
Randomized Algorithms for Scheduling VMs in
the Cloud

Javad Ghaderi
Columbia University

Abstract—We consider the problem of scheduling VMs (Virtual
Machines) in a multi-server system motivated by cloud computing
applications. VMs arrive dynamically over time and require
various amounts of resources (e.g., CPU, Memory, Storage, etc.)
for the duration of their service. When a VM arrives, it is
queued and later served by one of the servers that has sufficient
remaining capacity to serve it. The scheduling of VMs is subject
to: (i) packing constraints, i.e., multiple VMs can be be served
simultaneously by a single server if their cumulative resource
requirement does not violate the capacity of the server, and
(ii) non-preemption, i.e., once a VM is scheduled in a server, it
cannot be interrupted or migrated to another server. To achieve
maximum throughput, prior results hinge on solving a hard
combinatorial problem (Knapsack) at the instances that all the
servers become empty (the so-called global refresh times which
require synchronization among the servers). The main contri-
bution of this paper is that it resolves these issues. Specifically,
we present a class of randomized algorithms for placing VMs
in the servers that can achieve maximum throughput without
preemptions. The algorithms are naturally distributed, have low
complexity, and each queue needs to perform limited operations.
Further, our algorithms display good delay performance in
simulations, comparable to delay of heuristics that may not be
throughput-optimal, and much better than the delay of the prior
known throughput-optimal algorithms.

Index Terms—Resource Allocation, Markov Chains, Stability,
Cloud Computing, Knapsack Problem

I. INTRODUCTION

Cloud computing has obtained considerable momentum
recently and different cloud computing models and services
have emerged to meet the needs of various users. By using
cloud, users no longer require to install and maintain their own
infrastructure and can instead use massive cloud computing
resources on demand. In Infrastructure as Service (IaaS) model
of the cloud computing, the cloud provider (e.g., Amazon
EC2 [1]) provides computing, networking, and storage ca-
pabilities to users through Virtual Machines (or Instances).
Each Virtual Machine (VM) specifies certain amounts of CPU,
memory, storage, etc. The users can request from multiple
Virtual Machine (Instance) types depending on their needs.

As demand for the cloud services continues to scale, re-
source allocation to meet the demand presents a challenging
problem for two reasons: first, the cloud workload is a priori
unknown and will likely be variable over both time and space;
and second, serving VMs in the servers of the cloud is subject
to packing constraints, i.e., the same server can serve multiple
VMs simultaneously if the cumulative resource requirement
of those VMs does not violate the capacity of the server.
Therefore, to maintain the scalability and efficiency of the

cloud architecture, it is imperative to develop efficient resource
allocation algorithms addressing these challenges.

In this paper, we consider a system consisting of a (possibly
large) number of servers. The servers are not necessarily
homogeneous in terms of their capacity for various resources
(e.g. CPU, memory, storage). The VMs of various types arrive
dynamically over time. Once a VM arrives, it is queued and
later served by one of the servers that has sufficient remaining
capacity to serve it. Once the service is completed, the VM
departs the system and releases the resources. The throughput
of the system is defined as the average number of VMs of
various types that can be served by the system over time. We
are interested in efficient and scalable scheduling algorithms
that maximize the throughput of the system. Further, we
ideally would like to do scheduling without preemptions (i.e.,
without interrupting the ongoing services of the jobs in the
system) since preemptions require the interrupted jobs to be
migrated to new machines or restored at a later time, which
are both undesirable (expensive) operations [2].

In this paper, we use the terms VM (Virtual Machine) and
job interchangeably.

A. Motivation and Challenges

Consider a very simple example: a single server system with
two types of jobs. Suppose there is only one type of resource
and the server capacity is 10 units. Jobs of type 1 require 2
units of resource and jobs of type 2 require 3 units of resource.
This implies that, at any time, the server can simultaneously
serve k1 jobs of type 1 and k2 jobs of type 2 if k1(2)+k2(3) ≤
10. We refer to (k1, k2) as the server configuration. There are
two queues Q1 and Q2 for holding jobs of type 1 and type 2
waiting to get service. To ensure maximum throughput, prior
work [3]–[5] essentially relies on the max weight algorithm [6]
which operates as follows: consider a weight for each job type
equal to its queue size and then choose a configuration that has
the maximum sum weight. Formally, given the current queue
sizes Q1 and Q2, the max weight algorithm selects a pair
(k1, k2) that solves the following combinatorial optimization
problem

max
(k1,k2)

Q1k1 +Q2k2 (1)

subject to 2k1 + 3k2 ≤ 10

k1, k2 ∈ {0, 1, 2, · · · }

There are two main issues with respect to complexity and
dynamics of this algorithm that will be substantially magnified

as the system size scales:
(i) Complexity: Solving the optimization (1) is not easy,

especially when there is a large number of multi-
dimensional job types and the system consists of a
large number of (inhomogeneous) servers. In fact, the
optimization (1) is an instance of the classical Knapsack
problem which in general is NP-complete [7].

(ii) Preemption: The algorithm needs to solve (1) to find
the right configuration, whenever the queues change (i.e.,
every time a job arrives/departs), and reset the configura-
tion accordingly. Resetting the configuration however can
interrupt the ongoing services of the existing jobs in the
servers and require them to be migrated to new servers
or restored at a later time (which is expensive). One
alternative proposed in [4], [5] is to reset the configuration
to the max weight configuration at the so-called ‘refresh
times’. The local refresh times for a server are defined as
the times when all the jobs in the server leave and the
server becomes empty. This resolves the preemption issue
but, as noted in [4], [5], this approach in general requires
resetting the configurations of all the servers at the ‘global
refresh times’ which are times at which all the servers
in the system become empty simultaneously. Such global
refresh times become extremely infrequent as the number
of servers increases, which has a negative impact on the
delay performance; further, it requires synchronization
among the servers which is not practical.

