
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Adaptive TTL-Based Caching for Content Delivery
Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, Fellow, IEEE and Ramesh Sitaraman

Abstract—Content Delivery Networks (CDNs) cache and serve
a majority of the user-requested content on the Internet.
Designing caching algorithms that automatically adapt to the
heterogeneity, burstiness, and non-stationary nature of real-world
content requests is a major challenge and is the focus of our work.
While there is much work on caching algorithms for stationary
request traffic, the work on non-stationary request traffic is
very limited. Consequently, most prior models are inaccurate for
non-stationary production CDN traffic. We propose two TTL-
based caching algorithms that provide provable performance
guarantees for request traffic that is bursty and non-stationary.
The first algorithm called d-TTL dynamically adapts a TTL
parameter using stochastic approximation. Given a feasible target
hit rate, we show that d-TTL converges to its target value for a
general class of bursty traffic that allows Markov dependence
over time and non-stationary arrivals. The second algorithm
called f-TTL uses two caches, each with its own TTL. The first-
level cache adaptively filters out non-stationary traffic, while the
second-level cache stores frequently-accessed stationary traffic.
Given feasible targets for both the hit rate and the expected cache
size, f-TTL asymptotically achieves both targets. We evaluate
both d-TTL and f-TTL using an extensive trace containing more
than 500 million requests from a production CDN server. We
show that both d-TTL and f-TTL converge to their hit rate
targets with an error of about 1.3%. But, f-TTL requires a
significantly smaller cache size than d-TTL to achieve the same
hit rate, since it effectively filters out non-stationary content.

Index Terms—TTL caches, Content Delivery Network, Adap-
tive caching, Actor-Critic Algorithm

I. INTRODUCTION

By caching and delivering content to millions of end users
around the world, content delivery networks (CDNs) [2] are
an integral part of the Internet infrastructure. A large CDN
such as Akamai [3] serves several trillion user requests a day
from 170,000+ servers located in 1500+ networks in 100+
countries around the world. The majority of today’s Internet
traffic is delivered by CDNs. CDNs are expected to deliver
nearly two-thirds of the Internet traffic by 2020 [4].

The main function of a CDN server is to cache and serve
content requested by users. The effectiveness of a caching
algorithm is measured by its achieved hit rate in relation to its
cache size. There are two primary ways of measuring the hit
rate. The object hit rate (OHR) is the fraction of the requested
objects that are served from cache and the byte hit rate (BHR)
is the fraction of the requested content bytes that are served

A short version of this work has appeared as a two-page extended
abstract [1] in the Proceedings of ACM Sigmetrics, Urbana, IL, June 2017.

S. Basu and S. Shakkottai are with the Department of Electrical and
Computer Engineering, The University of Texas at Austin, TX 78712. (E-
mail: basusoumya@utexas.edu and shakkott@austin.utexas.edu).

A. Sundarrajan and R. Sitaraman are with the College of Information and
Computer Sciences, University of Massachusetts Amherst, MA 01003. (E-
mail: asundar@cs.umass.edu and ramesh@cs.umass.edu)

J. Ghaderi is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027. (E-mail: jghaderi@ee.columbia.edu)

from cache. We devise algorithms capable of operating with
both notions of hit rate in our work.

The major technical challenge in designing caching algo-
rithms for a modern CDN is adapting to the sheer hetero-
geneity of the content that is accessed by users. The accessed
content falls into multiple traffic classes that include web
pages, videos, software downloads, interactive applications,
and social networks. The classes differ widely in terms of
the object size distributions and content access patterns. The
popularity of the content also varies by several orders of
magnitude with some objects accessed millions of times (e.g,
an Apple iOS download), and other objects accessed once or
twice (e.g, a photo in a Facebook gallery). In fact, as shown
in Figure 2, 70% of the objects served by a CDN server are
only requested once over a period of multiple days! Further,
the requests served by a CDN server can change rapidly over
time as different traffic mixes are routed to the server by the
CDN’s load balancer in response to Internet events.

Request statistics clearly play a key role in determining the
hit rate of a CDN server. However, when request patterns vary
rapidly across servers and time, a one-size-fits-all approach
provides inferior hit rate performance in a production CDN
setting. Further, manually tuning the caching algorithms for
each individual server to account for the varying request
statistics is prohibitively expensive. Thus, our goal is to devise
self-tuning caching algorithms that can automatically learn and
adapt to the request traffic and provably achieve any feasible
hit rate and cache size, even when the request traffic is bursty
and non-stationary.

