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Abstract

We study the following one-way asymmetric transmission problem, also a variant of model-based compressed

sensing: A resource-limited encoder has to report a small set S from a universe of N items to a more powerful

decoder (server). The distinguishing feature is asymmetric information: the subset S is comprised of i.i.d. samples

from a prior distribution µ, and µ is only known to the decoder. The goal for the encoder is to encode S obliviously,

while achieving the information-theoretic bound of ≈ |S| ·H(µ), i.e., the Shannon entropy bound.

We first show that any such compression scheme must be randomized, if it gains non-trivially from the prior

µ. This stands in contrast to the symmetric case (when both the encoder and decoder know µ), where the Huffman

code provides a near-optimal deterministic solution. On the other hand, a rather simple argument shows that, when

|S| = k, a random linear code achieves near-optimal communication rate of about k ·H(µ) bits. Alas, the resulting

scheme has prohibitive decoding time: about
(
N
k

)
≈ (N/k)k.

Our main result is a computationally efficient and linear coding scheme, which achieves an O(lg lgN)-competitive

communication ratio compared to the optimal benchmark, and runs in poly(N, k) time. Our “multi-level” coding

scheme uses a combination of hashing and syndrome-decoding of Reed-Solomon codes, and relies on viewing the

(unknown) prior µ as a rather small convex combination of uniform (“flat”) distributions.

Index Terms
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I. INTRODUCTION

We study the problem of coding a set with asymmetric information, defined as follows. There is a universe

[N ] := {1, 2, . . . , N} of N items, and the encoder’s task is to transmit a subset S ⊂ [N ] using an m-bit message

so that a decoder can reconstruct the set S efficiently. In our setup, the decoder has a prior distribution σ over the

sets S that may be sent, which is not available to the encoder. The main goal is to design compression schemes that

(1) obtain communication rate as close as possible to the information-theoretic minimum, namely the (Shannon)

entropy bound with respect to the distribution σ, and (2) are computationally efficient.

This problem is the one-way communication version of the asymmetric transmission problem [1], as well as

a type of model-based compressed sensing. While we expand on these a little below, for now we note that the

standard asymmetric transmission problem is two-way, with the decoder sending much more information to the
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encoder. Here we seek to eliminate this inefficiency, in the setting of communicating a set S. One can envision many

scenarios where it is imperative to eliminate an expensive down-link from decoder to encoder; we give one such

scenario for designing very light communication protocols for tracking ultra-low-power devices in Internet-of-Things

environments. Here, a common task is for a set of such devices to communicate their identities to a router (e.g., an

entry point of a physical region) [2], [3], [4]. Since the devices are low power, the main goal is to minimize their

total communication costs. The communication can be further improved using some side information, in particular

a prior distribution on which devices are more likely to be present (i.e., which sets are more likely to be sent).

However, the side information is typically asymmetric: the prior is specific to the decoding router, or uses statistics

that are not known to or are too expensive to maintain by the devices (see the discussion in [1] or [5]).

In addition to the natural goal of communication efficiency, a common requirement for such coding schemes

is also to have a computationally efficient decoding procedure. Our goal here is for the decoding time to be

polynomial/linear in N (which is the best we can hope for without further assumptions — the input to the decoder

is the distribution σ, of potentially Ω(N) description size)1.

Without further assumptions on the distribution σ, this problem does not admit any viable solutions: both

communication and computation are essentially doomed. Indeed, [1], [5] show that the trivial bound of ∼ N

communication is required, even when the entropy of σ is much smaller. We note that [1] circumvented this barrier

by allowing two-way communication where the decoder can send much larger messages back to encoder, whereas we

focus on purely one-way protocols only. As for the distributional setting, a generic (non-product) prior distribution

σ has a high description complexity (exponential in N , or max set size), thus dooming the time-efficiency of any

decoding scheme.

In this paper, we consider the most natural class of priors σ of i.i.d. items: the sets S ∼ µk are comprised of k

items, each drawn independently from some distribution µ over [N ]. We note that this a common assumption,

implicitly assumed in (vanilla) compressed sensing, as well as classic (symmetric information) source-coding

problems.

For this setting, we develop protocols that achieve efficient decoding time, and competitive communication costs.

Our coding scheme is linear—the encoding is C · 1S where C is the coding matrix and 1S is the indicator

vector of the set S—which is a further desirable property of coding scheme. This property is similar to the one

imposed in compressed sensing. Linearity facilitates quick and simple updates to the message in streaming/dynamic

environments (e.g., in the IoT application above) as the message can be simply updated as items are added one by

one to the set S.

A. Relation to Problems in Prior Literature

Our problem relates to many other problems studied previously, but, surprisingly, has not been explicitly studied.

When there is no side information, the problem is the classic problem of coding a set S. Without requiring linearity,

1With further assumptions—e.g., preprocessing—one may ask for sublinear runtime, of the order of poly(|S|, lgN), as was accomplished

in some compressed sensing literature; see, e.g., [6], [7].
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a trivial solution is to append the indices of items in S, yielding communication k lgN for sets S of size k.2 If

we further require linearity, then the problem becomes a variant of compressed sensing. A slight caveat is that the

compressed sensing schemes usually work over reals [8], [9], and the vector C · 1S is a real vector, which raises

the issue of rounding and real number representation. Nevertheless, it is possible to do compressed sensing over

the F2 field; see, e.g., [10], [11], [12], [13].

Another related model is source coding, where both the encoder and the decoder have access to some prior

distribution µ, and the set S is composed of k items i.i.d. items drawn from µ. Then a (near-)optimal solution can

be obtained via, say, Huffman coding [14]. The length of the compression of a set S is
∑
i∈Sdlg 1/µ(i)e, which,

in expectation, is upper bounded by k ·H(µ) + k, close to the information-theoretic optimum of k ·H(µ) (up to

the rounding issues).

When the side information is not known to the encoder (as it is in our case), the problem becomes the classic

asymmetric transmission problem [1], [15], [16], [17], [5] (see also [18]). In this problem, the encoder generates

an item from a probability distribution µ and needs to communicate its identity to the router/server (decoder). The

goal is again to reach the information capacity of ≈ H(µ). While there are protocols that achieve such capacity,

the protocols require two-way communication—the backchannel from the decoder to the encoder is on the order of

Ω(lgN) bits. Furthermore, this is necessary: [1] shows that either the encoder or decoder has to communicate the

trivial Ω(lgN) bits [1] (see also the follow-up work of [5] for a lower bound on the number of interactive rounds

required).

