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Abstract—The problem of anonymous networking when an
eavesdropper observes packet timings in a communication net-
work is considered. The goal is to hide the identities of source-
destination nodes, and paths of information flow in the network.
One way to achieve such an anonymity is to use mixers. Mixers
are nodes that receive packets from multiple sources and change
the timing of packets, by mixing packets at the output links,
to prevent the eavesdropper from finding sources of outgoing
packets. In this paper, we consider two simple but fundamental
scenarios: double input-single output mixer and double input-
double output mixer. For the first case, we use the information-
theoretic definition of the anonymity, based on average entropy
per packet, and find an optimal mixing strategy under a strict
latency constraint. For the second case, perfect anonymity is
considered, and a maximal throughput strategy with perfect
anonymity is found that minimizes the average delay.

I. INTRODUCTION

Secure communication has become increasingly important.
Privacy and anonymity considerations apply to all compo-
nents of a communication network, such as contents of data
packets, identities of source-destination nodes, and paths of
information flow in the network. While a data packet’s content
can be protected by encrypting the payload of the packet,
an eavesdropper can still detect the addresses of the source
and the destination by traffic analysis. For example, observing
the header of the packet can still reveal the identities of
its corresponding source-destination pair. Onion Routing [1]
and Tor network [2] are well-known solutions that provide
protection against both eavesdropping and traffic analysis. The
basic idea is to form an overlay network of Tor nodes, and
relay packets through several Tor nodes instead of taking the
direct path between the source and the destination. To create
a private network, links between Tor nodes are encrypted
such that each Tor node only knows the node from which
it receives a packet and the node to which it forwards the
packet. Therefore, any node in the Tor network sees only two
hops (the previous and next nodes) but is not aware of the
whole path between the source and the destination, Therefore,
a compromised node cannot use traffic analysis to identify
source-destination pairs. But Tor cannot solve all anonymity
problems. If an eavesdropper can observe the traffic in and
out of some nodes, it can still correlate the incoming and
outgoing packets of relay nodes to identify the source and the
destination or, at least, discover parts of the route between the
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source and the destination. This kind of statistical analysis is
known as timing analysis since the eavesdropper only needs
packet timings. For example, in Figure 1, if the processing
delay is small, there is a high correlation between output and
input processes, and the eavesdropper can easily identify the
source of each outgoing packet.

To provide protection against the timing analysis attack, Tor
nodes need to perform an additional task, known as mixing,
before transmitting packets on output links. A Tor node with
mixing ability is called a Mixer. In this solution, the Mixer
receives packets from multiple links, re-encrypts them, and
changes timings of packets, by mixing (reordering) packets at
the output links, in such a way that the eavesdropper cannot
relate an outgoing packet to its corresponding sender.

The original concept of mix was introduced by Chaum
[3]. The mix anonymity was improved by random delaying
[4] (Stop-and-go MIXes), and dummy packet transmission [5]
(ISDN-MIXes), and used for the various Internet applications
such as email [6] and WWW [7](Crowds). Other proposed
anonymity schemes are JAP [8], MorphMix [9], Mixmaster
[10], Mixminion [11], Buses [12], etc.

However, theoretical analysis of the performance of Chaum
mixing is very limited. The information-theoretic measure of
anonymity, based on Shannon’s equivocation [13], was used
in [14] to evaluate the performance of a mixing strategy. The
approach of [14] does not take into account the delay or traffic
statistics; whereas, modifying packet timings to obfuscate the
eavesdropper indeed increases the transmission latency. So,
the question of interest is: what is the maximum achievable
anonymity under a constraint on delay?

Characterizing the anonymity as a function of traffic load
and the delay constraint has been considered in [15]. The
authors in [15] have considered a mix with two input links
and one output link, where arrivals on the input links are two
poisson processes with equal rates, and they characterize upper
and lower bounds on the maximum achievable anonymity
under a strict delay constraint. The basic idea is that the mixer
waits for some time, collects packets from two sources, and
sends a batch containing the received packets to the output.
The implicit assumption in [15] is that there is no constraint on
the capacity of the output link, i.e., the batch can be transmitted
instantaneously at the output, no matter how many packets are
contained in the batch.

The path between any source-destination pair in an anony-
mous network contains several nodes; each of which has,
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possibly, several input links and several output links. At each
node, to perform routing, traffic generated by two or more
sources can be merged into one outgoing stream, or the merged
stream can be decomposed at several output links for different
destinations. To expose the main features of mixing strategies,
we focus on two fundamental cases: double input-single output
mixer, Figure 1, and double input-double output mixer, Figure
2. Compared to [15], our model considers cases with finite
link capacities and derives optimal solutions for certain cases.
The remainder of the paper is organized as follows. In section
II, the double input-single output mixer is considered, and the
optimal mixing strategy is found to maximize the anonymity
under a strict latency constraint. Section III is devoted to the
double input-double output mixer, where the optimal mixing
strategy is found under a constraint on packet drop rate, or
transmission rate of dummy packets. Finally, we end the paper
with some concluding remarks.

