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Abstract—For a wireless network with � nodes distributed in
an area � , with � source-destination pairs communicating with
each other at some common rate, the hierarchical cooperation
scheme proposed in [1] is studied and optimized by choosing
the number of hierarchical stages and the corresponding cluster
sizes that maximize the total throughput. It turns out that
increasing the number of stages does not necessarily increase the
throughput, and the closed-form solutions for the optimization
problem can be explicitly obtained. Based on the expression of the
maximum achievable throughput, it is found that the hierarchical
scheme achieves a scaling with the exponent depending on � .

I. INTRODUCTION

Wireless networks formed by radio nodes is a subject of
much topical interest, and they are found in various ap-
plications such as ad hoc networks, mesh networks, sensor
networks, etc. For the optimal design and operation of such
networks, it is of fundamental importance to determine the
information-theoretic capacity of such networks, which, how-
ever, is a formidable task, since even for the simple three-
node scenario [2], the exact capacity is still undetermined after
several decades’ effort.

Although the exact capacity is extremely difficult to de-
termine, a lot of insightful upper and lower bounds on the
capacity of large wireless networks have been obtained in
recent years, e.g., [3]-[10]. The seminal work [3] initiated the
study of scaling laws, and discovered a throughput scaling of����� 	�


under several communication models. Subsequently, a
purely information-theoretic approach without any restrictions
on the communication schemes was taken in [4], where
a more fundamental connection between the total network
transmit power and the transport capacity was discovered. As
a consequence, the scaling law of

��� � 	�

was confirmed in

the high signal attenuation regime only, and when the signal
attenuation is low, higher scaling laws are shown to be possible
for some special relay networks.

Therefore, an interesting question was raised as to what
exactly are the scaling laws in the low signal attenuation
regime. By incorporating long-range MIMO communications
with local cooperations as proposed in [10], a recent work
[1] developed a hierarchical architecture which was able to
continually increase the scaling by adding more hierarchical
stages. Specifically, for a network model where all the nodes
are confined in a unit area but still with the far-field signal
attenuation, the scaling with � hierarchical stages was claimed

to be
���
	������� 
 . Thus, by letting ����� , any scaling of���
	�������


is achievable, where ���! can be arbitrarily small.
However, there is a fundamentally important issue unad-

dressed in [1], i.e., the pre-constant of the scaling. Actually,
the pre-constants of the scalings for different � are different,
and they are not even lower bounded from zero. In this paper,
we will show that the complete expression for the scaling
with � hierarchical stages should be " � � 
#	$������ , where, the
pre-constant " � � 
 not only depends on � , but also tends to
zero as � goes to infinity.

Since the pre-constant affects the scaling behavior, we will
present what can be achieved with the hierarchical scheme by
providing an explicit expression of the pre-constant. It will
become obvious that adding more stages does not necessarily
increase the achievable rate for any fixed

	
. Actually, for each	

, the optimal number of stages to choose is % & ')(+* �
	�,+-)
 ,
where . is a constant to be defined later, and the corresponding
maximum achievable throughput is.�/% & ')(+* �
	�,+-)
 �
	�,+-)
 ��� 0� 1 243�5)6 798 0�: (1)

where / is another constant. Therefore, as shown in (1),
the hierarchical scheme actually achieves a scaling with the
exponent depending on

	
.

Generally, a network with area ; is distinguished into two
categories based on whether ;=<?>A@CB 	 , where DFE - is the
power path loss exponent. In the case where ;G<?>A@GB 	 , (1) is
achievable. In the other case where ;G<?>A@H� 	 , (1) has to be
multiplied by

	�, ; <?>A@ in order to meet the power constraint.
It is worth pointing out that the results in this paper such

as (1) apply to finite
	

. When trying to draw conclusions on
scaling laws by taking

	 �I� , however, it should be noted
that the results for the first case cannot remain valid, since the
far-field model would fail to apply after some point.

For clarity, we will first present the results for regular
networks. Then the extension to random networks is trivial
after we introduce a clustering algorithm that divides the
whole network into quadrilateral clusters, each with exactly
the number of nodes required for carrying out the hierarchical
cooperation scheme.
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Fig. 1. A regular network with minimum distnce J�KML N and area O .