In contrast, our protocols use one-way communication only. We circumvent the above lower bound by exploiting

the fact that the encoder sends a set S of items, instead of a single one, with a randomized protocol. In particular,

we can amortize the lower bound of Ω(lgN) against |S| items. In other words, in our setting, we encode a set S

using m ≥ lgN bits, with the goal of achieving m� O(|S| · lgN) where possible.

Finally, we remark that the problem also falls under the umbrella of model-based compressed sensing, where

one generally assumes some prior knowledge on the possible structure (model) of the set S (beyond, say, an upper

bound on its size); see, e.g., [19]. While the asymmetry is typically not an explicit goal, the encoding schemes are

usually agnostic to this prior knowledge (e.g., the coding uses the usual matrix with random Gaussian entries), and

hence, in fact, constitute an asymmetric coding scheme.

B. Formal Problem Setup

There are a few ways to formalize our problem, and hence we introduce three related definitions below, of growing

generality. As before, there is a universe [N ] := {1, 2, . . . , N} of items. For a given set S ⊆ [N ], the encoder

Enc : 2[N ] → {0, 1}m must construct a (possibly randomized) message y := Enc(S) of at most m bits, where m

is the allowed message length, fixed in advance. The decoder Dec? : {0, 1}m → 2[N ], for some side-information

?, must produce a set Ŝ := Dec?(y) from the message y such that Ŝ = S with, say, at least 1 − δ probability,

where δ is the error probability parameter (think δ = 0.1). Note that, when the side information ? is null, this

2We use lg to denote base-2 logarithm.
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task is generally impossible unless m ≥ lg 2N = N . Note that the encoder’s message does not depend on the side

information, i.e., the encoding function Enc(S) is oblivious (in the information theory literature this is referred to

as universal compression [20], [21]; see also Section I-E).

To measure the optimality of a coding scheme, we compare our message lengths to the information-theoretic

minimum, which we denote by the parameter m∗ (which is a function of ?). In particular, for α ≥ 1, a coding

scheme is called α-competitive if it uses m bits while the “information-theoretic optimal” is m∗ ≥ m/α bits. Note

that the value of “information-theoretic optimal” is not obvious, and in fact will differ between different definition.

There are also a few ways to measure the success of a scheme. We now introduce a few related definitions of

asymmetric coding in the order of generality.

Following the discussion from before, one natural way to model the side information is via a prior distribution

σ on subsets of [N ]. In particular, we assume σ is a distribution on k items, each drawn from a distribution µ on

[N ].

Definition 1. For N,m,α ≥ 1, a (randomized) scheme A = (Enc,Dec) is entropy-asymmetric-coding α-competitive

scheme if: for any integer k, and prior µ on [N ] such that k ·H(µ) ≤ m/α, we have the following where the prior

σ generates a set of k items drawn iid from µ:

Pr
A,S∼σ

[Decσ(Enc(S)) = S] ≥ 1− δ.

We clarify that the randomness of the encoder and decoder is via a shared random string, which is an (auxiliary)

input to both Enc and Dec.

Note that m∗ = k ·H(µ) is the lower bound on communication necessary to transmit a set S of k items drawn

iid from µ. The trivial scheme would achieve a bound3 of k lgN , which can be much higher than kH(µ).

We now consider a slightly more general definition, where we do not need to fix the size k of S, but rather

be “adaptive” to the number of items in the set S, in the analogy to what the Huffman coding achieves in the

symmetric case.

Definition 2. For N,m,α ≥ 1, a (randomized) scheme A = (Enc,Dec) is said to be a Huffman-asymmetric-coding

α-competitive scheme if: for any distribution µ over [N ], if the set S satisfies∑
i∈S

lg 1/µ(i) ≤ m∗, (1)

where m∗ = m/α, then

Pr
A

[Decµ(Enc(S)) = S] ≥ 1− δ.

In particular, a Huffman-asymmetric-coding 1-competitive scheme matches the performance of the aforementioned

Huffman coding (where the encoder knows the prior µ), for δ = 0 (deterministically). We also note that Eqn. (1)

(with α = 1) is the tightest condition we can require in order for a set S to be decodable with a classic Huffman

3The more precise bound is lg
(N
k

)
≈ k lgN/k, but since we think of k � N , this amounts to a negligible difference.
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code. Hence, the above definition asks to match the efficiency of the Huffman code (symmetric information setting)

in the asymmetric setting, up to α-factor loss in communication.

It is not hard to note that Huffman-asymmetric-coding scheme is more general than the entropy-asymmetric-coding

scheme: if we pick a random set S as in Def. 1, then it satisfies Eqn. (1) (up to a small loss in communication

efficiency). See Claim 5 in Appendix A.

Finally, we give the most general definition, which is the most natural from an algorithmic perspective, but is

less operational than the two above. It stems from the observation than any desirable encoding/decoding scheme is

(implicitly) specifying a list (ordered set) L ⊆ 2[N ] of subsets S ⊆ [N ] that are decoded correctly. It is immediate

to see that any such list L can have at most 2m such sets. In the presence of a prior distribution σ, one could take

these sets to be the “most likely” in σ (with ties broken arbitrarily).

Definition 3. For N,m,α ≥ 1, a (randomized) scheme A = (Enc,Dec) is said to be a list-asymmetric-coding

α-competitive scheme if: for any list L of sets S ⊆ [N ], where |L| ≤ 2m/α, and any S ∈ L, we have that:

Pr
A

[DecL(Enc(S)) = S] ≥ 1− δ.

Again, the latter definition is more general than both the definitions. In particular, a list-asymmetric-coding scheme

is also a Huffman-asymmetric-coding scheme: given a prior µ, just fix the list L to be the sets satisfying condition

(1). It is easy to see that the size of the list will be ≤ e2m/α (which results in just an additive lg e additive loss in

communication); see details in Claim 2 in Appendix A.

