x
t
i; ξ

t
i)

5: mt+1
i = (1− α)mt

i + αgt
i

6: x
t+1/2
i = xt

i − ηmt+1
i

7: Worker i exchanges xt+ 1
2

i with its neighbors

8: xt+1
i = RTCi

(
x
t+ 1

2
j , j ∈ N i

)
9: end for

10: end for
11: return xT

i for worker i ∈ R.

applies clipping method to multiple vectors rather than seek-
ing a single central point, which takes advantage of more
information from neighbors. SCCLIP method (He, Karim-
ireddy, and Jaggi 2022) indiscriminately applies a clipping

radius τ ′i =
√

1
δi

∑
j∈R wijE ∥xi − xj∥22 to all received

neighbor vectors. However, this radius includes the set R,
which comprises all benign workers and is unknown. In
comparison, our proposed RTC method introduces a more
sophisticated aggregation. On one hand, by integrating the
meticulous filtering scheme with the clipping process, RTC
reduces the impact of potential Byzantine attacks without
losing significant information from benign neighbors’ up-
dates. On the other hand, to deal with the problem of finding
clipping radius, RTC constructs the set Si by employing the
filtering process and tactically replaces the unknown set R
in τ ′i with the purposefully constructed set Si in τi. This bal-
anced consideration of feasibility and robustness in integrat-
ing RTC offers an enhancement to decentralized learning.

Algorithm 2 describes DSGD with the robust aggrega-
tor RTC. Specifically, each regular worker i calculates the
stochastic gradient gt

i in Line 4. Following this step, worker
i employs the momentum method in Line 5, which is advan-
tageous for accelerating the convergence rate of DSGD and
defending against time-coupled attacks (Karimireddy, He,
and Jaggi 2021). Subsequently, worker i advances by cal-
culating the intermediate variable x

t+ 1
2

i , which is then ex-
changed with neighboring workers. The final step involves
the application of the RTC aggregator to mitigate potential
adversarial influences from Byzantine workers. This process
culminates in the derivation of the updated model parameter
xt+1
i , as presented in Line 8. Note that Byzantine workers

can send arbitrary vectors to their neighbors.

Remark 1. Similar to SCCLIP, our approach is easy to im-
plement, and the computational complexity is O(|Ni|d) for
each worker at each iteration, where d is the dimension of
the model parameter vector. At the same time, implementa-
tion of methods like Krum requires O(|Ni|2d) computation



per step (Blanchard et al. 2017).

Remark 2. RTC only needs an estimate of the upper bound
on δmax. In the absence of an accurate estimate, we can
employ an adaptive strategy. We initiate the process with a
conservative estimate of δmax, setting it to a relatively small
value. The learning algorithm is then allowed for a num-
ber of iterations. If it fails to converge to a local neighbor-
hood, or converges but yields accuracy that falls below the
desired threshold, we incrementally adjust δmax upwards.
This process is repeated until the algorithm consistently
demonstrates satisfactory performance. Through this adap-
tive method, we can effectively estimate a suitable δmax,
while also accommodating the dynamic range of Byzantine
behaviors in a practical scenario.

Analysis of the Proposed DSGD-RTC Method
We first present a lemma showing that the difference be-
tween the value returned by RTC and the weighted average
of the values from regular neighbors is bounded. Then we
provide the main theorem regarding the convergence prop-
erties of DSGD with RTC.

Lemma 1. Assume Assumption 5, 6 hold and choose τi ac-
cording to (10). Let x̂i = RTCi

(
xj , j ∈ N i

)
. Then for all

i ∈ R, we have

E

∥∥∥∥∥∥x̂i −
∑
j∈R

w̃ijxj

∥∥∥∥∥∥
2

2

≤ 10δmax max
j∈R∩N i

E ∥xi − xj∥22 .

(12)

Recall that by Definition 3,
∑

j∈R w̃ijxj is the weighted
average of the values of regular neighbors of worker i and
worker i itself. Note that in Lemma 1 if there are no Byzan-
tine workers (δmax = 0), RTC aggregator outputs the same
value as the weighted average. Also if regular workers have
reached consensus (maxj∈R E ∥xi − xj∥22 = 0), RTC ag-
gregator maintains the consensus. Note that if we apply SC-
CLIP aggregator (He, Karimireddy, and Jaggi 2022) and set

τ ′i =
√

1
δi

∑
j∈R wijE ∥xi − xj∥22, then we have,

E

∥∥∥∥∥∥SCCLIPi

(
xj , j ∈ N i

)
−
∑
j∈R

w̃ijxj

∥∥∥∥∥∥
2

2

≤ 4δi
∑
j∈R

wijE ∥xi − xj∥22 . (13)

Compared to (12), the right-hand side of inequality (13)
is constrained by the weighted average of distances∑

j∈R wijE ∥xi − xj∥22, whereas in Lemma 1, RTC aggre-
gator employs the maximum term maxj∈R E ∥xi − xj∥22.
This distinction arises from SCCLIP’s use of inaccessible
clipping thresholds which result in a tighter bound.