B. Contribution

The contribution of this paper is to resolve the complexity
and refresh time issues discussed above. In particular, we
propose a simple low-complexity algorithm that provides
seamless transition between configurations and prove that it
is throughput-optimal. For the single server, two job-type
example described in Section I-A, our algorithm can be
essentially described as follows: “Assign a dedicated Poisson
clock of rate (1 +Qj) to the j-th queue, j = 1, 2. Whenever
the clock of the j-th queue ticks, try to fit a type-j job into the
server if possible.” As we will show, this simple mechanism
can be easily extended to systems that have a large number
of servers (which are not necessarily homogeneous) and have
many job types. In summary, our algorithm
(i) has low complexity, is scalable to large–scale server

systems with centralized or distributed queues, and is
throughput-optimal.

(ii) does not rely on “refresh times”, thus provides seamless
transition among the configurations without preemption
and without coordination among the servers.

(iii) displays good delay performance in simulations, compa-
rable to delay of heuristics that may not be throughput-
optimal, and much better than the delay performance of
the prior known throughput-optimal policies.

C. Related Work

At the high level, our work is at the intersection of resource
allocation in cloud data centers (e.g. [8], [9], [10], [11]–[13],

[14]) and scheduling algorithms in queueing systems (e.g. [6],
[15]–[20]). The VM placement in an infinite server system
model of cloud has been studied in [21]–[24]. We would like
to highlight three closely related papers [3], [4], [5] where
a finite model of the cloud is studied and preemptive [3]
and non-preemptive [4], [5] scheduling algorithms to stabilize
the system are proposed. The proposed algorithms however
essentially rely on the max weight algorithm and hence, as
explained in Section I-A, in general suffer from high complex-
ity and resetting at the global refresh times. In the case that
all the servers are identical, it is sufficient to reset the server
configurations at the so-called local refresh times, namely,
time instances when a server becomes empty, which are more
frequent than the global refresh times [4], [5]; however, it is
not clear if operation based on local refresh times is stable in
general.

D. Notations

Some of the basic notations used in this paper are the
following. |S| denotes the cardinality of a set S. 1(x ∈ A) is
the indicator function which is 1 if x ∈ A, and 0 otherwise.
ej denotes a vector whose j-th entity is 1 and its other entities
are 0. eij denotes a matrix whose entity (i, j) is one and its
other entities are 0. R+ denotes the set of real nonnegative
numbers. For any two probability vectors π, ν ∈ Rn+, the
Kullback–Leibler (KL) divergence of π from ν is defined
as DKL(π‖ν) =

∑
i πi log πi

νi
. We use Ξn to denote the n-

dimensional simplex of probability vectors Ξn = {p ∈ Rn+ :∑
i pi = 1}. Given two vectors x, y ∈ Rn, x < y means

xi < yi componentwise. f(x) = o(g(x)) means f(x)/g(x)
goes to 0 in a limit in x specified in the context.

E. Organization

The rest of the paper is organized as follows. We start
with the system model and definitions in Section II. Sec-
tions III and IV contain the description of our algorithms for
centralized and distributed queueing architectures respectively.
The main idea behind the algorithms is briefly explained in
Section V. The proof details are presented in Section VI.
Section VII contains the simulation results. Section VIII
contains conclusions and possible extensions of our results.

II. SYSTEM MODEL

Cloud Cluster Model and VM-based Jobs:

Consider a collection of servers L. Each server ` ∈ L has a
limited capacity for various resource types, e.g. CPU, memory,
storage, etc. We assume there are n ≥ 1 types of resources.
Servers are not necessarily homogeneous in terms of their
capacity. We define L = |L|.

There is a collection of VM (Virtual Machine) types J ,
where each VM type j ∈ J requires certain amounts of
various resources. Hence each VM type can be thought of as
an n-dimensional vector of resource requirements. We define
J = |J |.

VM (Job) Arrivals and Departures:

Henceforth, we use the word job and VM interchangeably.
We assume VMs of type j arrive according to a Poisson
process with rate λj . Each VM must be placed in a server
that has enough available capacity to accommodate it. VMs
of type j require an exponentially distributed service time with
mean 1/µj . The assumptions such as Poisson arrivals and
exponential service times can be relaxed (see Section VIII)
but for now let us consider this model for simplicity.

Server Configuration and System Configuration:

For each server `, a row vector k` = (k`1, · · · , k`J) ∈ RJ+ is
said to be a feasible configuration if the server can simulta-
neously accommodate k`1 type-1 VMs, k`2 type-2 VMs, · · · ,
k`J type-J VMs. We use K` to denote the set of feasible
configurations for server `. Note that we do not necessarily
need the resource requirements to be additive, we only require
the monotonicity of the feasible configurations, i.e., if k` ∈ K`,
and k′` ≤ k` (component-wise), then k′` ∈ K`.

We also define the system configuration as a matrix k ∈
RL×J+ whose `-th row (k`) is the configuration of server `. We
use K to denote the set of all feasible configuration matrices
for the system.

Queueing Dynamics and Stability:

When jobs arrive, they are queued and then served by the
servers. We use Qj(t) to denote the total number of type-j
jobs in the system waiting for service. We also define the row
vector Q(t) = (Qj(t), j ∈ J). The jobs can be queued either
centrally or locally as described below.

(i) Centralized Queueing Architecture: There are a total of
J queues, one queue for each job type. When a job arrives, it
is placed in the corresponding queue and later served by one
of the servers. Hence here Qj(t) is simply the size of the j-th
centralized queue.