II. MODEL OF WIRELESS NETWORK

Consider the following standard additive white Gaussian
noise channel model of wireless network.

1) There are a set of
	

nodes located on a plane.
2) Each node uses a common average power P to transmit.
3) At any time Q , each node R transmits the signal SCT � Q 
VUW

, and receives the signal XYT � Q 
VUZW . The received signal
depends on the transmitted signals by all the other nodes
as X[T � Q 
]\_^`)ab T)c T ` � Q 
 S ` � Q 
�dfe T � Q 

where

e T � Q 
 is white circularly symmetric Gaussian
noise of variance g , and the gainc T ` � Q 
h\ � iGj � <?>A@T ` kmlon � p)q T ` � Q 
r

where

j T ` is the distance between nodes R and s , andq T ` � Q 
 is the phase.
Consider the problem of

	
source-destination pairs in the

network, where each node is a source, with its destination node
arbitrarily chosen from the other nodes. For simplicity, assume
that each node chooses a different node as its destination,
although this requirement can be relaxed to some extend as
we can see from the coding strategy described later. Therefore,
each node is a source and also a destination for another source.
We only consider the case where all pairs communicate at the
same rate.

For the simplicity of presentation, and in order to expose
the key features of the coding strategy, we will first consider
a regular network as depicted in Figure 1, where nodes are
located at the grid points

�
t jvuxw y{zr|�j}uxw y 

for ~�B t zr| B � 	

in an area ; \�	 j @uxw y . Then the results can be easily extended
to general random networks with high probability, where

	
nodes are randomly and uniformly distributed inside a square
of area ; .

III. HIERARCHICAL COOPERATION IN REGULAR
NETWORKS

A. Double stage cooperation scheme

As a prelude, consider only two stages for the scheme and
assume ; \ ~ unit. We basically follow [1], but show what
can be achievable by presenting a more transparent description.
Divide the regular network into clusters of size � nodes. The
double stage scheme is based on local transmit and receive

cooperation in clusters and MIMO transmissions between
clusters. Consider one source node � and its destination node�

. The goal of � is to send � sub-blocks of � bits (in overall,��� bits) to
�

in three steps:
1) � distributes its sub-blocks among the � nodes in its

cluster by using TDMA. For this purpose, for each nodes in the source cluster, � encodes the s -th sub-block
to a codeword of length ��� chosen from a randomly
generated Gaussian codebook �{� T
� T
� ����C� �  zA� @� 
 where� @� \ P j <� ` .

2) The nodes in this cluster form a distributed array antenna
and send the ��� bits of information to the destination
cluster by MIMO transmissions. To accomplish this step,
each node encodes its data sub-block to a codeword of� � symbols by using a randomly generated Gaussian
codebook � � T
� T
� ����C� �  zA� @� 
 where

� @� \ PZ����}�� andj9�?�
is the distance between the centers of two clusters.

Then nodes send their codewords simultaneously to the
destination cluster. Therefore, this step needs � � time
slots to complete. At the end of this step, each node in
the destination cluster has accumulated � � observations
from MIMO transmissions. According to Lemma 4.4
of [1], any rate less than the following is achievable for
the second step.� , � � B�& ')(���~ d Q i Pg d�� @{� � � @�¡¢Q 
 @-)£�¤ (2)

for any  ¥B¦Q§B � @ where
�¢\$�4- ¡ � -+
 <?>A@ and

£�\�4-¨d � -)
 <?>A@ .
3) Each node in the destination cluster quantizes its obser-

vations with © bits per observation to obtain a quantized
observation sub-block of length � � © bits. ¿From here
on, the step is similar to step 1 but in reverse. The cluster
nodes send their quantized observation sub-blocks to�

which can estimate the observation sub-blocks and
decode the transmitted bits.