II. DOUBLE INPUT-SINGLE OUTPUT MIXER

Consider Figure 1 where there are two incoming flows,
red and blue, and one outgoing link. The capacity of each
input link is 1 packet/time-slot, and the capacity of the output
link is 2 packets/time-slot. This model ensures that packets do
not have to be dropped due to lack of capacity, even when
the input links bring in data at maximum rate. Red and blue
packets arrive according to i.i.d. Bernouli processes with rates
λR and λB respectively. There is an eavesdropper observing
the incoming and outgoing packets. Assume the eavesdropper
knows the source of each incoming packet, i.e., its color. This
might be made feasible by traffic analysis if the mixer is the
first hop of the route or, otherwise, by timing analysis of the
previous hop. Given the source of each incoming packet, the
eavesdropper aims to identify the source of each outgoing
packet, i.e., assign colors, red and blue, to the outgoing stream
of packets.

First, consider the case where we do not allow for any
delay, i.e., the mixer must send packets out in the same slot
in which they arrived. Note that this is possible, without any
packet drop, since at most two packets arrive in each slot,
and the capacity of the output link is 2 packets/slot. Then, the
only way to confuse the eavesdropper is to send out a random
permutation of received packets in each slot.

By allowing a strict delay T for each packet, the mixer
can do better; it can select and permute packets from the
current slot and also from the previous slots up to T − 1
slots before. Let ΨT denote the set of all possible mixing
strategies that satisfy the strict delay constraint T . Let the
random variable Ik denote arrivals in k-th slot, therefore Ik

can be ∅, R, B, or RB, where they respectively denote the
cases of no arrivals, red arrival but no blue arrival, blue arrival
but no red arrival, and both red and blue arrivals. Similarly
define a random variable Ok for the output sequence such
that Ok ∈ {∅, R, B, RB, BR} (Note that ordering of packets
at the output matters). Next, we define anonymity of a mixing
strategy ψ ∈ ΨT , based on the average conditional entropy of
the output sequence given the input sequence, as follows.

Mixer

Fig. 1. The double input-single output mixer. The capacity of each input
link is 1 packet/time slot and the capacity of the output link is 2 packets/time
slot.

Mixer

Fig. 2. The double input-double output mixer. The capacity of each link is
1 packet/time slot.

Definition 1. The anonymity Aψ of a mixing strategy ψ is
defined as

Aψ = lim
N→∞

1
N(λR + λB)

H(O1O2 · · ·ON |I1I2 · · · IN ).

Note that in the above definition, the numerator is the
entropy of the output sequence given the input sequence of
length N , and the denominator is the average number of red
and blue arrivals in N slots. So, as N → ∞, anonymity is
the amount of uncertainty in each outgoing packet, bits/packet,
observed by the eavesdropper.

Remark 1. By using the Fano’s inequality, the anonymity
provides a lower bound for the probability of error in detection
incurred by the eavesdropper [16].

We wish to find the optimal strategy ψ∗ ∈ ΨT that
maximizes the anonymity. The case of T = 0 is trivial since,
in this case, the output sequence is i.i.d. as well, and therefore

1
N

H(O1O2 · · ·ON |I1I2 · · · IN ) =
1
N

N∑

k=1

H(Ok|Ik)

= H(O1|I1)
= λRλBH(O1|I1 = RB).

Therefore, to maximize the anonymity, the mixer must send a
random permutation of the received packets, in the case of both
read and blue arrival, with equal probability to get H(O1|I1 =
RB) = 1. Correspondingly, the maximum anonymity is given
by

Aψ∗ =
λRλB

λR + λB
.

In the rest of this section, we consider the more interesting
case of T = 1, where each packet has to be sent out in the
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current slot or in the next slot. By the chain rule [17], the
conditional entropy of the output sequence can be written as

H(O1 · · ·ON |I1 · · · IN ) = H(O1|I1 · · · IN ) +
H(O2|I1 · · · IN , O1) + · · ·+
H(ON |I1 · · · IN , O1 · · ·ON−1).

For the latency constraint T = 1, the right hand side of the
equality can be simplified as

H(O1|I1)+H(O2|I1, I2, O1)+· · ·+H(ON |IN−1, IN , ON−1).