The last definition has the major downside that one has to specify a list L to the decoder, which is exponential

in m, thus affecting the computational efficiency of a coding scheme. Therefore, for algorithmic efficiency, it is

more natural to work with the Huffman-asymmetric-coding definition, which is the focus here.

C. Our Results

First, we establish that any asymmetric-coding scheme must be randomized if it is to non-trivially exploit the

prior µ or list L. In particular, if δ = 0 (i.e., no randomization), then, there exists some priors where the optimal

communication in the symmetric case is m∗ = O(|S| · lg |S|), but any asymmetric-coding scheme must have

m ≈ Θ(|S| · lgN). See details in Section IV.

Second, as a warm-up, we show a simple scheme that solves the most general definition, of list-asymmetric-coding

scheme, but which is not computationally efficient.

Theorem 1 (Information-theoretic; see Section II). Fix error probability δ > 0. There is an α-competitive list-

asymmetric-coding scheme with α = m
m−lg 1/δ = 1 + o(1), while achieving error probability of δ.

The scheme is a standard one: a random linear code. In particular, pick a random C ∈ Mm×N (F2), and set

Enc(S) = C · 1S (all computations are done in F2). The decoder Dec(y) is the “maximum likelihood” decoder:

for a given list L, go over the list in order and output the first set Ŝ ∈ L such that C1Ŝ = y. See Section II for

further details and proofs.
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While the above scheme achieves the information-theoretic bound (up to additive lg 1/δ), it is not computationally-

efficient and requires runtime of about Ω(2m). Even when the list L is somehow more efficiently represented (e.g.,

all sets S that satisfy the Huffman condition Eqn. (1)), the problem appears computationally hard. In particular, it is

a variant of the classic problem of decoding random linear codes. Obtaining a coding scheme with faster decoding

is precisely the focal point of our work:

Main goal: Develop computationally efficient oblivious compression schemes, that have only poly(N) en-

coding/decoding time, at the expense of a (mild, multiplicative) overhead in communication cost compared

to random codes (α-competitive).

Our main result is the design of a computationally-efficient, Huffman-asymmetric-coding scheme which is optimal

up to a O(log logN)-factor loss in the message length.

Theorem 2 (Main; see Section III). Fix target message length m > lgN + 4, and error probability δ ≥ 1/ lgN .

There is a linear Huffman-asymmetric-coding scheme, which is O(log logN)-competitive, and has poly(N) decoding

time and error probability of δ.

D. Technical Overview of Theorem 2

The proof of Theorem 2 is based on a “multi-level” coding scheme. The basic building block of our “multi-

level” coding scheme is the uniform compressed sensing scheme of [13], which is the finite-alphabet equivalent

of standard compressed sensing schemes (with a “uniform” prior). In particular, their scheme is a computationally

efficient linear sparse recovery scheme for k-sparse vectors in FN2 , using O(k logN) bits. Their (deterministic)

scheme relies on syndrome decoding of linear codes, which allows to decode in polynomial time any k-sparse

vector x ∈ FN2 , using the parity check matrix CRS of Reed-Solomon codes with the appropriate rate/dimension

generated by a binary symmetric (BSC) channel (see Section III-A for details).

Recall that in our setup, the prior µ is nonuniform and unknown to the encoder. We view the ground set of [N ]

items as being partitioned into T buckets of doubly-exponentially decaying probabilities w.r.t. µ, where bucket Bi

contains all elements with probability between 22
−i

and 2−2
i+1

w.r.t. µ. This allows us to set T to be doubly-

logarithmic, i.e., T = O(lg lgN).

The encoder sends T concatenated messages, where the goal of the ith message is to allow the decoder to

decode the subset S ∩ Bi, where S ∼ µk is the input set at the encoder. For each “level” i, the encoder uses an

appropriately-sized sensing matrix C(i)
RS , whose dimensions are determined by the (worst-case) number of elements

that could be encoded from Bi (here we implicitly assume that µ is uniform on Bi, which may lose a factor of

≤ 2 w.r.t the optimal message size per item, since the encoding lengths of items in Bi are within a factor 2).

Since in the ith step we only need to distinguish items in Bi, the encoder first hashes the set S to the minimal

universe Ni � N that still ensures collision-freeness in Bi (using a public hash function shared by the encoder

and the decoder), and C(i)
RS is applied to the hashed vector in the reduced universe. This carefully-chosen universe-

reduction “preprocessing” step is essential to save on communication—e.g., using [13] on k items will cost us only

∼ k logNi � k logN . Note that, the encoder doesn’t actually know the items Bi, and hence we don’t know the
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items S ∩ Bi to be encoded in the level i either. Instead, the level i encoding will contain all items S (this is

precisely where we lose the O(log logN)-factor in communication overall), and the identification of the set S ∩Bi
is done at decoding time only, as described next.

Our decoding procedure is adaptive and runs in T successive steps. In the ith step, we assume we’ve already

successfully decoded items S ∩ B<i = S ∩ (B1 ∪ B2 ∪ . . . Bi−1). The decoder then “peels off” the encoding

of S ∩ B<i from the original message that it has received. This step crucially uses the linearity of the encoding

scheme. The remaining ith level message now encodes items S ∩ (Bi ∪Bi+1 ∪ . . . BT ), which allows us to decode

S ∩ Bi. Note that, in addition to the aforementioned required property of no collisions inside Bi, we also need

universe [Ni] to be sufficiently large so that there are no collisions between items Bi and in S ∩B>i — otherwise

we may misidentify an item from S ∩B>i as being in Bi. Luckily, as |S ∩B>i| ≤ |S| is generally much smaller

than |Bi|, this new condition on Ni does not ultimately influence the communication bound. Note that, at level i,

the decoder will decode any item in Bi, and potentially identify that there exist items S ∩B>i (which will be left

for the subsequent steps).

We present the full details of our coding scheme and its analysis in Section III.