Theorem 1. Assume Assumption 1-6 hold, δmax = O
(
γ2
)

and α := 4ηL. Then for Algorithm 2, we have

1

T + 1

T∑
t=0

∥∥∇f
(
x̄t
)∥∥2

2
≤

O

δmaxζ
2

γ2
+

(
( δmax

γ2 + 1
R )σ2

T

) 1
2

+

(
ζ

Tγ

) 2
3

+

(
σ

2
3

Tγ
2
3

) 3
4

+
1

T

)
. (14)

The above theorem shows that DSGD-RTC converges to
O
(
δmaxζ

2/γ2
)
-neighborhood of a stationary point after a

sufficiently large time T . Note that Ω
(
δmaxζ

2
)

is the lower
bound on the convergence results in the Byzantine-robust
distributed learning (Karimireddy, He, and Jaggi 2022). The-
orem 1 establishes that even though RTC aggregator adopts a
feasible clipping threshold, leading to a less stringent bound
as detailed in Lemma 1, Algorithm 2 reliably attains conver-
gence in the non-convex and non-IID setting.

Experiments
In this section, we empirically show the superior perfor-
mance of our proposed method and compare it with exist-
ing robust aggregators as well as an upper bound based on
an ideal aggregator which knows the identity of Byzantine
workers.

Experiment Setup
Network Topology. The network topology of the decen-
tralized system in our experiments is an Erdos–Renyi (ER)
graph with 30 nodes, where each edge is included in the
graph with connection probability p. To ensure the connec-
tivity assumption, we first generate a decentralized network
of benign nodes in which all the workers strictly follow the
learning procedure. Then we randomly add different num-
bers of Byzantine workers to the network and connect them
to the benign nodes with the same connection probability p.
Consistent with the setting adopted in the recent study (He,
Karimireddy, and Jaggi 2022), we construct wij as follows,

wij =


1

dmax+1 , if j ∈ Ni,

1− |Ni|
dmax+1 , if j = i,

0, otherwise,
(15)

where dmax is the maximum degree of nodes in the graph.

Dataset. We consider MNIST (LeCun and Cortes 2010),
which contains ten handwritten digits from 0 to 9, with
60,000 training images and 10,000 testing images. For IID
data distribution, the training dataset is partitioned equally
among all workers, while for non-IID data distribution, the
dataset is sorted by labels and sequentially divided into equal
parts for all workers.

Optimization Objective. We consider both convex and
non-convex loss functions. In the convex setting, we use
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Figure 1: Accuracy of different aggregators in the ER graph with 5 Byzantine workers under three attacks in the convex setting
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Figure 2: Accuracy of different aggregators in the ER graph with 5 Byzantine workers under three attacks in the non-convex
setting

the multi-class logistic regression problem to test the per-
formance of algorithms. The loss function is given by,

f(x) =−

[
N∑
i=1

K∑
k=1

1 {bi = k} log
exp

(
x(k)⊤ai

)∑K
j=1 exp

(
x(j)⊤ai

)]

+
θ

2
∥x∥22, (16)

where 1{} is the indicator function, ai ∈ Rm and bi ∈
{1, · · · ,K} are the input vector and the label of data sam-
ples, K is the number of classes, N is the total number of
data samples, x is an m ×K matrix, of which the j-th col-
umn is x(j) and θ is the regularization parameter. In the de-
centralized setting, all the benign workers use the loss func-
tion (16) but with different data samples. In the setting of
non-convex, we use a 6-layer neural network as the training
model.

Benchmarks. We consider existing robust aggregators
with GD including: (1) RFA (Pillutla, Kakade, and Har-
chaoui 2022), (2) UBAR (Guo et al. 2022), and (3) SC-
CLIP (He, Karimireddy, and Jaggi 2022). Since coordinate-
wise trimmed mean (Yang and Bajwa 2019) and
Krum (Blanchard et al. 2017) usually perform worse than
RFA, we exclude them in the experiments.

In addition, we introduce an upper bound on the perfor-
mance of any Byzantine-robust algorithm. To establish the
upper bound, we use the mean weighted aggregation from

(7) based on the Byzantine-free weight matrix W̃ , as defined
in Definition 3.