(ii) Distributed Queueing Architecture: There are a total
of J × L queues located locally at the servers. Each server
has J queues, one queue for each job type. When a job
arrives, it is placed in a proper local queue at one of the
servers and then served by the same server later. We use
Q`j(t) to denote the size of the j-th queue at server ` and
use Q`(t) to denote the row vector Q`(t) = (Q`j(t), j ∈ J).
Hence Qj(t) =

∑
`∈LQ

`
j(t) is the total number of type-j jobs

waiting for service in the system. We also use Q(t) to denote
a matrix whose `-th row is Q`(t).

Under both architectures, the total number of jobs waiting
for service follows the usual dynamics:

Qj(t) = Qj(0) +Aj(0, t)−Dj(0, t), (2)

where Aj(0, t) is the number of type-j jobs arrived up to time t
and Dj(0, t) denotes the number of type-j jobs either departed
up to time t or receiving service at time t. The system is said
to be stable if the queues remain bounded in the sense that

lim sup
t→∞

E
[∑
j∈J

Qj(t)
]
<∞. (3)

A vector of arriving rates λ and mean job sizes 1/µ is said to
be supportable if there exists a resource allocation algorithm
under which the system is stable. Let ρj = λj/µj be the
workload of type-j jobs. Define

C = {x ∈ RJ+ : x =
∑
`∈L

x`, x` ∈ Conv(K`)}

where Conv(·) is the convex hull operator. It has been shown
in [3]–[5] that the set of supportable work loads is the interior
of C, i.e.,

Co = {ρ ∈ RJ+ : ∃x ∈ C s.t. ρ < x}

The goal of this paper is to develop low complexity al-
gorithms that can stabilize the queues for all ρ ∈ Co (i.e.,
throughput optimality), under both centralized and distributed
queueing architectures, without preemptions.

III. SCHEDULING ALGORITHM WITH CENTRALIZED
QUEUES

In this section, we present our algorithm for the system with
centralized queues. Recall that by centralized queues, we mean
that there is a set of common queues Qj , j ∈ J , representing
the jobs waiting to get service. When a type-j job arrives, it
is added to queue Qj . Once a job is scheduled for service in
one of the servers, it is placed in the server and leaves the
queue.

The algorithm is based on construction of dedicated Poisson
clocks for the queues. Each queue Qj is assigned an inde-
pendent Poisson clock of rate exp(wj(t)), where wj(t) =
f(Qj(t)) for an increasing concave function f to be specified
later. Hence, at each time t, the time duration until the tick
of the next clock is an exponential random variable with
parameter exp(wj(t))

1. The description of the algorithm is
given below.

Algorithm 1 Scheduling Algorithm with Centralized Queues
Suppose the dedicated clock of the type-j queue makes a tick,
then:

1: One of the servers is chosen uniformly at random.
2: If a type-j job can fit into this server:

- if there are type-j jobs in the queue, place the head-
of-the-line job in this server,

- else, place a dummy type-j job is this server.
Else: do nothing.

In Algorithm 1, dummy jobs are treated as real jobs, i.e.,
dummy jobs of type j depart after an exponentially distributed
time duration with mean 1/µj .

The following theorem states the main result regarding the
throughput-optimality of Algorithm 1.

Theorem 1: Any job load vector ρ ∈ Co is supportable by
Algorithm 1.

1This means that if Qj changes at a time t′ > t before the clock makes a
tick, the time duration until the next tick is reset to an independent exponential
random variable with parameter exp(wj(t

′)).

IV. SCHEDULING ALGORITHM WITH DISTRIBUTED
QUEUES

In this section, we present the algorithm for the system with
distributed queues. In this architecture, each server ` ∈ L has
a set of local queues Q`j , j ∈ J . When a type-j job arrives to
the system, it is routed to a proper server where it is queued.
Each server selects a set of jobs from its own set of local
queues to serve.

Similar to Algorithm 1, each queue Q`j is assigned an
independent Poisson clock of rate exp(w`j(t)), where w`j(t) =
f(Q`j(t)) for an increasing concave function f to be specified
later. The description of the algorithm is given below.

Algorithm 2 JSQ Routing and Scheduling Algorithm with
Distributed Queues
Job Arrival Instances:
Suppose a type-j job arrives at time t. The job is routed based
on JSQ (Join the Shortest Queue), i.e., it is assigned to the
server with the shortest queue for type-j jobs. Formally, let
`?j (t) = arg min`Q

`
j(t) (break ties arbitrarily). Then

Q`j(t
+) =

{
Q`j(t) + 1, if ` = `?j (t)

Q`j(t), otherwise.

Dedicated Clock Instances:
Suppose the dedicated clock of queue Q`j makes a tick at time
t, then:
If a type-j job can fit into server `:
• if Q`j(t) is nonempty, place the head-of-the-line job in

this server,
• else, place a dummy type-j job is this server.

Else: do nothing.

In Algorithm 2, dummy jobs are treated as real jobs, i.e.,
dummy jobs of type j depart after an exponentially distributed
time duration with mean 1/µj .

Remark 1: The JSQ routing can be replaced by simpler
alternatives such as the power-of-two-choices routing [25].
Namely, when a job arrives, two servers are selected at
random, and the job is routed to the server which has the
smaller queue for that job type.
The following theorem states the main result regarding the
throughput-optimality of Algorithm 2.

Theorem 2: Any job workload vector ρ ∈ Co is supportable
by Algorithm 2.