E. Connection to Universal Compression

Finally, on a somewhat different note, noiseless compression in asymmetric scenarios was also previously studied

in the information theory literature, in the context of universal compression (see e.g., [20], [21], [13] and references

therein). This line of work exploits an elegant connection between channel coding and source coding, via syndrome-

decoding, a connection that also plays an important role as a sub-procedure in our main result (Theorem 2, see

also the discussion in Section III-A). These works exhibit (fixed-length) codes with efficient encoding and decoding

procedures against a subclass of discrete memoryless channels (DMCs), e.g., via belief-propagation for LDPC codes

[20] and Turbo codes [22]. A main technical difference of our model is that the aforementioned line of work relies on

an interpretation of the set to be encoded (S) as a (sparse) additive noise vector generated by a discrete memoryless

channel (or even further restricted symmetric channels such as the BSC), where each coordinate in [N ] is corrupted

by the channel independently with identical probability. (Indeed, decoding procedures such as belief-propagation

algorithms are only guaranteed to converge under specific DMC channels such as the BSC). By contrast, in our

setting each coordinate in [N ] has a different (arbitrary and unknown to the decoder) corruption probability, hence

the underlying channel is not memoryless.

F. Organization of the rest of the paper

The rest of the paper is organized as follows. Section II is devoted to the proof of Theorem 1 via random

linear codes. In Section III, we describe the “multi-level” coding scheme and prove Theorem 2. In Section IV,

we show that any asymmetric coding scheme needs to be randomized in order to gain advantage from using the

side information. We end the paper with some conclusions and open problems. The connection between different

notions of asymmetric-coding schemes is presented in Appendix.
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II. A BASIC SCHEME: RANDOM LINEAR CODES

We establish Theorem 1 by designing a list-asymmetric-coding scheme via a random linear code. It achieves

essentially optimal communication (up to additive O(1) bits), nearly matching the performance of the symmetric-

information schemes. The runtime of this scheme is exponential in m.

Consider a randomized linear scheme where C is a uniformly random matrix C ∈ Fm×N2 , and Enc(S) = C ·1S .

The decoder for a list L = (S1, S2, . . . , S|L|) is the “maximum likelihood” decoder: given the message y, the

decoder returns the first set S in the list L such that Enc(S) = y:

DecML
L (y) := S

min
{
t∈[|L|]:Enc(St)=y

} .
(The random matrix C is determined using the public random bits). For brevity, we call this the random linear

scheme.

The next lemma establishes that the random linear scheme is a list-asymmetric-coding scheme for any δ ∈ (0, 1)

and any list of at most 2m · δ = 2m−lg 1/δ subsets of [N ]. It implies Theorem 1 since the competitiveness is

α = m
m−lg 1/δ .

Lemma 1. Let C be a random m × N binary matrix. Then for any list L of |L| ≤ 2m subsets of [N ], and any

S ∈ L:

Pr
C

(
DecML

L (C · 1S) = S
)
≥ 1−

(
|L| − 1

)
2−m .

Proof. For any pair of sets S, S′ in the list L, we use S ≺L S′ to denote that S appears before S′ in L. We also let

S4S′ := (S \ S′)∪ (S′ \ S) denote the symmetric difference between S and S′. Finally, for i ∈ [N ] and j ∈ [m],

we let ci(j) denote the j-th entry of the code word ci.

The decoder outputs a set Ŝ := DecML
L (Enc(S)) 6= S if and only if there is exists S′ 6= S such that S′ ≺L S

and
∑
i∈S′ ci =

∑
i∈S ci. For any set S′ ≺L S in L,

Pr

∑
i∈S′

ci =
∑
i∈S

ci

 =

m∏
j=1

Pr

∑
i∈S′

ci(j) =
∑
i∈S

ci(j)


=

m∏
j=1

Pr

 ∑
i∈S′4S

ci(j) = 0

 = 2−m .

By a union bound,

Pr
(
DecML

L (Enc(S)) 6= S
)

= Pr

∃S′ ≺L S �
∑
i∈S′

ci =
∑
i∈S

ci


≤

∑
S′≺LS

Pr

∑
i∈S′

ci =
∑
i∈S

ci


≤
(
|L| − 1

)
2−m .

In fact, one can prove a slightly stronger guarantee of success: that, for any fixed list L, with probability at least

1− δ, the decoder decodes correctly any set S ∈ L. This leads to slightly worse competitiveness: α = 2 + o(1). In
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particular, m-sized code can decode only lists of size 2m
∗

where m∗ = 1
2 (m− lg 1/δ). The following corollary is

immediate from the above.

Corollary 1. Let C be a random m×N 0/1 matrix. Then for any list L of subsets of [N ],

Pr
C

(
∀S ∈ L � DecML

L (C · 1S) = S
)
≥ 1− |L| ·

(
|L| − 1

)
2−m .

III. MAIN RESULT: O(log logN)-COMPETITIVE CODING SCHEME

In this section, we prove Theorem 2, by designing a computationally efficient Huffman-asymmetric-coding

scheme. The resulting algorithm is termed the multi-level scheme (for reason that will soon be apparent).

Let ∆([N ]) be the space of all distributions with support [N ]. Our algorithm supports distributions µ from the

following class

M :=
{
µ ∈ ∆([N ]) : 1/4N ≤ µ(i) < 1/2, ∀i ∈ [N ]

}
.

While this is a restriction from a general distribution µ ∈ ∆([N ]), it is without loss of generality: we can transform

any distribution into a distribution µ′′ ∈ M (up to a loss of at most factor 2 in the communication bound).

First, if there are items i∗ with probability more than 1/3, make them with probability 1/3: set µ′(i∗) = 1/3.

Second, all the probabilities that are too small can be brought up to at least 1/4N , while affecting the other

probabilities only by a constant as follows: (1) construct µ′(i) = max{µ(i), 1/2N} (except for items i∗), (2) let

ζ =
∑
i µ
′(i) ≤

∑
i(µ(i) + 1/2N) = 1.5, and (3) set µ′′(i) = 1

ζµ
′(i). It’s not hard to verify now that µ′′ ∈M, as

well as that µ′′(i∗) ≤ 1/2 and for the other items lg 1/µ′′(i) ≤ 2 lg 1/µ(i). We also assume that m ≥ lgN + 4.