In the double stage cooperation strategy, the power of each
observation must be upper bounded independent of cluster size
which leads to quantization with a fixed number of bits for
an average distortion

� @ . When two clusters are neighbor,
using the power assignment of

� @� \ P j <�?� , � yields an
unbounded received power when the cluster size increases.
A simple solution is to divide these clusters into two equal
halves. The source node � distributes its sub-blocks among� ,+- nodes of the half located farther to the border. Then these� ,+- nodes form a distributed antenna and perform MIMO
between the halves located farther away. So the required time
for the step 2 is twice the time needed for disjoint clusters, i.e.
the required time is

- � � slots. In step 3, � ,+- nodes take part
in delivering the observations to the destination. For source and
destination nodes located in the same cluster, we can simply
ignore the second step.

Clustering enables spatial reuse in a sense that clusters can
work in parallel for local cooperations (step 1 and step 3)
provided they locate far enough from each other. This leads



Fig. 2. The operating clusters in one time slot by 4-TDMA

to three phases in the operation of the network:
Phase 1: Setting up transmit cooperation. Clusters work

in parallel according to the 4-TDMA scheme in Figure 2 (as
opposed to the 9-TDMA in [1]) where each cluster is active in
a fraction ~ ,9ª of the total time of this phase. When a cluster
becomes active, its source nodes perform the first step. It is
easy to see that the total interference at any receiver due to
parallel operating clusters is upper bounded by a finite constant«

if D¬� - . Hence, all communication links can operate at any
rate less than the following:� , �]�=Bf& ')(C��~ d i P« d g �¬­ (3)

Each source node needs �®��� slots. Hence the required time
for source nodes of one cluster to exchange their bits is at most��@v�]� slots. Due to 4-TDMA, the whole phase needs

ª �¯@v�]�
slots to complete. One can show that the power assignment
leads to an overall average power consumption less than P ,9	 .

Phase 2: MIMO transmissions. We perform successive
MIMO transmissions according to the step 2, one MIMO for
each source-destination pair from source cluster to destination
cluster in one time slot, hence we need at most

-°	 � � slots.
Each node encodes the sub-blocks by using a Gaussian code
of power

� @� as defined earlier. One can show that this power
assignment yields an average power consumption less thanP ,9	 .

Phase 3: Cooperate to decode. After the first two phases,
each source-destination pair has completed the steps 1 and 2.
Each cluster should accomplish the step 3 by conveying the
quantized observations to the corresponding destination nodes
located in the cluster. This phase is identical to the first phase,
except that each node has � � © bits to transmit to each node
in the same cluster instead of � bits. Therefore, this phase
needs

ª ��@}�]�°� � © , � slots to complete.
In summary, the required time ± @ for the double stage

scheme is± @ \ ± � ² � � �v³?~ 
�d ± � ² � � �v³ -)
´d ± � ² � � �v³9µ 
\¶ª ��@}�]� d�-°	 � � d¬ª ��@v�]�9� � © , �\¶ª ��@}�]� � ~ d � � © , � 
´d�-°	 � �
For simplicity, all nodes use the same rate for their codewords�o� and � � , i.e. ·¸[¹ \ ·¸ � \ / where/¯B�ºH» ¼ � RHS of (2), RHS of (3) �

Hence, the required time ± @ can be written as± @ �
	 z � z � 
½\¶ª � @ �/ ��~ d ©/ � d�-°	 �/
We call this quantity delay because each destination can de-
code its intended bits only after receiving all the corresponding
observations , i.e. after the step 3. At the end of this time, each
node has delivered ��� bits to its destination which yields a
total throughput of ¾ @ \ 	 ���± @
which is maximized by choosing � \ % ¿@mÀ ¿�Á´Â�Ã � 	 :¾ÅÄ�ÆmÇ@ �
	�
]\ /ª[È -{� ~ d © , / 
 	 � >A@ (4)

and the corresponding delay is± Ä�ÆmÇ@ �
	 z � 
h\�ª �/ 	 ­ (5)

Obviously, by repeating
	

times, the double stage scheme
can also be used for the problem where each node needs
to send different information to all the other nodes. The
achievable rate is as the following.