Our work fulfills a long-standing deficiency in the current
state-of-art in the modeling and analysis of caching algorithms.
Even though real-world CDN traffic is known to be het-
erogeneous, with bursty, non-stationary and transient request
statistics, there are no known caching algorithms that provide
theoretical performance guarantees for such traffic.1 In fact,
much of the known formal models and analyses assume that
the traffic follows the Independent Reference Model (IRM).2

However, when it comes to production traces such models
lose their relevance. The following example highlights the
stark inaccuracy of one popular model corroborating similar
observations in [5]–[7], among others.

Deficiency of current models and analyses. Time-to-live
(TTL)-based caching algorithms [8]–[13] use a TTL parameter
to determine how long an object may remain in cache.
TTL caches have emerged as useful mathematical tools to
analyze the performance of traditional capacity-based caching
algorithms such as LRU, FIFO, etc. The cornerstone of such

1We note that LRU cache has been previously studied under non-stationary
models, e.g. box model [5], shot noise model [6].

2The inter arrival times are i.i.d. and the object request on each arrival are
chosen independently from the same distribution.

IEEE/ACM TRANSACTIONS ON NETWORKING 2

analyses is the work by Fagin [14] that relates the cache hit rate
with the expected cache size and characteristic time for IRM
traffic, which is also popularly known as Che’s approximation
after the follow-up work [15]. Under this approximation, a
LRU cache has the same expected size and hit rate as a TTL-
cache with the TTL value equal to its characteristic time. Che’s
approximation is known to be accurate in cache simulations
that use synthetic IRM traffic and is commonly used in the
design of caching algorithms for that reason [12], [16]–[19].

However, we show that Che’s approximation produces erro-
neous results for actual production CDN traffic that is neither
stationary nor IRM across the requests.3 We used an extensive
9-day request trace from a production server in Akamai’s
CDN and derived TTL values for multiple hit rate targets
using Che’s approximation. We then simulated a cache with
those TTL values on the production traces to derive the actual
hit rate that was achieved. For a target hit rate of 60%,
we observed that a fixed-TTL algorithm that uses the TTL
computed from Che’s approximation achieved a hit rate of
68.23% whereas the dynamic TTL algorithms proposed in this
work achieve a hit rate of 59.36% (see Section VI-E for a
complete discussion). This difference between the target hit
rate and that achieved by fixed-TTL highlights the inaccuracy
of state-of-the-art theoretical modeling on production traffic.

A. Main Contributions

We propose two TTL-based algorithms: d-TTL (for “dy-
namic TTL”) and f-TTL (for “filtering TTL”) that provably
achieve a target cache hit rate and cache size. Rather than
statically deriving the required TTL values by inferring the
request statistics, our algorithms dynamically adapt the TTLs
to the request patterns. To more accurately model real traffic,
we allow the request traffic to be non-independent and have
non-stationary components. Further, we allow content to be
classified into types, where each type has a target hit rate (OHR
or BHR) and an average target cache size. In practice, a type
can consist of all objects of a specific kind from a specific
provider, e.g. CNN webpages, Facebook images, CNN video
clips, etc. Our main contributions are as follows:
1) d-TTL: A one-level TTL algorithm. Algorithm d-TTL
maintains a single TTL value for each type, and dynamically
adapts this value upon each arrival (new request) of an object
of this type. Given a hit rate that is “feasible” (i.e. there exists
a static genie-settable TTL parameter that can achieve this hit
rate), we show that d-TTL almost surely converges to this
target hit rate. Our result holds for a general class of bursty
traffic (allowing Markov dependence over time), and even in
the presence of non-stationary arrivals. To the best of our
knowledge, this is the first adaptive TTL algorithm that can
provably achieve a target hit rate with such stochastic traffic.

However, our empirical results show that non-stationary and
unpopular objects can contribute significantly to the cache size,
while they contribute very little to the cache hit rate (heuristics

3Under the assumption that traffic is IRM with memoryless arrival we
compute the TTL/characteristic time that corresponds to the target hit rate.
Other Che’s approximation schemes, such as [6], can potentially increase the
accuracy at a higher computation cost, thus leading to difficulties with large-
scale deployments.

that use Bloom filters to eliminate such traffic [20] support this
observation).
2) f-TTL: A two-level TTL algorithm. The need to achieve
both a target hit rate and a target cache size motivates the
f-TTL algorithm. f-TTL comprises a pair of caches: a lower-
level adaptive TTL cache that filters rare objects based on
arrival history, and a higher-level adaptive TTL cache that
stores filtered objects. We design an adaptation mechanism
for a pair of TTL values (higher-level and lower-level) per
type, and show that we can asymptotically achieve the desired
hit rate (almost surely), under similar traffic conditions as with
d-TTL. If the stationary part of the traffic is Poisson, we have
the following stronger property. Given any feasible (hit rate,
expected cache size) pair,4 the f-TTL algorithm asymptotically
achieves a corresponding pair that dominates the given target.5

Importantly, with non-stationary traffic, the two-level adaptive
TTL strictly outperforms the one-level TTL cache with respect
to the expected cache size.