Our scheme A = (Enc,Dec) uses T := lg lg(4N) levels, each parametrized by positive integers Dt,mt to be

determined later. We use uniformly random hash functions

ht : [N ]→ [Dt]

where the hash functions are determined using shared public randomness. The scheme also uses a family of T

(deterministic) linear codes, C(t) = [ c(t)1 c
(t)
2 ... c

(t)
Dt

] ∈ Fmt×DtN for t ∈ [T ], which are specified in the next

subsection. Each matrix C(t) shall be designed to support efficient decoding of every
(

mt
2 lgDt

)
-sparse vector. We

now turn to the formal construction.

A. One level: sensing matrices C(t)

For each level of our scheme, the basic building block is the compressed-sensing matrices designed in the work

of [13]. These deterministic constructions produce m × N linear codes (matrices over some finite field) that can

decode any k-sparse vector x ∈ FN2 (i.e., any subset of size at most k), where k := m/(2 lgN), in time polynomial

in m and N . Note that such a compression scheme is essentially optimal – the number of k-sparse subsets in [N ]

is
(
N
k

)
≈ 2k lg(N/k), hence any deterministic encoding scheme for this problem must use at least k lg(N/k) ≈ m

bits of communication.

We now state the formal theorem from [13]. The theorem relies on an elegant connection between channel coding

and source coding (via “syndrome decoding”). The central object is the parity check matrix of a Reed-Solomon
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code (see e.g., [23]). To this end, we denote by [N, r, d]q a Reed-Solomon code over the alphabet Fq (q ≥ lgN ),

whose codeword length is N , number of codewords is qr, and the minimum Hamming distance between codewords

is d (i.e., the code can correct up to (d − 1)/2 errors). Our multi-level scheme uses the following theorem in a

black-box fashion.

Theorem 3 (Efficient deterministic compressed sensing, [13]). Let PNk ∈ Fm×NN be the parity-check matrix of a

[N,N − 2k, 2k + 1]FN Reed-Solomon code4, where m = 2kdlgNe. There is a (deterministic) decoding algorithm

that recovers any k-sparse vector in FN2 (i.e., x ∈
(
[N ]
k

)
) from PNk · x using O(Nk lg2N) operations over F2. In

particular, PNk · x uniquely determines x using m = 2kdlgNe linear measurements.

The rough idea behind this result (which was used in the past) is to think of k-sparse vectors in FN2 as a sparse

noise vector introduced by a discrete memoryless channel, and then use the efficient syndrome-decoding algorithm

for Reed-Solomon codes of Berlekamp and Massey (see [23]) which recovers the noise vector (i.e., our desired

k-sparse subset) from the parity check matrix PNk .

Of course, the main difference from the setup of Theorem 3 and our setup, is that in our case the original

distribution on subsets (i.e., sparse vectors) may be very far from uniform. Nonetheless, our multi-level scheme

uses the construction of [13] in each layer. More precisely, for level t of our scheme, our scheme shall set the

matrix C(t) to be the parity-check matrix PNk with parameters N := Dt, k := mt/(2 lgDt) (i.e., it is a matrix of

size mt ×Dt). This will become clearer in the next section where we present the entire multi-level scheme.

B. Description and Analysis of the Multi-level Scheme

As mentioned in the previous section, the encoding and decoding of the input (S ⊆ [N ]) is defined by an iterative

procedure consisting of T levels, and crucially relies on the linearity of the encoding in each level. Let {Dt}t∈[T ]

and {mt}t∈[T ] be numbers to be determined later. The encoder is described in Algorithm 1, and the decoder is

described in Algorithm 2.

We now turn to the analysis of the scheme, whose centerpiece is the following theorem.

Theorem 4. Fix δ ∈ (0, 1) and positive integer m∗. Set

Dt :=

Tδ ·
(

22·2
t

/2 +
(m∗)2

22t

) , t ∈ [T ] , (2)

and

mt :=

⌈
2 lgDt ·min

{
m∗

2t−1
,

4m∗

lgm∗

}⌉
, t ∈ [T ]. (3)

Then for any µ ∈ M and S satisfying Eqn. (1) with the fixed value of m∗, the Algorithm 2 outputs the set

Ŝ = Decµ(Enc(S)) satisfying:

Pr[Ŝ = S] ≥ 1− δ .

4We assume here that N is a power of 2. Otherwise, replace it with N ′ := 2dlgNe.



11

Algorithm 1 Enc for multi-level scheme

input subset S ⊆ [N ] (represented as the indicator vector 1S ∈ {0, 1}N ).

output message y ∈ {0, 1}m.

For each t ∈ [T ], let yt :=
∑
i∈S C

(t) · 1{ht(i)}, where C(t) is the mt ×Dt matrix PNtkt

from Theorem 3, instantiated with Nt := Dt, kt := mt/(2 lgDt). i.e., yt =
∑
i∈S c

(t)
ht(i)

.

1: return concatenated string y := (y(1), y(2), . . . , y(T ))

Algorithm 2 Decµ for multi-level scheme

input message y = (y(1), y(2), . . . , y(T )) ∈ {0, 1}m, and a prior distribution µ ∈Mm.

output subset Ŝ ⊆ [N ].

1: Let Bt := {i ∈ [N ] : 2−2
t ≤ µ(i) < 2−2

t−1} for t ∈ [T ].

2: Initialize Ŝ := ∅.

3: for t = 1, 2, . . . , T do

4: Let ẑ(t) be the output of the decoder for C(t) applied to y(t), guaranteed by Theorem 3.

5: for each i ∈ Bt do

6: if ẑ(t)ht(i) = 1 then

7: Let Ŝ := Ŝ ∪ {i}.

8: for τ = t+ 1, t+ 2, . . . , T do

9: Let y(τ) := y(τ) − c(τ)hτ (i)
.

10: end for

11: end if

12: end for

13: end for

14: return Ŝ

We now briefly verify that Theorem 4 implies Theorem 2, when we set m∗ = m/α where α = O(lg lgN+lg 1/δ).

Since lgDt ≤ lg 2T/δ +O(2t) +O(lgm∗), we have mt ≤ O(m∗(1 + 2−t+1 lg 2T/δ)). The total message length

over all the T levels is thus
T∑
t=1

mt = O(m∗ · T ) +O(m∗ · lg 2T/δ) ≤ m∗ · α = m.

Using Theorem 3, it is also clear that the running times of Algorithm 1 and Algorithm 2 are poly(N).