But

H(Ok|Ik, Ik−1, Ok−1) = H(Ok|Ik, Ik−1, Ok−1, Qk−1),

where Qk−1 := Ik−1\Ok−1. Note that Qk−1 denotes what
has been left in the queue for transmission in the next slot.
Noting that Ok is conditionally independent of Ik−1 and Ok−1,
given both Ik and Qk−1, the conditional entropy of the output
sequence can be written as

H(O1 · · ·ON |I1 · · · IN ) =
N∑

k=1

H(Ok|Ik, Qk−1),

where we defined the initial condition as Q0 = ∅. Therefore,
maximizing the average entropy of the output sequence is
equivalent to

max lim
N→∞

1
N

N∑

k=1

Eqk−1 [H(Ok|Ik, qk−1)],

where qk−1 ∈ {∅, R,B,RB} denotes a realization of the
random variable Qk−1. This can be viewed as an average
reward maximization problem where, at each slot k, the state
of the system Xk is the queue at the end of the previous slot,
i.e., Qk−1, and the reward of action uk in state xk(= qk−1)
is c(xk, uk) = H(Ok|Ik, qk−1). Roughly speaking, the action
uk is to randomly select some packets from Ik and qk−1, and
send the permutation of the selected packets to the output. Let
w denote the maximum value of the above average entropy
maximization problem, then, by definition,

Aψ∗ =
w

λR + λB

and the optimal mixing strategy ψ∗ is the one that chooses
the corresponding optimal policy for the average entropy
maximization problem. In order to solve the problem, next
we identify the possible actions for different states which will
allow us to define the reward function in more detail and
provide an explicit solution.

A. Set of possible actions and corresponding rewards for
different states

There is a set of possible actions for each state depending
on different arrival types. In the following, we identify the set
of actions and their corresponding rewards for each case.

1) Qk−1 = ∅
(i) Ik = ∅: In this case, obviously, there will be no

transmission at the output link and the queue will

remain empty as well, i.e., Ok = ∅ and Qk = ∅. The
corresponding entropy is H(Ok|Ik = ∅, Qk−1 =
∅) = 0.

(ii) Ik = R: Two options are possible; the mixer can
queue the arrived packet, with probability αk, or
send the packet in the current slot, with probability
1−αk. No matter what the mixer does, the entropy
in this slot H(Ok|Ik = R, Qk−1 = ∅) = 0.
Correspondingly, the queue is updated as Qk = R,
with probability of αk, or Qk = ∅, with probability
of 1− αk.

(iii) Ik = B: This case is similar to the previous case
except that we use βk instead of αk. Therefore,
Qk = B, with probability βk, or Qk = ∅, with prob-
ability 1− βk, and H(Ok|Ik = B, Qk−1 = ∅) = 0.

(iv) Ik = RB: The mixer has four options; it can queue
both packets (with probability 1−sk), send both out
(with probability sk(1−yk)), keep only R and send
B out (with probability skyk(1−pk)), or keep only
B and send R out (with probability skykpk). Note
that the parameters sk, yk, and pk have been used
to characterize the probabilities. Intuitively, sk is
the probability that a transmission at the output link
happens at all, yk is the probability of sending only
one packet out given a transmission must happen,
and pk is the probability of sending R out given
that only one packet is transmitted at the output.
Accordingly,

H(Ok|Ik = RB, Qk−1 = ∅) = sk (ykH(pk) + 1− yk) ,

where H is the binary entropy function given by

H(p) = −p log(p)− (1− p) log(1− p)

for 0 < p < 1.
2) Qk−1 = R

(i) Ik = ∅: The mixer has to send the content of
the queue to the output, therefore Ok = R, and
obviously, H(Ok|Ik = ∅, Qk−1 = R) = 0 and
Qk = ∅.

(ii) Ik = R: The mixer can queue the recent R, with
probability γk, and send Qk−1 to the output, or can
send both Qk−1 and the recent arrival to the output,
with probability 1− γk. Therefore, Qk = R (Ok =
R) with probability γk, or Qk = ∅ (Ok = RR) with
probability 1− γk. The corresponding entropy will
be zero, i.e., H(Ok|Ik = R, Qk−1 = R) = 0.

(iii) Ik = B: Again mixer has two options; it can
send a random permutation of R and B to the
output, i.e., Qk = ∅, with probability ak, or it
can queue the B and send only the R out, i.e.,
Qk = B, with probability 1 − ak. The entropy is
H(Ok|Ik = B,Qk−1 = R) = ak.

(iv) Ik = RB: The mixer has three options; it can queue
both arrivals, i.e., Qk = RB, with probability 1−tk,
keep only the red arrival in the queue, i.e., Qk = R,
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with probability tk(1 − dk), or keep only the blue
arrival in the queue, i.e., Qk = B, with probability
tkdk. Correspondingly,

P (Ok = ok) =





tkdk ; ok = RR
tk(1− dk)/2 ; ok = RB
tk(1− dk)/2 ; ok = BR.

and

H(Ok|Ik = RB, Qk−1 = R) = tk (H(dk) + 1− dk) .

3) Qk−1 = B
Since this case is similar to the previous case, the details
are omitted for brevity.
(i) Ik = ∅: Obviously, H(Ok|Ik = ∅, Qk−1 = B) = 0,

and Qk = ∅.
(ii) Ik = B: H(Ok|Ik = B, Qk−1 = B) = 0. Options

are Qk = B, with probability δk, or Qk = ∅, with
probability 1− δk.