Lemma 3.1: For a regular network of size
	

, by the double-
stage cooperation scheme with clusters of size � , each node
can deliver ��� different bits to each of the other nodes in a
time block of	 ± @ �
	 z � z � 
h\!ª)	 � @ �/ ��~ d ©/ � d�-°	 @ �/ ­

Remark 3.1: Note that � denotes the number of bits to be
transmitted in a basic time block, and is proportional to the
block length for any fixed communication rate. Although for
the interest of delay, it is better to choose smaller � as shown
in Lemma 3.1, shorter block length leads to higher decoding
errors. Hence, there is always a minimum � required to ensure
enough reliability.

B. Triple stage cooperation scheme

Recall that in Phase 1 and Phase 3 of the double stage
scheme, TDMA was used in each cluster to deliver the bits.
Since each cluster is itself a network similar to the original
network only with a smaller number of nodes, this implies
that one can use the double stage scheme in each cluster to
exchange the bits as well. Next, we analyze the throughput
and delay of this new triple stage scheme when the double
stage scheme is used in Phase 1 and Phase 3.

First, divide the whole network into clusters of size � � .
Then divide each cluster of size � � into sub-clusters of
size � @ , and apply the double stage scheme to the cluster.
To avoid the interference from neighboring clusters, use 4-
TDMA as before. Hence, according to Lemma 3.1, it takes� � ± @ � � � z � @ z � 
 time slots for each node to deliver � @ �
bits to each node in the same cluster and this phase needsª � � ± @ � � � z � @ z � 
 time slots to complete.

In Phase 2, as before, it takes
-°	 � 0 ·¿ time slots to complete.



In Phase 3, same as phase 1 except that there are Â ¿ times
as many bits to transmit, it takes

ª � � ± @ � � � z � @ z � 
 Â¿ time
slots to complete.

Totally, with the triple stage scheme, it takes±HÉ �
	 z � � z � @ 
h\�ª � � ± @ � � � z � @ z � 
 �Y~ d ©/ � d�-°	 � @ �/
time slots to communicate � � � @ � bits for each source-
destination pair.

C. � -stage hierarchical cooperation scheme

Generally, suppose that with the
� �Ê¡f~ 
 -stage hierarchical

cooperation scheme with cluster sizes � � z � @ z ­}­}­ z �ÌË � @ , it
takes ±ÊË �´� �
	 z � � z � @ z ­}­}­ z �ÌË � @ 
 time slots to communicate� � � @MÍ}Í}Í �ÌË � @ � bits for each source-destination pair.

Replacing phase 1 and phase 3 of the double stage
scheme with the

� ��¡Î~ 
 -stage scheme, we have the � -stage
scheme. Obviously, for the � -stage scheme with cluster sizes� � z � @ z ­}­}­ z �ÌË �´� , it takes±ÊË �
	 z � � z � @ z ­}­}­ z �ÌË �´� 
\�ª � � ±ÊË �´� � � � z � @ z ­}­}­ z �ÌË �´� 
 �´~ d ©/ �d=-°	 � @MÍ}Í}Í �ÌË �´� �/
time slots to communicate � � � @xÍ}Í}Í �ÌË �´� � bits for each
source-destination pair.

It can be easily verified that the general formula is±ÊË �
	 z � � z � @ z ­}­}­ z �ÌË �´� 
h\ � � � @MÍ}Í}Í �ÌË �´� �/ÐÏÑÅÒ ª[� ~ d © , / 
�Ó Ë �´� �ÌË �´� d�- Ë � @^ T b � Ò ª[� ~ d © , / 
�Ó T �¬T�¬T Á �xÔ
Consequently, the throughput is given by¾ Ë �
	 z � � z � @ z ­}­}­ z �ÌË �´� 
]\ 	 � � � @MÍ}Í}Í �ÌË �´� �±ÊË �
	 z � � z � @ z ­}­}­ z �ÌË �´� 

which in general is a function of all the cluster sizes.