Proof of Theorem 4. Fix µ ∈ M and S satisfying Eqn. (1). Because every i ∈ S satisfies lg(1/µ(i)) ≤ lg(4N),

we may partition S into St := S ∩ Bt for t ∈ [T ]. Also let St:T := St ∪ St+1 ∪ · · · ∪ ST for t ∈ [T ]. Let Et be

the event in which the following hold:

1) ht(i) 6= ht(j) for all distinct i, j ∈ Bt;

2) ht(i) 6= ht(j) for all i ∈ St and j ∈ St+1:T .
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By definition, every i ∈ Bt satisfies µ(i) ≥ 2−2
t

, and hence |Bt| ≤ 22
t

. Furthermore, every i ∈ St:T satisfies

µ(i) ≤ 2−2
t−1

, or equivalently, 1 ≤ lg(1/µ(i))
2t−1 . Therefore, it holds that

|St:T | ≤
∑
i∈St:T

1 ≤
∑
i∈St:T

lg(1/µ(i))

2t−1
≤
∑
i∈S lg(1/µ(i))

2t−1
≤ m∗

2t−1
,

where the final inequality follows since the set S satisfies Eqn. (1). For the size of the set St we note that

|St| ≤ min{|St:T |, 4m∗/ lgm∗}. The last transition is due to the fact that at least half of the set is composed of

items of probability mass at least lg 2
|St| , and thus, by Eqn. (1), |St|2 lg |St|2 ≤ m

∗.

Now we note that

|St| ·|St+1:T | ≤
1

4
·|St:T |2 ≤

(m∗)2

22t
.

Therefore, by a union bound, the probability that Et holds is

Pr(Et) ≥ 1−

((
|Bt|

2

)
+|St| ·|St+1:T |

)
· 1

Dt
≥ 1− δ

T
,

where the second inequality uses the choice of Dt in Eqn. (2). By another union bound over all t ∈ [T ], it follows

that the event E := E1 ∩ E2 ∩ · · · ∩ ET holds with probability at least 1− δ.

For the rest of the analysis, we condition on the occurrence of the event E. Let Ŝt be the set of items that

Algorithm 2 adds to Ŝ in iteration t. It suffices to prove that if y is the encoding of items belonging only to buckets

Bt, Bt+1, . . . , BT (i.e., of the indicator vector 1St:T ), then upon reaching iteration t of the decoding algorithm, we

have Ŝt = St (i.e., we argue that in level t we decode precisely the elements in St). Maintaining this invariant is

indeed sufficient, because at the end of iteration t, Algorithm 2 subtracts the C(τ)-encoding of elements in Ŝt ∩Bt
from y(τ) for all τ > t. Thus, if Ŝt = St, then after iteration t, the linearity of the code implies that the message

y (at least the parts relevant to rounds > t) no longer contains the items in St (and hence Bt).

Since we conditioned on the event E, the hash function ht has no collisions between pairs of items in Bt, and

moreover it has no collisions between items in St and items in S \St = St+1:T (where we use the assumption that

S = St:T ). Therefore, the items in St are in one-to-one correspondence with some subset of supp(z(t)), where

z(t) :=
∑
i∈S

eht(i) .

The vector z(t) may have other non-zero entries not in the one-to-one correspondence with St, but they are not the

image of any i ∈ Bt under ht. This implies that if ẑ(t) = z(t), then Ŝt = St.

We now argue that, indeed, we have ẑ(t) = z(t). Observe that z(t) has at most |St:T | ≤ m∗/2t−1 non-entries in

total (again, using the assumption that S = St:T ), and y(t) is the encoding of z(t) under C(t), i.e., y(t) = C(t)z(t).

Due to the choice of mt from Eqn. (3) and Theorem 3, the decoding of y(t) returns ẑ(t) = z(t) as required.

IV. LOWER BOUND FOR DETERMINISTIC SCHEMES

We show that asymmetric coding schemes need to be randomized in order to gain advantage from using the side

information. In particular we show that if the class of priors is sufficiently rich, then no deterministic asymmetric

coding scheme can improve over the trivial baseline communication, even if we allow arbitrary (non-linear) schemes
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and arbitrary decoding time. Note that this separates the asymmetric information case from the symmetric side

information case—since the Huffman code is a deterministic (near)-optimal algorithm for the symmetric case.

We will prove the lower bound for the entropy-asymmetric-coding case (the weakest definition). We consider

the family MN,k of prior distributions that consists of all (product) distributions µk where µ is supported on some

subset M ⊂ [N ] of cardinality |M | = 2k (i.e., each µ defines a list L = L(µ) of all
(
2k
k

)
subsets of [M ]). More

formally,

MN,k :=
{
µk | supp(µ) ⊂M, M ⊂ [N ], |M | = 2k

}
.

Note that for any prior µk ∈ MN,k, we have the information-theoretic minimum communication to be m∗ =

H(µk) = kH(µ) ≤ k lg(2k). However, the following claim asserts that any deterministic scheme for S ∈ MN,k

must spend essentially the trivial communication of Ω(lg
(
N
k

)
) = Ω(k lgN/k).

Claim 1 (Deterministic oblivious compression is impossible). Any entropy-asymmetric-coding scheme that handles

priors σ = µk ∈MN,k, and achieves δ = 0, must have m = Ω(k lg(N/k)) bits of communication even though the

information-theoretic minimum is m∗ ≤ k lg 2k. This remains true even without requiring linearity or computational

efficiency.

Proof. The idea is to use the fact that the encoder is oblivious to µ in order to argue that any deterministic encoding

scheme can in fact be used to reconstruct any k-sparse vector in FN2 (i.e., any subset S ∈
(
[N ]
k

)
). Clearly, the latter

compression problem requires lg
(
N
k

)
bits of communication, hence the claim would follow. Indeed, we claim that

a deterministic scheme A = (Enc,Dec) that solves the entropy-asymmetric-coding problem, must satisfy

∀ S1 6= S2 ⊂
(

[N ]

k

)
, Enc(S1) 6= Enc(S2).

Indeed, suppose this is false, then there is a pair of subsets S1 6= S2 ⊂
(
[N ]
k

)
which are mapped by A to the same

message

Enc(S1) = Enc(S2) := π.