V. MAIN IDEA BEHIND THE ALGORITHMS AND
CONNECTION TO LOSS SYSTEMS

The main idea behind the algorithms is that the generation
of configurations is essentially governed by an imaginary loss
system whose job arrivals are the dedicated Poisson clocks in
Algorithms 1 and 2. We first define the loss system formally
and then mention a few properties of the loss system that will
constitute the basis for the analysis of our algorithms.

Definition 1 (LOSS(L,J ,w)): The loss system consists of a
set of servers L, a set of job types J , and a vector of weights

w = (wj ≥ 0; j ∈ J). The jobs of type j ∈ J arrive as
a poisson process of rate exp(wj). Every time a job arrives,
one of the servers is sampled uniformly at random, if the job
can fit in the server, it is placed in that server, otherwise the
job is dropped (lost forever). The jobs of type j leave the
system after an exponentially distributed time duration with
mean 1/µj .

The evolution of configurations in the loss system can be
described by a continuous-time Markov chain over the space
of configurations K with the transition rates as follows:

k→ k + e`j at rate
exp(wj)

L
1(k + e`j ∈ K),

k→ k− e`j at rate µjk
`
j1(k`j > 0).

The following lemma characterizes the steady-state behavior
of configurations in the loss system.

Lemma 1: The steady state probability of configuration k
in LOSS (L,J ,w) is given by

φw(k) =
1

Zw
exp(

∑
j

∑
`

wjk
`
j))
∏
`

∏
j

1

k`j !

(
1

Lµj

)k`j
, (4)

where Zw is the normalizing constant.
Proof: Under the uniform routing, the Markov chain is

reversible. For any pair k and k+e`j ∈ K, the detailed balance
equation is given by

φ(k)exp(wj)
1

L
= φ(k + e`j)(k

`
j + 1)µj ,

where the left-hand side is the transition rate from k to k+e`j ,
and the right-hand side is the transition rate from k + e`j to
k. It can be shown that the set of detailed balance equations
have a solution as given in (4).

Lemma 2: The probability distribution φw solves the fol-
lowing maximization problem

max
p∈ΞK

Ep

[∑
j∈J

∑
`∈L

wjk
`
j

]
−DKL(p ‖ φ0), (5)

where DKL(· ‖ ·) is the KL divergence distance, ΞK is the set
of probability distributions over K, and φ0 = φw=0, i.e,

φ0(k) =
1

Z0

∏
`

∏
j

1

k`j !

(
1

Lµj

)k`j
. (6)

Proof: Let F (p) denote the objective function

F (p) = Ep

[∑
j∈J

∑
`∈L

wjk
`
j

]
−DKL(p ‖ φ0).

Observe that F (p) is strictly concave in p. The lagrangian is
given by

L(p, η) = F (p) + η(
∑
k∈K

p(k)− 1),

where η ∈ R is the lagrange multiplier associated with the
constraint p ∈ ΞK (i.e., p ≥ 0 :

∑
k∈K p(k) = 1). Taking the

partial derivatives and solving ∂L/∂p(k) = 0 yields

p(k) = exp(−1 + η)φ0(k) exp(
∑
j

∑
`

k`jwj); k ∈ K,

which is automatically nonnegative for any η. Hence, by KKT
conditions (p?, η?) is the optimal primal-dual pair if it satisfies∑
K p

?(k) = 1. Thus the optimal distribution p? is given by
φw as defined in 4.
Lemma 2 indicates that given a set of weights wj , j ∈ J , the
loss system can generate configurations that roughly have the
maximum weight maxk

∑
j

∑
` wjk

`
j . The following corollary

formalizes this statement.
Corollary 1: The probability distribution φw satisfies

Eφw

[∑
j

∑
`

k`jwj

]
≥ max

k∈K

∑
j

∑
`

k`jwj + min
k∈K

log φ0(k),

for φ0 defined in (6) independently of w.
Proof: Define

k? := arg max
k∈K

∑
j

∑
`

k`jwj , (7)

and let δk?(k) = 1(k = k?). As a direct consequence of
Lemma 2,

Eφw

[∑
j

∑
`

k`jwj

]
−DKL(φw ‖ φ0) ≥∑

j

∑
`

k?`jwj −DKL(δk? ‖ φ0).

But DKL(υ ‖ φ0) ≥ 0, for any distribution υ, so

Eφw

[∑
j

∑
`

k`jwj

]
≥

∑
j

∑
`

k?`jwj −DKL(δk? ‖ φ0)

=
∑
j

∑
`

k?`jwj + log φ0(k?)

≥
∑
j

∑
`

k?`jwj + min
k∈K

log φ0(k).

Connection to Algorithm 1:

The generation of configurations under Algorithm 1 is
governed by the (imaginary) loss system LOSS(L,J ,w(t))
whose job arrivals are the Poisson clocks of Algorithm 1.
Now suppose the dynamics of the loss system converges to
the steady state at a much faster time-scale compared to the
time-scale of changes in w(t) (i.e., a time-scale separation
occurs), then the distribution of configurations in the system
roughly follows the stationary distribution of configurations in
LOSS(L,J ,w(t)) given by φw(t) in (4). Then by Corollary 1,
Algorithm 1 on average generates configurations which are
close to the max weight configuration (off by a constant
factor mink∈K log φ0(k) independent of queue sizes) which
suffices for throughput-optimality. The time-scale separation
holds under functions f(x) that grow as o(log(x)) when
x→∞. Similar time-scale separations arise in the context of
scheduling in wireless networks, switches and loss networks
and have been formally proved in a sequence of paper [17],
[19], [20], [26]. Establishing the time-scale separation for
our setting follows similar arguments and is not the main
contribution of this paper. Hence, in the proof of throughput

optimality, we opt for simply assuming that the time-scale
separation holds.