(iii) Ik = R: H(Ok|Ik = R, Qk−1 = B) = bk. Options
are Qk = R, with probability 1 − bk, or Qk = ∅,
with probability bk.

(iv) Ik = RB: The mixer can keep both arrivals in the
queue, i.e., Qk = RB, with probability 1−zk, keep
only the red arrival in the queue, i.e., Qk = R, with
probability zkrk, or keep only the blue arrival in the
queue, i.e., Qk = B, with probability zk(1 − rk).
The entropy is

H(Ok|Ik = RB, Qk−1 = B) = zk (H(rk) + 1− rk) .

4) Qk−1 = RB
The mixer has to send the contents of the queue to the
output, i.e., Ok = RB or BR with equal probabilities,
and queue all the recent arrivals, i.e., Qk = Ik. The
entropy is simply H(Ok|Ik, Qk−1 = RB) = 1.

Recall that the reward function is

C(xk, uk) = H(Ok|Ik, qk−1) = EIk
[H(Ok|ik, qk−1)]

where ik denotes a realization of Ik. Therefore, the reward
function, and queue updates, for each state are the following.

1) Qk−1 = ∅:
The reward function is given by

C(∅, uk) = λRλBsk (ykH(pk) + 1− yk)

and the queue is updated as

P (Qk = q|Qk−1 = ∅, uk) =



λR(1− λB)αk + λRλBskyk(1− pk) ; q = R
λB(1− λR)βk + λRλBskykpk ; q = B
λRλB(1− sk) ; q = RB
−−− ; q = ∅

where we used the notation “−−−” for the probability
of having an empty queue, since we will not need the
explicit expression of this probability, although, it can
be, obviously, derived from the other three probabilities.

2) Qk−1 = R:

The reward function is given by

C(R, uk) = λB(1−λR)ak +λRλBtk (H(dk) + 1− dk)

and the queue is updated as

P (Qk = q|Qk−1 = R, uk) =



λR(1− λB)γk + λRλBtk(1− dk) ; q = R
λB(1− λR)(1− ak) + λRλBtkdk ; q = B
λRλB(1− tk) ; q = RB
−−− ; q = ∅

3) Qk−1 = B:
The reward function is given by

C(B, uk) = λR(1−λB)bk +λRλBzk (H(rk) + 1− rk)

and the queue is updated as

P (Qk = q|Qk−1 = B, uk) =



λR(1− λB)(1− bk) + λRλBrkzk ; q = R
λB(1− λR)δk + λRλBzk(1− rk) ; q = B
λRλB(1− zk) ; q = RB
−−− ; q = ∅

4) Qk−1 = RB:
The reward function is given by

C(RB, uk) = 1

and the queue is updated as

P (Qk = q|Qk−1 = RB, uk) =



λR(1− λB) ; q = R
λB(1− λR) ; q = B
λRλB ; q = RB
−−− ; q = ∅

B. Optimal stationary mixing strategy

The following Theorem states one of our main results.

Theorem 1. For the double input-single output mixer, the
optimal mixing strategy is the following. At each time k, given
Qk−1 and Ik, if

1) Qk−1 = ∅
• Ik = ∅, R, B: Qk = Ik, Ok = ∅.
• Ik = RB: send R out with probability p∗ or B with

probability 1− p∗, Qk = Ik\Ok.
2) Qk−1 = R

• Ik = ∅, R: Qk = Ik, Ok = Qk−1.
• Ik = B: transmit a random permutation of R and

B, Qk = ∅.
• Ik = RB: transmit RR with probability d∗, or

transmit a random permutation of R and B with
probability 1− d∗, Qk = Ik\Ok.

3) Qk−1 = B

• Ik = ∅, B: Qk = Ik, Ok = Qk−1.
• Ik = R: transmit a random permutation of R and

B, Qk = ∅.
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• Ik = RB: transmit BB with probability r∗, or
transmit a random permutation of R and B with
probability 1− r∗, Qk = Ik\Ok,

where probabilities p∗, d∗, and r∗ depend on arrival rates λR

and λB .

In the special case λR = λB , p∗ = 1
2 , d∗ = 1

3 , and r∗ = 1
3 .

Proof of Theorem 1: Having formally defined the reward
function and the dynamics of the system in subsection II-A,
we use the following well-known result to solve the average
reward maximization problem [19].

Lemma 1. Suppose there exists a constant w and a bounded
function φ, unique up to an additive constant, satisfying the
following optimality equation

w + φ(x) = max
u
{C(x, u) + E[φ(x1)|x0 = x, u0 = u}

Then w is the maximal average-reward and the optimal
stationary policy is the one that chooses the optimizing u.