Now, consider the set M := S1∪S2 and let µM be the uniform distribution over M . Note that |M | = |S1∪S2| ≤ 2k,

and without loss of generality, assume that |M | = 2k (otherwise, add arbitrary elements of [N ] to M ). In this

case, observe that µkM ∈ MN,k, and that PrµkM [S1] = PrµkM [S2] = 1/|M |k. Therefore, with probability at least

δ := 1/(2 · |M |k) = 1/(2 · (2k)k) > 0, the decoding will fail, since

Pr
S∼µkM

(
DecµkM (Enc(S)) = S

)
≤ 1− 2δ ·min

{
Pr
(
DecµkM (π) = S1

)
,Pr

(
DecµkM (π) = S2

)}
≤ 1− δ < 1.

But this contradicts the premise that A is a deterministic communication scheme with respect toMN,k. This proves

that the worst-case communication length of any deterministic scheme must be Ω(k lg(N/k)) bits even under the

class of product distributions.

Remark 1. If arbitrary (non-product) distributions are allowed, it is not hard to turn the above argument into

an average case lower bound, for example, by considering the distribution σ that chooses S1 or S2 each with
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probability 1/2, where S1, S2 are the “colliding” sets from above (note that while σ /∈ MN,k, |L(σ)| = 2). We

also remark that this claim essentially states that prior-oblivious deterministic compression cannot perform any

better than standard (“prior-free”) compressed-sensing schemes for k-sparse vectors in FN2 , which indeed requires

Θ(k lg(N/k)) bits/measurements.

V. CONCLUSIONS AND OPEN PROBLEMS

We considered coding sets with asymmetric information, where each set is comprised of i.i.d. samples from a

prior distribution µ over [N ], and µ is only known to the decoder. We showed that any such coding scheme must

be randomized in order to gain advantage from the side information. Given an error probability δ, we designed a

computationally efficient and linear coding scheme, which achieves an O(lg lgN)-competitive communication ratio

compared to the optimal message length.

As we view this work as an initial step in the study of asymmetric compression, there are a few natural aspects

of our assumptions that require further research:

• The most straightforward open question is whether the message length for product distributions over subsets

of [N ] can be improved from Oδ(lg lgN) multiplicative overhead to O(lg(1/δ)) overhead, or even further

to O(lg(1/δ)) additive overhead (matching the information bound of the baseline scheme from Theorem 1),

while insisting on poly(N) decoding time. We note that even the scheme of [13] (for the uniform prior case)

is only 2-competitive.

• As hinted before, we may also want decoding time which is sublinear in N , e.g., poly(m, logN). Note that

this may be possible only if we allow the decoder to do preprocessing—otherwise, already its input µ has

Ω(N) description size.

• Are the above goals simpler if we allow non-linear coding? Our scheme is linear, and we do not know if there

exist more efficient non-linear coding schemes.

• Another important direction is to identify other natural instances of non-product distributions σ, where the prob-

lem is meaningful and poly-time, competitive coding schemes exist. As mentioned before, such a distribution

σ must at minimum have a succinct description. A natural candidate family for modeling such succinct joint

distributions on subsets of [N ] are graphical models [24]. It would be very interesting to develop compete with

the (possibly much lower) entropy benchmark of joint distributions generated by low-order graphical models.

• Finally, one may want to construct schemes that have a somewhat better probability guarantee (somewhat akin

to “for all” vs “for each” guarantee). While fully deterministic schemes are impossible, it may be possible to

obtain the following guarantee: with probability 1− δ, the decoder decodes correctly any set S ∈ L. It turns

out that this is possible for the random code solution (see Corollary 1). It would be interesting if our main

(computationally-efficient) result can be extended to this case as well.
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APPENDIX A

CONNECTIONS BETWEEN DIFFERENT NOTIONS OF ASYMMETRIC-CODING SCHEMES

In this section, we show connections between different asymmetric coding schemes. First we show that a list-

asymmetric-coding scheme implies a Huffman-asymmetric-coding scheme.

Claim 2. If A is a list-asymmetric-coding scheme with parameters m∗l and δ, then A is a Huffman-asymmetric-

coding scheme with parameters m?
h ≤ m?

l − lg e and δ, and the same, fixed communication bound m.

Proof. Consider any distribution µ over [N ]. Let L be the list of subsets S ⊆ [N ] that satisfy Eqn. (1). We just

need to show that the size of L is less than e2m
?
h ≤ 2m

?
l . A set S satisfies Eqn. (1) if and only if∏

i∈S
µ(i) ≥ 2−m

?
h .

On the other hand ∑
S∈L

∏
i∈S

µ(i) ≤
∑
S⊆[N ]

∏
i∈S

µ(i)

=
∑

(x1,...,xN )∈{0,1}N

N∏
i=1

µ(i)xi

=
∑

x1∈{0,1}

µ(1)x1

∑
x2∈{0,1}

µ(2)x2 · · ·
∑

xN∈{0,1}

µ(N)xN

= (1 + µ(1))(1 + µ(2)) · · · (1 + µ(N))

≤ eµ(1)eµ(2) · · · eµ(N)

= e.

Hence the size of list L is less than e2m
?
h ≤ 2m

?
l and a list-asymmetric-coding scheme for list L, with parameters

m∗l and δ, yields an error probability δ.

We now show that entropy-asymmetric-coding is the weakest of the three definitions, in that a list- or Huffman-

asymmetric-coding scheme implies an entropy-asymmetric-coding scheme (with slightly weaker parameters). We

first define, for any δ > 0 and distribution σ ∈ ∆(2[N ]), the δ-approximate cover size of σ as

C(σ, δ) := min
m∈N

{
∃L ⊆ supp(σ), |L| ≤ 2m , σ(L) ≥ 1− δ

}
.

The following claim asserts an upper bound on the cover number in terms of the Shannon entropy of σ.

Claim 3 (Cover-size vs. Entropy). For every distribution σ and δ > 0, it holds that

C(σ, δ) ≤ H(σ)/δ.