Connection to Algorithm 2:

Suppose the weights w` = (w`j , j ∈ J), ` ∈ L are
fixed. From the perspective of server `, the configuration k`

evolves according to the loss system LOSS({`},J ,w`), inde-
pendently of the evolution of other severs’ configurations. Let
φw

`

` (k`) denote the steady state probability of configuration k`

in server `, then by applying Lemma 1 to LOSS({`},J ,w`),

φw`

` (k`) =
1

Zw`

`

exp(
∑
j

w`jk
`
j)
∏
j

1

k`j !

(
1

µj

)k`j
, (8)

where Zw`

` is the normalizing constant. Then the steady-state
probability of system configuration k = (k`, ` ∈ L) follows
the product form

ψw(k) :=
∏
`

φw
`

` (k`)

=
1

Zw
ψ

exp(
∑
`

∑
j

w`jk
`
j)
∏
`

∏
j

1

k`j !

(
1

µj

)k`j
.(9)

Note that the distributions ψw (9) and φw (4) are almost
identical (the minor difference is in the 1/L term inside the
product in (4)). The rest of the argument is more or less
similar to Algorithm 1. We emphasize that here the job arrival
process to the queues and the queue process are coupled
through the dynamics of JSQ, nevertheless, the mean number
of arrivals/departures that can happen over any time interval,
it is still bounded, and hence by choosing functions f(x) of
the form o(log(x)) the time-scale separation still holds.

In Section VI we present more details regarding the proofs.

VI. LYAPUNOV ANALYSIS AND PROOFS

The proof of Theorems 1 and 2 is based on the properties
of the loss system (Corollary 1) and standard Lyapunov
arguments [27], [28].

A. Proof of Theorem 1

Define the state of the system as S(t) = (Q(t),k(t)) where
Q(t) is the vector of queue sizes and k(t) is the system
configuration matrix whose `-th row is the configuration
of server `. Under Algorithm 1, the process {S(t)}{t≥0}
evolves as a continuous-time and irreducible Markov chain.
Let Q̄j(t) = Qj(t) +

∑
`∈L k

`
j(t). Consider a Lyapunov

function

V (t) =
∑
j∈J

1

µj
F (Q̄j(t)), (10)

where F (x) =
∫ x

0
f(τ)dτ . Recall that f : R+ → R+ is

a concave increasing function; thus F is convex. Choose an

arbitrarily small u > 0. It follows from convexity of F that
for any t ≥ 0,

V (t+ u)− V (t) ≤∑
j∈J

1

µj
f(Q̄(j)(t+ u))(Q̄(j)(t+ u)− Q̄(j)(t)) =

∑
j∈J

1

µj
f(Q̄(j)(t))(Q̄(j)(t+ u)− Q̄(j)(t))+

∑
j∈J

1

µj
(f(Q̄(j)(t+ u))− f(Q̄(j)(t)))(Q̄j(t+ u)− Q̄j(t)).

We can write

Q̄j(t+ u)− Q̄j(t) = Aj(t, t+ u)− D̄j(t, t+ u),

where Aj(t, t + u) is the number of arrivals of type-j jobs
during (t, t+u) and D̄j(t, t+u) is the number of departures of
real and dummy type-j jobs from the system during (t, t+u).
Let NA

j (t) and ND
j (t), j ∈ J , denote independent unit-rate

Poisson processes. Then, the processes Aj and D̄j can be
constructed as

Aj(0, t) = NA
j (λjt), D̄j(0, t) = ND

j (

∫ t

0

∑
`

k`j(τ)µjdτ).

It is easy to see that

|f(Q̄j(t+ u))− f(Q̄j(t))| ≤ f ′(0)|Q̄j(t+ u)− Q̄j(t)|,

by the mean value theorem, and the fact that f is a concave
increasing function. For notational compactness, let EZ [·] =
E[·|Z], given a random variable Z. Suppose the maximum
number of jobs of any type that can fit in a server is less than
M <∞, then

∑
j

∑
` k

`
j < LM . It is then follows that

ES(t)

[
V (t+ u))− V (t)

]
≤∑

j

1

µj
ES(t)

[
f(Q̄j(t))(Aj(t, t+ u)− D̄j(t, t+ u))

]
+
∑
j

f ′(0)

µj
ES(t)

[
|Aj(t, t+ u)− D̄j(t, t+ u)|2

]
≤

∑
j

1

µj
ES(t)

[
f(Q̄j(t))(Aj(t, t+ u)− D̄j(t, t+ u))

]
+K2u+ o(u), (11)

where K2 = f ′(0)(
∑
j ρj +ML). Note that

0 ≤ f(Q̄j(t))− f(Qj(t)) ≤ f ′(0)|Q̄j(t)−Qj(t)|
= f ′(0)

∑
`

k`j(t), (12)

again by the mean value theorem, and the fact that f is a
concave increasing function. Thus∑

j∈J

1

µj
ES(t)

[
D̄j(t, t+ u)f(Q̄j(t))

]
=∑

j

∑
`

k`j(t)f(Q̄j(t))u+ o(u) ≥∑
j

∑
`

k`j(t)f(Qj(t))u+ o(u). (13)

Similarly, using (12), it follows that∑
j∈J

1

µj
ES(t)

[
A(j)(t, t+ u)f(Q̄(j)(t))

]
≤∑

j∈J
ρjf(Qj(t))u+K3u (14)

where

K3 = f ′(0)
∑
j

ρj
∑
`

k`j(t) ≤ f ′(0)ML
∑
j

ρj .