Byzantine Attacks. We evaluate the performance of algo-
rithms under several widely used attacks:
• Inner Product Manipulation (IPM) attack (Xie, Koyejo,

and Gupta 2020a): IPM attack is proposed to make all
Byzantine workers send the same corrupted gradient u
based on the benign gradients in the distributed settings.
Thus, in the decentralized settings, following the modifi-
cation detailed in (He, Karimireddy, and Jaggi 2022), if
j ∈ B is a Byzantine neighbor of the benign worker i, xj

is computed as

xj = xi − ε
∑

k∈R∩Ni

wik (xk − xi) , (17)

where ε is a tuning parameter.
• A Little Is Enough (ALIE) attack (Baruch, Baruch, and

Goldberg 2019): The Byzantine workers estimate the
mean µi and standard deviation σi of the benign models,
and send µi − zσi to benign worker i where z is a con-
stant controlling the strength of the attack. The parameter
z is computed as

z = max
z

(
ϕ(z) <

n−B − s

n−B

)
, (18)

where s =
⌊
n
2 + 1

⌋
−B and ϕ is the cumulative standard

normal function.
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(c) DISSENSUS

Figure 3: Accuracy of different aggregators in the ER graph with 10 Byzantine workers under three attacks in the non-convex
setting

• DISSENSUS attack (He, Karimireddy, and Jaggi 2022):
Let εi > 0 for all i ∈ R. The Byzantine worker j ∈
B ∩Ni sends

xj := xi − εi

∑
k∈R∩Ni

wik (xk − xi)∑
l∈B∩Ni

wil
. (19)

Evaluation Results
We evaluate the defense efficacy of various aggregators un-
der three attacks and non-IID datasets in the convex and non-
convex settings.

Performance comparison with 5 Byzantine workers un-
der different Byzantine attacks in the convex settings.
The network is structured as an ER graph comprising 30
workers, among which 5 are Byzantine workers. It features
a connection ratio p = 0.5 and δmax = 0.2. To evaluate the
performance of various methods, Fig. 1 is presented. This
figure features the number of iterations on the x-axis and
the accuracy achieved on test datasets on the y-axis. In the
convex setting, as shown in Fig. 1, our method, RTC per-
forms best under all three attacks and is relatively close to
the upper bound. More specifically, under IPM attack, our
algorithm improves accuracy by 10% over SCCLIP and 14%
over RFA. Under ALIE attack, our algorithm’s performance
exceeds that of SCCLIP and RFA by 6% and 3%, respec-
tively. Under DISSENSUS attack, our proposed algorithm
surpasses SCCLIP by an accuracy margin of 9%, and out-
performs RFA by 6%. Additionally, UBAR remains with an
accuracy of less than 40% under three attacks.

Performance comparison with 5 Byzantine workers un-
der different Byzantine attacks in the non-convex set-
tings. Utilizing the established ER graph framework with
30 workers, including 5 Byzantine workers, we further in-
vestigate the performance of various methods in the non-
convex setting, as shown in Fig. 2. We observe that our
method ranks as the best under three attacks. Specifically,
under IPM attack, our proposed algorithm exhibits an ac-
curacy improvement of 10% over both SCCLIP and RFA.
Under ALIE attack, our algorithm gains 5% over SCCLIP
and 7% over RFA in accuracy. Under DISSENSUS attack,
our algorithm gains 13% over SCCLIP and 14% over RFA in

accuracy. It is noteworthy that UBAR consistently exhibits
the least effectiveness under all three attacks.

Performance comparison with 10 Byzantine workers un-
der different Byzantine attacks in the non-convex set-
tings. We modify our network setting to ER graph with
30 workers, of which 10 are Byzantine workers. This net-
work is characterized by a connection ratio p = 0.5 and
δmax = 0.3. In this adjusted setting, we evaluate the per-
formance of various methods against 10 Byzantine work-
ers in the non-convex environment, as depicted in Fig. 3.
Our results indicate that our method consistently achieves
the best performance across all three distinct attack scenar-
ios. Specifically, under IPM attack, our algorithm shows a
26% improvement in accuracy over SCCLIP and 22% over
RFA. In the case of ALIE attack, there is a 4% gain over
SCCLIP and 7% over RFA. Under DISSENSUS attack, the
improvement is even more pronounced, with 35% over SC-
CLIP and 26% over RFA. Notably, UBAR shows the least
effectiveness in all three attack scenarios. Moreover, in sce-
narios with 10 Byzantine workers, the improvement of our
method over other methods is significantly magnified com-
pared to the setting of 5 Byzantine workers, especially un-
der IPM and DISSENSUS attacks. This notable enhance-
ment in performance under more intensive Byzantine attacks
demonstrates our method’s heightened resilience and adapt-
ability to stronger attack environments compared to the past
aggregators.

Conclusion
In this paper, we introduced a decentralized learning method
that leverages DSGD in conjunction with a novel robust ag-
gregator. We provided theoretical guarantees on the conver-
gence of our algorithm. Extensive evaluations demonstrated
that our method offers significant improvements over exist-
ing methods in heterogeneous and Byzantine environments.
A possible future work could include more careful analysis
or other approaches to relax the dependence of convergence
guarantees on heterogeneity.
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