Since φ is unique up to an additive constant, without loss of
generality, assume φ(∅) = 0. Then, for x = ∅, the optimality
equation can be written as

w = max
s,p,y,α,β

{λRλBs (yH(p) + 1− y)

+[λR(1− λB)α + λRλBsy(1− p)]φ(R)
+[λB(1− λR)β + λRλBsyp]φ(B)
+ [λRλB(1− s)]φ(RB)} .

Obviously, α = 1 and β = 1 maximize the right hand side if
φ(R) and φ(B) are nonnegative. We will later see that φ(R)
and φ(B) are indeed nonnegative. Therefore, the right hand
side of the optimality equation can be written as

λRλBs [y (H(p)− 1 + (1− p)φ(R) + pφ(B)) + 1− φ(RB)]
+λR(1− λB)φ(R) + λB(1− λR)φ(B) + λRλBφ(RB).

First, consider the term H(p)−1+(1−p)φ(R)+pφ(B). This
term is maximized by choosing

p∗ =
1

1 + 2φ(R)−φ(B)
. (1)

We will later show that

H(p∗)− 1 + (1− p∗)φ(R) + p∗φ(B) ≥ 0, (2)

and therefore y∗ = 1. Furthermore, for y∗ = 1, we will see
that the term inside the brackets is always nonnegative, i.e.,

H(p∗) + (1− p∗)φ(R) + p∗φ(B)− φ(RB) ≥ 0, (3)

and therefore s∗ = 1. Finally, w is given by

w = λRλBH(p∗) + λR(1− λBp∗)φ(R)
+ λB(1− λR(1− p∗))φ(B). (4)

Next, consider the optimality equation for x = R. It can be
written as

w + φ(R) = max
γ,d,t,a

{λB(1− λR)a + λRλBt (H(d) + 1− d)

+[λR(1− λB)γ + λRλB(1− d)]φ(R)
+[λB(1− λR)(1− a) + λRλBtd]φ(B)
+λRλR(1− t)φ(RB)}.

Similar to the argument for x = ∅, γ∗ = 1, if φ(R) > 0,
and a∗ = 1 if φ(B) < 1. Furthermore, taking the derivative
respect to d, setting it to zero, and solving it for d∗ yields

d∗ =
1

1 + 21+φ(R)−φ(B)
. (5)

Finally, t∗ = 1 if

H(d∗)+1−d∗+(1−d∗)φ(R)+d∗φ(B)−φ(RB) ≥ 0, (6)

and the optimality condition is simplified to

w + φ(R) = λB(1− λR) + λRλB (H(d∗) + 1− d∗)
+[λR(1− λB) + λRλB(1− d∗)]φ(R)
+λRλBd∗φ(B) (7)

Next, consider the optimality equation for x = B

w + φ(B) = max
δ,r,z,b

{λR(1− λB)b + λRλBz (H(r) + 1− r)

+[λB(1− λR)δ + λRλBz(1− r)]φ(B)
+[λR(1− λB)(1− b) + λRλBzr]φ(R)
+λRλR(1− z)φ(RB)}

In parallel with the argument for x = R, δ∗ = 1 if φ(B) ≥ 0,
and b∗ = 1 if φ(R) ≤ 1. Moreover, z∗ = 1 if

H(r∗) + 1− r∗ + (1− r∗)φ(B) + r∗φ(R)−φ(RB) ≥ 0 (8)

where
r∗ =

1
1 + 21+φ(B)−φ(R)

. (9)

The optimality condition is simplified to

w + φ(B) = λR(1− λB) + λRλB (H(r∗) + 1− r∗)
+[λB(1− λR) + λRλB(1− r∗)]φ(B)
+λRλBr∗φ(R) (10)

Finally, the optimality equation for x = RB is given by

w + φ(RB) = 1 + λR(1− λB)φ(R)
+λB(1− λR)φ(B) + λRλBφ(RB)(11)

Therefore, we need to solve equations (4), (7), and (10)
to find w, φ(R), and φ(B). Then, (11) can be used to
find φ(RB). Eventually, what remains to be shown is that
0 ≤ φ(R), φ(B) ≤ 1, and, in addition, φ(R), φ(B), and
φ(RB) satisfy inequalities (2), (3), (6), and (8).

First, consider the special case of λR = λB = λ. By
symmetry, φ(R) = φ(B) which yields p∗ = 1/2 and
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d∗ = r∗ = 1/3. Then, by solving equations (4) and (7), we
have

φ(R) = φ(B) =
λ2(log 3− 2) + λ

−λ2 + λ + 1

and

w =
λ2

−λ2 + λ + 1
[−λ2(log 3− 1) + 2(log 3− 2)λ + 3

]
.

Then, the anonymity is Aφ∗ = w/2λ, and it is easy to check
that the solutions satisfy all the inequalities.