Hence, using (14) and (13) in (11),

1

u
ES(t)

[
V (t+ u)− V (t)

]
≤∑

j∈J
f(Qj(t))

(
ρj −

∑
`

k`j(t)

)
+K2 +K3 + o(1). (15)

The process S(t) has two interacting components. On one
hand the evolution of the queue process Q(t) depends on
k(t); and on the other hand, the evolution of the configuration
process k(t) depends on the queue process Q(t) through the
weights wj(t) = f(Qj(t)) in the algorithm. As explained
in Section V, a separation of time-scales happens by using
logarithmic-type functions f that change very slowly with
queue size, i.e., the evolution of k(t) occurs on a much
faster time-scale compared to the change in the weights.
Then roughly speaking, the evolution of the process Q(t)
is governed by φw(t) (i.e., the time-average distribution of
configurations when the queue size Q(t) is fixed) defined in
(4). Then by Corollary 1,

EQ(t)

[∑
j

∑
`

k`j(t)f(Qj(t))
]
≥

∑
`

k?`j(t)f(Qj(t))

+ min
k∈K

log φ0(k), (16)

where k? is the max weight configuration defined in (7) with
w = f(Q(t)) and φ0 was defined in (6). Let

∆t := lim
u→0

1

u
EQ(t)

[
V (t+ u)− V (t)

]
(17)

be the infinitesimal drift operator. Taking the expectation of
both sides of (15) with respect to φw (conditional distribution
of configurations given the queues), and using (16), yields

∆t ≤
∑
j

f(Qj(t))
(
ρj −

∑
`

k?`j(t)
)

+K1.

where K1 = K2 + K3 − mink∈K log φ0(k). Since ρ ∈ Co,
there exists a δ > 0 such that ρj(1 + δ) ≤

∑
` x

`
j for some

x` ∈ Conv(K`). Hence, by definition of k?,∑
j∈J

f(Qj(t))(1 + δ)ρj ≤
∑
j∈J

f(Qj(t))
∑
`

x`j(t)

≤
∑
j∈J

f(Qj(t))
∑
`

k?`j(t),

and therefore

∆t ≤ −δ
∑
j∈J

f(Qj(t))ρj +K1.

Hence the drift is negative for any Q(t) outside of a finite
set. Hence the Markov chain is positive recurrent by the
continuous-time version of Foster-Lyapunov theorem and fur-
ther the stability in the sense lim supt E

[∑
j f(Qj(t))

]
<∞

follows (see e.g., Theorem 4.2 of [28]). The stability in the
mean sense 3 then follows by an extra step as in [5] (See
Theorem 1 and Lemma 4 in [5]).

B. Proof of Theorem 2

The analysis is similar to the proof of Theorem (1) with
minor differences. The system state is given by S(t) =
(Q(t),k(t)) where Q is the queue-size matrix whose `-th row
is the vector of queue sizes at server `. Consider a Lyapunov
function V (·) as

V (t) =
∑
j∈J

∑
`∈L

1

µj
F (Q̄`j(t)), (18)

where Q̄`j(t) = Q`j(t) + k`j(t). For each server ` and job type
j,

Q̄`j(t+ u)− Q̄`j(t) = A`j(t, t+ u)− D̄`
j(t, t+ u),

where A`j(t, t + u) is the number of arrivals of type-j jobs
during (t, t+ u) and D̄`

j(t, t+ u) is the number of departures
of real and dummy type-j jobs from server ` during (t, t+u).
Note that D̄`

j(0, t) is a (time-inhomogeneous) Poisson process
of rate k`j(t). Similar to the the proof of Theorem (1), the
Lyapunov drift can be bounded as

ES(t)

[
V (t+ u)− V (t)

]
≤∑

j

∑
`

1

µj
ES(t)

[
f(Q̄`j(t))(A

`
j(t, t+ u)−D`

j(t, t+ u))
]

+K2u+ o(u), (19)

for the same constant K2 as in the proof of Theorem (1). The
term involving the product D(j)(t, t+u)f(Q̄(j)(t)) is bounded
by an expression similar to (13), i.e.,∑

j

∑
`

1

µj
ES(t)

[
D`
j(t, t+ u)f(Q̄`j(t))

]
=∑

j

∑
`

k`j(t)f(Q̄`j(t))u+ o(u) ≥∑
j

∑
`

k`j(t)f(Q`j(t))u+ o(u). (20)

The term involving A`j(t, t + u)f(Q̄`j(t)) must be treated
more carefully because, unlike Algorithm 1, the arrival process
{A`j(t, t+u), j ∈ J }{t≥0} and the queue process {Q`j(t), j ∈
J }{t≥0} are now dependent through the dynamics of JSQ.
This step can be done as follows.∑

j

∑
`

1

µj
ES(t)

[
A`j(t, t+ u)f(Q̄`j(t))

]
≤
∑
j

∑
`

1

µj
ES(t)

[
A`j(t, t+ u)f(Q`j(t))

]
+K3u

a
=
∑
j

1

µj
ES(t)

[
Aj(t, t+ u)f(Q

`?j
j (t))

]
+K3u+ o(u)

=
∑
j

ρjf(Q
`?j
j (t))u+K3u+ o(u), (21)

where K3 is same constant as in the proof of Theorem (1), and
equality (a) is due to the JSQ property (see Algorithm 2). Then
following similar arguments as in the proof of Theorem 1,

∆t ≤
∑
j

f(Q
`?j
j (t))ρj −

∑
j

∑
`

f(Q`j(t))k
?`
j(t) + K̂1,

where K̂1 = K2 +K3 −mink∈K logψ0(k), for ψ0 = ψw=0

defined based on (9). Without loss of generality, we can
assume that ej ∈ K` for all ` and j (otherwise if there
exists an ` and j such that ej /∈ K`, we can simply do not
consider any queue for type j jobs at server `.) Then since
ρ ∈ Co, there must exist a δ > 0 such that ρ <