We maximize the throughput by using the partial derivatives.
Solving Õ ¾ Ë , Õ��¬T \  for ~GB�R]B��H¡f~ yields� @T \ �¬T �´� �¬T Á �ª[� ~ d © , / 

where we have defined �¬� \Î	 and �ÌË \�- . Therefore, the
optimal choices of the cluster sizes are�¬T \ -{�
	�,+-)
 À Ë � T Ã > ËÒ ª[� ~ d © , / 
�Ó T À Ë � T Ã >A@ for ~=BfR]B!�Ê¡f~ (6)

Next we present one of our main results.
Theorem 3.1: For a regular network of

	
nodes in the unit

area, by the � -stage hierarchical cooperation scheme with the
optimal cluster sizes (6), the throughput is given by¾ Ä�ÆmÇË �
	�
h\ /� �4-{È ~ d © , / 
 Ë �´� �
	�,+-)
 ��� �� (7)

and the corresponding delay is± Ä�ÆmÇË �
	 z � 
h\ � - À Ë Á @ Ã À Ë �´� Ã >mÀ @ Ë Ã�4-{È ~ d © , / 
 À Ë Á É Ã À Ë � @ Ã À Ë �´� Ã >AÖ �/ 	 �m×��0 Á �� ­
For any fixed

	
, we can find the optimal � to maximize¾ÅÄ�ÆmÇË �
	�


. Let � ¾ÅÄ�ÆmÇË �
	�
� � \  
which leads to� @ & ¼ �4- È ~ d © , / 
´d �H¡¢& ¼ �
	�,+-)
x\  ­
Hence, the optimal number of stages to choose is�YØ \ % ~ d¬ª & ¼ �4-{È ~ d © , / 
 & ¼ �
	�,+-)
 ¡f~- & ¼ �4- È ~ d © , / 
 ­ (8)

In order to obtain a simple formula, let�YØ \ Ù & ¼ �
	�,+-)
& ¼ �4-{È ~ d © , / 
 (9)\ % & ')(+* �
	�,+-)

where .ÛÚ \F-{È ~ d © , / . Note that. Ë \ .´Ü ÝAÞ 5 À ß)>A@ Ã �1 243�5?6 798 0�: \¯�
	�,+-)
 �1 243�5)6 798 0�: ­
Therefore,¾ÅÄ�ÆmÇË �
	�
½\ /� �4-{È ~ d © , / 
 Ë �´� �
	�,+-)
 ��� ��\ .�/�{. Ë �
	�,+-)
 ��� ��\ .�/� �
	�,+-)
 ��� �� � �1 243�5)6 798 0�: (10)

where letting � \ % & ')( * �
	�,+-)
 , we have¾ Ä�ÆmÇ �
	�
½\ .�/% & ')(+* �
	�,+-)
 �
	�,+-)
 ��� 0� 1 243�5)6 798 0�: (11)

Obviously (11) is a very accurate estimation, although we
made some approximation in (9) and � Ø should always be
an integer.

Theorem 3.2: For a regular network of
	

nodes in the unit
area, by the hierarchical cooperation scheme with the optimal
number of stages (8) and the optimal cluster sizes (6), the
maximum throughput is approximately given by (11).

Actually, we can provide an exact upper bound of

¾ Ä�ÆmÇ �
	�

as the following. It follows from (10) that¾ÅÄ�ÆmÇË �
	�
 Bà.�/ �
	�,+-)
 ��� �� � �1 24345?6 798 0�:Bà.�/ �
	�,+-)
 ��� 0� 1 24345?6 798 0�: (12)

where, in the last inequality, “=” holds if � \ % & ')()* �
	�,+-)
 .



To check how much different (12) is from the linear scaling
law

���
	�

, we take the ratio:	�,+-�
	�,+-)
 ��� 0� 1 243�5)6 798 0�: \¯�
	�,+-)
 0� 1 24345?6 798 0�:
\âá . Ü ÝAÞ 5 À ß)>A@ Ã#ã 0� 1 243�5)6 798 0�: \ . @ � Ü ÝAÞ 5 À ß)>A@ Ã �ä� ­

D. Networks with area ;
Consider the general model of the regular network with

area ; . Let us recall that when ; \ ~ unit, running the
hierarchy does not need the whole power budget P and the
average power consumption is less than P ,9	 per node. We
can scale down the general regular network with area ; to
another regular network with the unit area, but with the power
constraint åÀçæ è Ã � , since the distance between the nodes are

reduced by a factor of
� ; . One can dichotomize a general

network based on the relation between its area and the number
of nodes into two cases:é Dense network: The network is called dense when; <?>A@ B 	 . Then the nodes have enough power to run the

hierarchical scheme and get the throughput-delay results
as discussed above.é Sparse network: The network is called sparse when;Å<?>A@G� 	 . Then the nodes do not have sufficient power to
run the hierarchical scheme all the time. Instead, they run
the scheme in a fraction