Next, consider the general case with, probably, unequal
arrival rates. We prove that the solutions indeed exist and they
satisfy the required conditions. Using (4) to replace w in (7)
and (10) yields

φ(R) = λB [1− φ(B)(1− λR)] + λRλBg(ξ) (12)

φ(B) = λR[1− φ(R)(1− λB)] + λRλBf(ξ) (13)

where

g(ξ) = (d∗ − p∗)(−ξ) +H(d∗)−H(p∗)− d∗,

f(ξ) = (r∗ + p∗)ξ +H(r∗)−H(p∗)− r∗ − ξ,

and ξ = φ(R)− φ(B).
Therefore, the optimal probabilities can be expressed as

functions of ξ by

p∗ =
1

1 + 2ξ
, d∗ =

1
1 + 21+ξ

, r∗ =
1

1 + 21−ξ
.

Lemma 2. The function g(ξ) is an increasing function of ξ
and f(ξ) is a decreasing function of ξ (see [18] for the proof).

For any pair (φ(R), φ(B)) chosen from [0, 1]× [0, 1], −1 ≤
ξ ≤ 1, and therefore, by Lemma 2, functions f and g can be
bounded from below and above by

g(−1) ≤ g(ξ) ≤ g(1),

and
f(1) ≤ f(ξ) ≤ f(−1).

but it is easy to check that

g(1) = f(−1) = log(5/3)− 1, g(−1) = f(1) = 1− log 3,

and therefore,
−1 < f(ξ), g(ξ) < 0.

Consequently, the right-hand sides of (12) and (13) form a
continuous mapping from [0, 1] × [0, 1] to [0, 1] × [0, 1], and
therefore, by the Brouwer fixed point theorem ([20], p. 72),
the system of nonlinear equations, (12), (13), has a solution
(φ(R), φ(B)) ∈ [0, 1]× [0, 1].

Next, we show that the solutions indeed satisfy the inequal-
ities. First, we prove that (2) holds. Define

ψ1(ξ) = H(p∗) + (1− p∗)φ(R) + p∗φ(B)
= H(p∗)− p∗ξ + φ(R).

First, consider the case that −1 ≤ ξ ≤ 0, then

d

dξ
(H(p∗)− p∗ξ) = p∗′ log

1− p∗

p∗
− p∗ − p∗′ξ

= −p∗ ≤ 0.

Hence,
ψ1(ξ) ≥ ψ1(0) = 1 + φ(R) ≥ 1.

For the case that 0 ≤ ξ ≤ 1, rewrite ψ1(ξ) as the following

ψ1(ξ) = H(p∗) + (1− p∗)ξ + φ(B).

Then,
d

dξ
(H(p∗) + (1− p∗)ξ) = 1− p∗ ≥ 0,

and hence,

ψ1(ξ) ≥ ψ1(0) = 1 + φ(B) ≥ 1.

Therefore, for −1 ≤ ξ ≤ 1, ψ1(ξ) ≥ 1, and (2) holds.
Note that from (11), we have

φ(RB) =
1− λRλBψ1(ξ)

1− λRλB
(14)

and since (2) holds, we have

φ(RB) ≤ 1,

and consequently (3) will be satisfied as well.
To show (6), note that φ(R)+1−φ(RB) ≥ 0, and therefore,

it suffices to prove that

ψ2(ξ) = H(d∗)− d∗ − d∗φ(R) + d∗φ(B)
= H(d∗)− d∗ξ − d∗

is nonnegative. But ψ2(ξ) is a decreasing function since

d

dξ
ψ2 = d∗′ log

1− d

d
− d∗′ξ − d∗ − d∗′

= d∗′(1 + ξ)− d∗′ξ − d∗ − d∗′

= −d∗ ≤ 0

So ψ2(ξ) ≥ ψ2(1) = H(1/5) − 2/5 = log 5 − 2 ≥ 0,
and consequently (6) follows. (8) is also proved by a similar
argument. This concludes the proof of Theorem 1.

C. Numerical results

Equations (4), (7), and (10) form a system of nonlinear
equations which can be solved numerically, for different values
of λR and λB , by using our algorithm in [18]. Figure 3 shows
the maximum anonymity, found by running the algorithm, for
different arrival rates. The probabilities p∗, d∗, and r∗ of the
optimal mixing strategy have been evaluated in figure 4 for
different arrival rates λR and λB .

Remark 2. The stationary policy does not exist for λR =
λB = 1 since as λR → 1 and λB → 1, φ(RB) → −∞
(see (14)). This makes sense since, in this case, if we start
with initial condition Q0 = ∅ and use the strategy specified in
Theorem 1, we get an anonymity of Aψ∗ = log (3)/2; whereas
if the initial condition is Q0 = RB, the only possible strategy
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Fig. 3. Anonymity for different values of λR and λB .
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Fig. 4. Probabilities p∗, d∗, and r∗ for different arrival rates λR and λB .

will be to transmit the contents of the queue, and queue the
arrived RB in each time slot. This yields an anonymity of
1/2 bit/packet. Therefore, the optimal strategy depends on the
initial condition for λR = λB = 1.