We remark that the bound is essentially tight, as demonstrated by the distribution σ which has an “atom” of

measure δ and otherwise uniform on the entire domain.
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Proof. Let Gδ := {x : lg(1/σ(x)) ≤ H(σ)/δ} be the set of elements with “large” mass under σ. Indeed, note that

∀x ∈ Gδ we have σ(x) ≥ 2−H(σ)/δ , thus it holds that |Gδ| ≤ 2H(σ)/δ . In order to conclude that C(σ, δ) ≤ H(σ)/δ,

it remains to show that σ(Gδ) ≥ 1− δ. Indeed, Markov’s inequality implies that

σ(Gδ) = 1− σ(Gδ) = 1− Pr
x∼σ

(
lg

1

σ(x)
>
H(σ)

δ

)
= 1− Pr

x∼σ

lg
1

σ(x)
>

E
[
lg 1

σ(x)

]
δ

 ≥ 1− δ.

The following is a corollary of Claim 3.

Claim 4. If A is a list-asymmetric-coding scheme with parameters m∗l and δl, then A can be converted into an

entropy-asymmetric-coding scheme with parameters m∗e := δlm
∗
l and δe := 2δl (and same, fixed communication

bound m).

Proof. For any prior σ on subsets of [N ], there is a list L = L(σ) of size at most 2H(σ)/δl which is “responsible”

to 1− δl mass of the distribution.5 So, when the encoding length is fixed to m, Claim 3 guarantees that decoding

(w.p. 1− δl) all subsets with σ(S) ≥ 2−m
∗
l is equivalent to decoding (w.p. 1− δl) all distributions with Shannon

entropy at most δlm∗l .

Note that δlm∗l bits are needed even in the standard compression setup when both parties know the distribution,

hence this notion of decoding is competitive even with the Shannon entropy benchmark, which is the strongest

possible.

Similarly, we can show that a Huffman-asymmetric-coding scheme implies an entropy-asymmetric-coding scheme

(with some loss in the communication efficiency).

Claim 5. If A is a Huffman-asymmetric-coding scheme with parameters m∗h and δh, then for any ε ∈ (0, 1), A is

an entropy-asymmetric-coding scheme with parameters

m∗e :=

1− δh/(2N)

1 + ε

(
m∗h −

(
1

2ε
+

1

3

)
lg(2N2/δh) ln(2/δh)

) , δe := 2δh,

and same, fixed communication bound m.

Proof. Assume A is a Huffman-asymmetric-coding scheme with parameters m∗h and δh. Take any µ ∈ ∆([N ])

with kH(µ) ≤ m∗e . Define δ0 := δh/(2N
2). Let Head := {i ∈ [N ] : µ(i) ≥ δ0} and Tail := [N ] \ Head. Let E be

the event where S ∼ µk satisfies S ⊆ Head. Since (1−Nδ0)k ≥ 1−Nkδ0 ≥ 1− δh/2, it follows that

Pr
S∼µk

(E) ≥ 1− δh/2.

Furthermore, conditional on E, we can bound the expected value of
∑
i∈S lg(1/µ(i)) as follows:

kHE(µ) := ES∼µk

∑
i∈S

lg(1/µ(i))

∣∣∣∣∣∣ E
 =

k

1− µ(Tail)

∑
i∈Head

µ(i) lg(1/µ(i)) ≤ k

1− δh/(2N)
H(µ).

5As mentioned before, this “truncation” of the tail of σ seems inherent to oblivious schemes, as they are fixed-length encodings.
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By Bernstein’s inequality, we have

Pr
S∼µk

∑
i∈S

lg
1

µ(i)
≤ kHE(µ) +

√
2kHE(µ) lg

(
2N2

δh

)
ln

(
2

δh

)
+

lg
(

2N2

δh

)
ln
(

2
δh

)
3

∣∣∣∣∣∣∣ E
 ≥ 1− δh

2
.

Therefore, with probability at least 1− δh over the random draw S ∼ µk, we have∑
i∈S

lg(1/µ(i)) ≤ kH(µ)

1− δh/(2N)
+

√
2kH(µ) lg(2N2/δh) ln(2/δh)

1− δh/(2N)
+

lg(2N2/δh) ln(2/δh)

3

≤ 1 + ε

1− δh/(2N)
kH(µ) +

(
1

2ε
+

1

3

)
lg(2N2/δh) ln(2/δh)

≤ m∗h

where the second inequality follows from the arithmetic-mean/geometric-mean inequality, and the last inequality

uses the definition of m∗e . Conditional on this event, A correctly decodes the set S with probability at least 1− δh.

Thus, A is an entropy-asymmetric-coding scheme with parameters m∗e and δe = 2δh.
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[20] G. Caire, S. Shamai, and S. Verdú, “Noiseless data compression with low-density parity-check codes,” in Advances in Network Information

Theory, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, March 17-19, 2003, 2003, pp. 263–284.

[21] S. H. Hassani and R. L. Urbanke, “Universal polar codes,” in 2014 IEEE International Symposium on Information Theory, Honolulu, HI,

USA, June 29 - July 4, 2014, 2014, pp. 1451–1455. [Online]. Available: https://doi.org/10.1109/ISIT.2014.6875073

[22] J. Garcia-Frias and Y. Zhao, “Compression of binary memoryless sources using punctured turbo codes,” IEEE Communications Letters,

vol. 6, no. 9, pp. 394–396, 2002. [Online]. Available: https://doi.org/10.1109/LCOMM.2002.803484

[23] R. M. Roth, Introduction to coding theory. Cambridge University Press, 2006.

[24] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and variational inference,” Foundations and Trends in

Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008. [Online]. Available: https://doi.org/10.1561/2200000001

https://doi.org/10.1109/ISIT.2014.6875073
https://doi.org/10.1109/LCOMM.2002.803484
https://doi.org/10.1561/2200000001

	Introduction
	Relation to Problems in Prior Literature
	Formal Problem Setup
	Our Results
	Technical Overview of Theorem 2
	Connection to Universal Compression
	Organization of the rest of the paper

	A Basic Scheme: Random Linear Codes
	Main Result: O(loglogN)-competitive Coding Scheme
	One level: sensing matrices C(t)
	Description and Analysis of the Multi-level Scheme

	Lower Bound for Deterministic Schemes
	Conclusions and Open Problems
	Appendix A: Connections Between Different Notions of Asymmetric-coding Schemes
	References