∑
` x

` and
0 < x`(1 + δ) ∈ Conv(K`). Then by the JSQ property∑

j

f(Q
`?j
j (t))ρj ≤

∑
j

∑
`

f(Q`j(t))x
`
j , (22)

and by the definition of k?,∑
j

∑
`

f(Q`j(t))(1 + δ)x`j ≤
∑
j

∑
`

f(Q`j(t))k
?`
j(t). (23)

Hence

∆t ≤ −δ
∑
j

∑
`

f(Q`j(t))x
`
j + K̂1,

and therefore the Markov chain is positive recurrent by the
continuous-time version of Foster-Lyapunov theorem [28]. The
rest of the arguments are similar to the proof of Algorithm 1.

VII. SIMULATION RESULTS

In this section, we present our simulation results to confirm
our analytical results as well as to investigate the delay per-
formance. We consider the same VM types considered in [3],
[4], [5], which are three representative instances available in
Amazon EC2 (see Table I).

We consider arrival rates of the form λ = ζ × V , where
V =

∑L
`=1 V

` and V ` is obtained by averaging the maximal
configurations of server `. Thus V is a point on the boundary
of the supportable load region Co and ζ ∈ (0, 1) controls the
traffic intensity. The mean service times are normalized to
one. For simulations, we consider the distributed queueing

VM Type Memory CPU Storage
Standard Extra Large 15 GB 8 EC2 units 1690 GB

High-Memory Extra Large 17.1 GB 6.5 EC2 units 420 GB
High-CPU Extra Large 7 GB 20 EC2 units 1690 GB

TABLE I
THREE REPRESENTATIVE INSTANCES IN AMAZON EC2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

Traffic intensity

A
v
e

ra
g

e
 d

e
la

y

MW−global

Algorithm 2

Fig. 1. Average delay comparison of MW-global and Algorithm 2 in a 2-
server system.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

500

1000

1500

2000

Traffic intensity

A
v
e

ra
g

e
 d

e
la

y

MW−global

Algorithm 2

Fig. 2. Average delay comparison of MW-global and Algorithm 2 in a 10-
server system.

architecture as it is more common in data centers (queue
memory needs to operate at a much slower speed compared
to the centralized queueing architecture). This will allow us
to compare our low complexity algorithm (Algorithm 2) not
only with Max Weight with global refresh times, but also
with heuristics that operate locally on the servers such as Max
Weight with local refresh times. We expect our comparisons to
be even more pronounced in the case of centralized queueing
architecture as these heuristics are not suitable for this case.

A. Comparison with Max Weight with global refresh times

The Max Weight algorithm with global refresh times (MW-
global) has been shown to be stable for any ρ ∈ Co [4], [5].
The algorithm chooses a max weight configuration for each
server at the instances of global refresh times, namely, times
when all the servers in the system do not contain any ongoing
service (queues might be still nonempty). We consider a
homogeneous multi-server system, each server with capacity
30 GB Memory, 30 EC2 units CPU, and 4000 GB Storage. For
Algorithm 2, we consider f(x) = log(10(1+x)). We compare
the average delay performance of Algorithm 2 and MW-global
for various traffic intensities. The delay for each job is the time
duration from the moment it enters the system until it starts
getting service. Figure 1 shows the average delay when there

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time

T
o

ta
l
Q

u
e

u
e

 S
iz

e

Algorithm 2

MW−Local

Fig. 3. Time evolution of total queue size under MW-Local and Algorithm 2
in an inhomogeneous system.

are only two servers and Figure 2 shows the average delay
when the number of servers increases to 10. As we expect,
when the number of servers increases, the global refresh times
become extremely infrequent which will deteriorate the delay
performance.

B. Comparison with Max Weight with local refresh times

The Max Weight with local refresh times (MW-local) re-
ported in [4], [5] has substantially better delay than the MW-
global. Under MW-local a max weight configuration is chosen
for each server at its local refresh times. The local refresh time
for a server is a time instance at which the server does not
contain any ongoing job services. Clearly the local refresh
times occur much more frequently than the global refresh
times. However, it is not clear if MW-Local is stable in
heterogeneous systems [4], [5]. To investigate the performance
in a heterogeneous system, we consider 10 servers, 5 of which
have capacity (30 GB Memory, 30 EC2 units CPU, and 4000
GB Storage), and 5 of which have capacity (90 GB Memory,
90 EC2 units CPU , 5000 GB Storage) and ζ = 0.9. Figure VII
depicts the time evolution of the total queue size under
Algorithm 2 and MW-Local. The figure suggests that the MW-
Local is unstable while Algorithm 2 is stable. Nevertheless, to
get a sense of delay performance of our algorithm, we compare
the performance of two algorithms in a homogeneous system.
Figures 4 and 5 show the queue size and delay performance
in a system consisting of 100 homogenous servers, each
server with capacity 30 GB Memory, 30 EC2 units CPU, and
4000 GB Storage. We have plotted the average total queue
size and average delay for various values of traffic intensity
ζ. Interestingly, the queue size and delay performance of
Algorithm 2 are very close to MW-local algorithm. However,
as noted, MW-local has higher complexity and it is not clear
if it is throughput-optimal in general.