	�, ;=<?>A@ of the time with powerPG;Å<?>A@ ,9	 and remain silent during the rest of the time.
Obviously this bursty modification satisfies the original
average power constraint P , and correspondingly, the
achieved throughput is modified by a factor of

	�, ;G<?>A@ ,
e.g., in (7) and (11).

IV. EXTENSION TO RANDOM NETWORKS

In this section, we extend the results of regular networks
to random networks (Refer to [12] for all the details). We
first review the extension method of [1]: Consider a random
network of unit area with

	
nodes. Since the average number

of nodes in a cluster of area ;=ê \ � ß is � , the hierarchical
scheme was applied to this random network by dividing the
network into the clusters of area

� �ß and proceeding to clusters
of area

� �m×��ß , for the � -stage scheme, and get the throughput-
delay of the regular network but with a failure probability.
Failure arises from the deviation of number of nodes in
each cluster from its average. By a simple Chernoff bound
argument, the probability of having large deviations from the
average can be bounded (see Lemma 4.1 of [1]). As

	 �ä� ,
this probability goes to zero.

The above clustering method is not sufficient for the fol-
lowing reasons:

1) The clusters of area ;=ê \ � ß are required to contain
exactly � nodes to perform the hierarchical scheme. A
deviation from the average number of nodes � , even
very small, results in failure of the scheme. However,
[1] only bounded the probability of large deviation.

2) The probability of having exactly � nodes in a cluster
of area ;Åê \ � ß is given by the binomial distributionë � �íì 	 z � ,9	�
Å\ïî ß�Hð � � ß 
 � � ~=¡ � ß 
 ß � � . Using the
Stirling’s formula to approximate the factorial terms, as	 �ä� , yields ë � �íì 	 z � ,9	�
xñ � �³ � �íò
Recall that for the optimal operation of the scheme, the
cluster sizes � are chosen proportional to

	�ó
where �ôFõ�ô¦~ . Hence, the probability of having � nodes

is proportional to
�æ @Aö � which, in fact, goes to zero.

To resolve the issue of making clusters of exactly �
nodes, we will develop a clustering algorithm in this paper. To
achieve high probability, we need to consider simultaneously
the probabilities of events of the entire class of clusters, which
invokes a sort of uniform convergence (in probability) of law
of large numbers over the entire class. To resolve this, we will
resort to the Vapnik-Chervonekis theorem.

A. Choosing an appropriate cluster shape

We use the Vapnik-Chervonekis theorem [11] to find the
appropriate cluster shape. An application of this theorem has
been already presented in [3] for the set of disks on the plane.
In this section, we consider a more general case; we apply
the Vapnik-Chervonekis theorem to the set of all the clusters
that partition the given random network with

	
nodes in the

unit area. Note that a finite VC-dimension, VC-d
�
÷Ê


, for the
set of clusters

÷
, is a sufficient condition for the uniform

convergence in the weak law of large numbers. Assume that
this condition is satisfied and the set of clusters has a finite
VC-dimension (We will later derive a sufficient condition for
the cluster shapes to make the VC-dimension finite). Denote
the area of each cluster " UZ÷ by ;=ê and its number of nodes
with g�ê , then we have the following lemma:

Lemma 4.1: For every cluster " UÛ÷ that contains exactly� nodes, �ø¡¢ùM& ')( 		 ô!;Åê�ô � d ùM& ')( 		 (13)

with probability larger than ~¯¡ûú Ü ÝAÞ ßß where ù \ºÊü l �9ý VC-
� �
÷Ê
 z ~vþ)³)� .

Note that if a cluster has an area less than
� � ú Ü ÝAÞ ßß , then

with high probability it contains less than � nodes. Similarly,
if its area is greater than

� Á ú Ü ÝAÞ ßß , with high probability, it
contains more than � nodes. Next, we choose a right shape
for clusters, according to the following Lemma, to make the
VC-dimension finite. We have presented the proof in [12].