Remark 3. Note that the mixing strategy does not change the
sequence numbers of packets from the same flow, and therefore
it is compatible with network protocols such as TCP.

III. DOUBLE INPUT-DOUBLE OUTPUT MIXER

Figure 2 shows the double input-double output mixer. The
capacity of each link is 1 packet/time slot. Compared to
the mixer with one output link, i.e., Figure 1, the flows of
outgoing packets are separate. Note that, in this case, the
eavesdropper does not need to detect the sender for each
outgoing packet; instead, it aims to find the corresponding
source of each flow, by observing a sequence of outgoing
packets with enough length. Without loss of generality, assume
that λR > λB (the singular case of λR = λB will be
discussed later). Then, by calculating the long-run average
rates of outgoing flows, the eavesdropper can identify the
corresponding source-destination pairs. Therefore, it is not

possible to get any anonymity without dropping some packets
from the red flow. Hence, the maximum achievable throughput
for each flow cannot be more than min{λR, λB}(= λB), and,
at least, the packets of the flow with higher rate, which is
the red flow here, must be dropped at an average rate of
λR − λB . Note that, in contrast with the double input-single
output mixer, a strict delay T for each packet does not make
sense, since it might happen that there is a blue arrival but
there are no red arrivals for a time duration of T , in which
case transmitting the blue packet will immediately reveals
the corresponding destination of the blue source. Therefore,
instead, we consider the average delay as the QoS metric. We
can model the mixer with two queues for red and blue arrivals.
We only consider strategies that achieve maximum throughput
with perfect anonymity. Perfect anonymity means that, by
observing the output sequence, the eavesdropper cannot obtain
any information and each outgoing flow is equally likely to
belong to one of sources. Therefore, red and blue packets
must be transmitted simultaneously on output links, i.e., red
packets are only transmitted when there is a blue packet in
the second queue, and similarly, the blue packets are served
when there is a red packet in the first queue. Therefore, the
question of interest is: how to drop red packets at an average
rate of λR − λB to minimize the average delay?

Since the average delay is proportional to the average
queue length by Little’s law, we can equivalently consider the
problem of minimizing the mean queue length. This problem
can be posed as an infinite-state Markov decision problem with
unbounded cost. It follows from checking standard conditions,
e.g., [21], [22], that a stationary optimal policy exists for our
problem, however, the average-cost optimality equation may
not hold. Therefore, we follow a different approach.

We note that when a red packet and a blue packet are
both available, to minimize queue length, it is best to transmit
them immediately. Therefore, when one of the queues (blue
or red) hits zero, from that point onwards, only one of the
queues can be non-empty. Thus in steady-state, we can assume
that one queue can be non-empty (see [13] for more details).
As a result, we have the Markov decision process described
next. Figure 5 shows the state transition diagram, where (i, j)
represents the state of the system where there are i packets in
the red queue and j packets in the blue queue. The transition
probabilities are given by

P [(0, y)|(0, y)] = λRλB + (1− λR)(1− λB)
P [(0, y − 1)|(0, y)] = λR(1− λB)
P [(0, y + 1)|(0, y)] = λB(1− λR),

and

P [(x, 0)|(x, 0)] = λRλB + (1− λR)(1− λB)
+λR(1− λB)δx

P [(x− 1, 0)|(x, 0)] = λB(1− λR)
P [(x + 1, 0)|(x, 0)] = λR(1− λB)(1− δx),

where δx denotes probability of dropping the red packet in
state (x, 0), if there is a red arrival but no blue arrival. So our
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problem is to determine δx for each x. We will show that the
optimal policy is a threshold policy, which is defined below.

Definition 2. A threshold policy, with threshold m, is a policy
that has the following properties: δx = 0 for all 0 ≤ x ≤
m−1, and δm = 1, where m is a nonnegative integer number.

The following theorem presents the main result regarding
the optimal strategy.

Theorem 2. For the double input-double output mixer, the
threshold policy is optimal, in the sense that it minimizes the
average delay among all maximum throughput policies with
perfect anonymity. Moreover, the threshold is given by

m∗ =
{ d− 1

log ρe − 1 ; 1
2 < ρ < 1

0 ; 0 ≤ ρ ≤ 1
2 ,

(15)

In other words, no buffer is needed for λR ≥ 2λB

1+λB
, but, as

rates get closer, for λB < λR < 2λB

1+λB
, a buffer of size m∗ for

the red flow is needed. The optimal threshold m∗ is depicted
in Figure 6. Note that the singular case of λR = λB = λ
(ρ = 1) is not stable. By allowing a small drop rate of ελ for
each flow, where 0 < ε ¿ 1, one buffer for each flow can be
considered, and the thresholds and the delay can be expressed
as functions of ε.