VIII. DISCUSSION AND EXTENSIONS

This paper presents randomized algorithms for scheduling
VMs in cloud systems. Our algorithms are throughput-optimal,
they have low complexity and are scalable to large–scale server
systems with centralized or distributed queues, and provide
seamless change in the server configurations without relying
on refresh times or preemptions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

Traffic intensity

A
v
e

ra
g

e
 t

o
ta

l
q

u
e

u
e

 s
iz

e

MW−local

Algorithm 2

Fig. 4. Average queue size for MW-local and Algorithm 2 in a homogeneous
system for various values of traffic intensity.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Traffic intensity

A
v
e

ra
g

e
 d

e
la

y

Algorithm 2

MW−local

Fig. 5. Average delay for MW-local and Algorithm 2 in a homogeneous
system for various values of traffic intensity.

An important feature of our algorithms is that their perfor-
mance is not restricted to the traffic model assumptions made
in the paper. For example, the Lyapunov analysis can be easily
extended to non-Poisson job arrival processes, e.g., i.i.d. time-
slotted processes where in each time slot a batch of jobs can
arrive with finite first and second moments. The algorithms are
also robust to the service time distributions. This is because
the loss system LOSS(L,J ,w) is reversible and by the
insensitivity property [29], the steady-state distribution only
depends on the mean service times. The dedicated Poisson
clocks are crucial in establishing our results however the
clocks are part of the algorithms and are not related to traffic
statistics.

REFERENCES

[1] “http://aws.amazon.com/ec2.”
[2] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,

S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, 2009, pp. 39–50.

[3] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proceedings
of IEEE INFOCOM, 2012, pp. 702–710.

[4] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” in Proceedings 2013 IEEE INFOCOM, 2013, pp. 1887–1895.

[5] ——, “Scheduling jobs with unknown duration in clouds,” IEEE/ACM
Transactions on Networking, vol. 22, no. 6, pp. 1938–1951, 2014.

[6] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[7] H. Kellerer, U. Pferschy, and D. Pisinger, Introduction to NP-
Completeness of knapsack problems. Springer, 2004.

[8] M. Stillwell, F. Vivien, and H. Casanova, “Virtual machine resource
allocation for service hosting on heterogeneous distributed platforms,”
in Parallel & Distributed Processing Symposium (IPDPS), 2012, pp.
786–797.

[9] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement
algorithms for on-demand clouds,” in 2011 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom), 2011,
pp. 91–98.

[10] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in 2010 IEEE/ACM Int’l
Conference on Green Computing and Communications (GreenCom), &
Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
2010, pp. 179–188.

[11] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM place-
ment and routing for data center traffic engineering,” in Proceedings of
IEEE INFOCOM, 2012, pp. 2876–2880.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in 2010
Proceedings of IEEE INFOCOM, 2010, pp. 1–9.

[13] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady, “Dynamic resource allocation in computing clouds using
distributed multiple criteria decision analysis,” in IEEE Conference on
Cloud Computing (CLOUD), 2010, pp. 91–98.

[14] J. Ghaderi, S. Shakkottai, and R. Srikant, “Scheduling storms and
streams in the cloud,” SIGMETRICS 2015, Poster paper, June 2015.

[15] T. Bonald and D. Cuda, “Rateoptimal scheduling schemes for asyn-
chronous inputqueued packet switches,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 40, no. 3, pp. 95–97, 2012.

[16] S. Ye, Y. Shen, and S. Panwar, “An O(1) scheduling algorithm for
variable-size packet switching systems,” in Annual Allerton Conference
on Communication, Control, and Computing, 2010, pp. 1683–1690.

[17] J. Ghaderi and R. Srikant, “On the design of efficient CSMA algorithms
for wireless networks,” in 49th IEEE Conference on Decision and
Control (CDC), 2010, pp. 954–959.

[18] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and
F. Neri, “Packet-mode scheduling in input-queued cell-based switches,”
IEEE/ACM Transactions on Networking (TON), vol. 10, no. 5, pp. 666–
678, 2002.

[19] J. Ghaderi, T. Ji, and R. Srikant, “Flow-level stability of wireless
networks: Separation of congestion control and scheduling,” IEEE
Transactions on Automatic Control, vol. 59, no. 8, pp. 2052–2067, 2014.

[20] D. Shah and J. Shin, “Randomized scheduling algorithm for queueing
networks,” The Annals of Applied Probability, vol. 22, no. 1, pp. 128–
171, 2012.

[21] A. L. Stolyar, “An infinite server system with general packing con-
straints,” Operations Research, vol. 61, no. 5, pp. 1200–1217, 2013.

[22] A. L. Stolyar and Y. Zhong, “A large-scale service system with packing
constraints: Minimizing the number of occupied servers,” in Proceedings
of the ACM SIGMETRICS, 2013, pp. 41–52.

[23] A. Stolyar and Y. Zhong, “Asymptotic optimality of a greedy random-
ized algorithm in a large-scale service system with general packing
constraints,” arXiv preprint arXiv:1306.4991, 2013.

[24] J. Ghaderi, Y. Zhong, and R. Srikant, “Asymptotic optimality of BestFit
for stochastic bin packing,” ACM SIGMETRICS Performance Evaluation
Review, vol. 42, no. 2, pp. 64–66, 2014.

[25] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[26] S. Rajagopalan, D. Shah, and J. Shin, “Network adiabatic theorem:
An efficient randomized protocol for contention resolution,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 1. ACM,
2009, pp. 133–144.

[27] S. P. Meyn and R. L. Tweedie, “Stability of markovian processes I:
Criteria for discrete-time chains,” Advances in Applied Probability, pp.
542–574, 1992.

[28] ——, “Stability of markovian processes II: continuous-time processes
and sampled chains,” Advances in Applied Probability, pp. 487–517,
1993.

[29] T. Bonald, “Insensitive queueing models for communication networks,”
in Proceedings of the 1st international conference on Performance
evaluation methodolgies and tools, 2006, p. 57.