Lemma 4.2: The VC-dimension of the set of convex
j
-

laterals is finite and upper bounded by þ j & ')( � µ j 
 where
j

is the number of sides.
We will use a set of quadrilaterals as the clusters. Since the

VC-dimension is at most
-°ª & ')(�~ - , we can apply Lemma 4.1

with ù \ ý  ) to these clusters. Next, we develop an algorithm
to make clusters of exactly � nodes.
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Fig. 3. Clustering of a random network with exactly ÿ nodes in each
quadrilateral cluster.

B. Clustering algorithm

Divide the network into squares of area
� ß , and start from

the square located on the top left corner. Depending on how
many nodes are within this square, three situations may arise:

1) if the number of nodes in the square is exactly � , ignore
this square and go to the next one.

2) if the number of nodes in the square is less than � ,
make a quadrilateral cluster by expanding the square:
Move the top right vertex of the square to the right such
that the created quadrilateral cluster contains exactly �
nodes.

3) if the number of nodes in the square is more than � ,
make a quadrilateral by shrinking the square: Move the
top right vertex of the square to the left such that the
resultant quadrilateral cluster contains exactly � nodes.

After making the first cluster, go to the second cluster on the
right side and make it a quadrilateral with exactly � nodes
by expanding or shrinking as discussed above. Repeat the
procedure for all the squares in the first row. For the top right
square, use its bottom right vertex to do expanding/shrinking.
For the second row, starting from the right square, move to the
left side, and make the quadrilateral clusters of � nodes by
expanding-shrinking. Perform the same procedure for all the
rows, and we will have a set of quadrilateral clusters; each one
contains exactly � nodes. One instance of such a clustering
algorithm has been depicted in Figure 3. Note that according
to Lemma 4.1, the amount of expanding/shrinking in the areas
of the squares is less than ú Ü ÝAÞ ßß with high probability.

C. Network operation

The operation of random networks is similar to the operation
of the regular networks. The centers of the quadrilateral
clusters are defined as the centers of the original squares. Note
that the new quadrilateral cluster will include the center of its
original square with high probability. To observe this property
of our clustering algorithm, consider the combination of the
clusters 1, 2, and 3 in Figure 3. This combination gives a larger
quadrilateral cluster with gHê \ µ?� , hence the deviation of
the area of this cluster from its average ( µ?� ,9	 ) must be less
than ú Ü ÝAÞ ßß and consequently �

�
	�
 B @ ú Ü ÝAÞ ßæ ß � . Therefore �
�
	�


is
much smaller than the square side

È � ,9	 (recall that � \�	�ó
for  �ô$õíôï~ ) and the quadrilaterals are concentrated on
the squares. Hence, the hierarchical scheme can be applied to

the random networks by using the corresponding quadrilateral
of each square instead of original square cluster. By making
clusters of �ÌË �´� nodes for the bottom stage of the hierarchy
using the clustering algorithm, these clusters can be combined
to make larger clusters of ��Ë � @ nodes for the upper stage.
Following the same procedure, make clusters of exactly � �
nodes for the top stage. It is worth noting that for combined
clusters, for example, combination of clusters 6, 7, 10, and 11
in Figure 3, we can define the same deviation factor �

�
	�

as

defined for the clusters of the bottom stage.

V. CONCLUSION

In this paper, the exact achievable throughput of the hier-
archical scheme with any number of stages is derived. The
optimal cluster sizes for all the stages are found to maximize
the total throughput. We also find the optimal number of stages
to choose for any network size

	
. We observe that linear

scaling is not achievable via the hierarchical scheme. As one
increases the number of stages of the hierarchy to achieve a
closer scaling to the linear one, the overhead due to using 4-
TDMA scheme for parallel operating clusters and quantizing
and re-encoding the observations at different stages, reduces
the performance significantly. It also leads to an exponential
growth for the delay. Finally, it is worth pointing out that the
results presented in this paper provide solid conclusions to
networks with finite sizes, not only limiting results.
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