Proof of Theorem 2: The steady state distribution for the
Markov chain of Figure 5 is given by

π0,y = π0,0ρ
y, y = 1, 2, · · ·

πx,0 = π0,0ρ
−x

x−1∏

i=0

(1− δi), x = 1, 2, · · ·

where

π0,0 =

(
1

1− ρ
+

∞∑
x=1

ρ−x
x−1∏

i=0

(1− δi)

)−1

,

and

ρ =
λB(1− λR)
λR(1− λB)

.

Recall that, by assumption, λR > λB , and therefore 0 ≤ ρ <
1. The average queue length is

L̄ =
∞∑

y=0

yπ0,y +
∞∑

x=1

xπx,0

= π0,0

[
ρ

(1− ρ)2
+

∞∑
x=1

xρ−x
x−1∏

i=0

(1− δi)

]
.

Note that for any nonnegative integer j, and for fixed values
of δis, i 6= j, L̄ is a linear fractional function of δj . More
formally,

L̄(δj) =
Aj + (1− δj)Bj

A′j + (1− δj)B′
j

,

where

A′j =
1

1− ρ
+

j∑
x=1

ρ−x
x−1∏

i=0

(1− δi),

Aj =
ρ

(1− ρ)2
+

j∑
x=1

xρ−x
x−1∏

i=0

(1− δi),

B′
j =

∏j−1
i=0 (1− δi)

ρj+1


1 +

∞∑
x=1

ρ−x

x+j∏

i=j+1

(1− δi)


 ,

and

Bj =
∏j−1

i=0 (1− δi)
ρj+1


j + 1 +

∞∑
x=1

(j + x + 1)ρ−x

x+j∏

i=j+1

(1− δi)


 .

Therefore, ∂L̄/∂δj is either positive or negative, independent
of δj , and consequently, the optimal δj to minimize L̄ is either
0 or 1, i.e., δ∗j ∈ {0, 1} for all j. But, all of the δjs cannot
be zero, otherwise the system will not be stable. Define m
to be the smallest j such that δ∗j = 1. Then δx = 0 for all
0 ≤ x ≤ m− 1, and δm = 1 which yields a threshold policy
with threshold m. Therefore the threshold policy is the optimal
policy.

Next, we find the optimal threshold m∗. The stationary
distribution of a threshold policy with threshold m is given
by

π0,y = π0,0ρ
y, y = 1, 2, · · ·

πx,0 = π0,0(1/ρ)x, x = 1, 2, · · · ,m
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where π0,0 = (1 − ρ)ρm. Therefore, πm,0 = 1 − ρ, and the
average packet-drop rate, Pdrop, is given by

Pdrop = πm,0λR(1− λB) = λR − λB

which is independent of the threshold m. The average queue
length is given by

L̄(m) =
∞∑

y=1

yπ0,y +
m∑

x=0

xπx,0

=
(
2ρm+1 + m(1− ρ)− ρ

)
/(1− ρ). (16)

Note that L̄(m), as a continuous function of m, is strictly
convex over m ∈ [0,∞) for any fixed 0 ≤ ρ < 1; therefore, it
has a unique minimizer m∗ which is either zero or the solution
of ∂L̄

∂m = 0. Since we seek the smallest integer-valued m∗, the
convexity implies that m∗ is zero if

L̄(0) ≤ L̄(1),

or it’s a positive integer m∗ satisfying

L̄(m∗) < L̄(m∗ − 1),

and
L̄(m∗) ≤ L̄(m∗ + 1).

Then by using (16), it follows that m∗ = 0 if ρ ≤ 1
2 , and for

ρ > 1
2 , it satisfies

2ρm∗
> 1,

and
2ρm∗+1 ≤ 1,

which yields

m∗ = d− 1
log ρ

e − 1.

This concludes the proof.

Remark 4. Instead of dropping the packets, the mixer can
send dummy packets, at an average rate of λR−λB , as follows.
In the optimal threshold strategy, if a red packet arrives when
the red queue is full and there are no blue packets in the blue
queue, a red packet is sent out along with a dummy packet on
the other link, and the received red packet is accepted to the
queue.

IV. CONCLUSIONS

The definition of anonymity and the optimal mixing strategy
for a router in an anonymous network depend on its func-
tionality. In the case of a double input-single output mixer,
an eavesdropper knows the next hop of every packet but the
router attempts to hide the identity of the packet at the output
link so as to make it harder for the eavesdropper to follow the
path of a flow further downstream. On the other hand, when
there are two inputs, two outputs and only two flows, even
revealing the identity of one packet at the output compromises
that portion of both flow’s route. For the first case, the optimal
mixing strategy was found to achieve the maximum anonymity
under a per-packet latency constraint, and for the second case,

the maximum throughput strategy with perfect anonymity that
achieves minimum average delay was found. Our results in this
paper represent a first attempt at theoretically characterizing
optimal mixing strategies in two fundamental cases. Further
research is needed to find optimal mixing strategies under
more general constraints or for the multiple input-multiple
output mixer.
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