Our proofs use a two-level stochastic approximation
technique (along with a latent observer idea inspired from
actor-critic algorithms [21]), and provide the first theoretical
justification for the deployment of two-level caches such as
ARC [22] in production systems with non-stationary traffic.
3) Implementation and empirical evaluation: We implement
both d-TTL and f-TTL and evaluate them using an extensive
9-day trace consisting of more than 500 million requests
from a production Akamai CDN server. We observe that both
d-TTL and f-TTL adapt well to the bursty and non-stationary
nature of production CDN traffic. For a range of target object
hit rates, both d-TTL and f-TTL converge to those targets
with an error of about 1.3%. For a range of target byte hit
rates, both d-TTL and f-TTL converge to those targets with
an error that ranges from 0.3% to 2.3%. While the hit rate
performance of both d-TTL and f-TTL are similar, f-TTL
shows a distinct advantage in cache size due to its ability to
filter out non-stationary traffic. In particular, f-TTL requires a
cache that is 49% (resp., 39%) smaller than d-TTL to achieve
the same object (resp., byte) hit rate. This renders f-TTL
useful to CDN settings where large amounts of non-stationary
traffic can be filtered out to conserve cache space while also
achieving target hit rates.

Finally, from a practitioner’s perspective, this work has the
potential to enable new CDN pricing models. CDNs typically
do not charge content providers on the basis of a guaranteed
hit rate performance for their content, nor on the basis of the
cache size that they use. Such pricing models have desirable
properties, but do not commonly exist, in part, because current
caching algorithms cannot provide such guarantees with low
overhead. Our caching algorithms are the first to provide a
theoretical guarantee on hit rate for each content provider,
while controlling the cache space that they can use. Thus, our
work removes a technical impediment to hit rate and cache
space based CDN pricing.

4Feasibility here is with respect to any static two-level TTL algorithm that
achieves a (target hit rate, target expected cache size) pair.

5A pair dominates another pair if hit rate is at least equal to the latter and
expected size is at most equal to the latter.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

B. Notations

Some of the basic notations used in this paper are as follows.
Bold font characters indicate vector variables and normal
font characters indicate scalar variables. We note (x)+ =
max(0, x), N = {1, 2, . . . }, and [n] = {1, 2, . . . , n}. The
equality among two vectors means component-wise equality
holds. Similarly, inequality among two vectors (denoted by 4)
means the inequality holds for each component separately. We
use the term ‘w.p.’ for ‘with probability’, ‘w.h.p.’ for ‘with
high probability’, ‘a.s.’ for ‘almost surely’, and ‘a.a.s.’ for
‘asymptotically almost surely’.

II. SYSTEM MODEL AND DEFINITIONS

Every CDN server implements a cache that stores objects
requested by users. When a user’s request arrives at a CDN
server, the requested object is served from its cache, if that
object is present. Otherwise, the CDN server fetches the object
from a remote origin server that has the original content and
then serves it to the user. In addition, the CDN server may
place the newly-fetched object in its cache. In general, a
caching algorithm decides which object to place in cache, how
long objects need to be stored in cache, and which objects
should be evicted from cache.

When the requested object is found in cache, it is a cache
hit, otherwise it is a cache miss. A cache hit is desirable since
the object can be retrieved locally from the proximal server
and returned to the user with low latency. Additionally, it is
often beneficial to maintain state (metadata such as the URL
of the object or an object ID) about a recently evicted object
for some period of time. Then, we experience a cache virtual
hit if the requested object is not in cache but its metadata is
in cache. Note that the metadata of an object takes much less
cache space than the object itself.

Next, we formally describe the request arrival model, and
the performance metrics: object (byte) hit rate and expected
cache size, and formally state the objective of the paper.

A. Content Request Model

There are different types of content hosted on modern
CDNs. A content type may represent a specific genre of
content (videos, web pages, etc.) from a specific content
provider (CNN, Facebook, etc.). A single server could be
shared among dozens of content types. A salient feature of
content hosted on CDNs is that the objects of one type can
be very different from the objects of another type, in terms
of their popularity characteristics, request patterns and object
size distributions. Most content types exhibit a long tail of
popularity where there is a smaller set of recurring objects that
demonstrate a stationary behavior in their popularity and are
requested frequently by users, and a larger set of rare objects
that are unpopular and show a high degree of non-stationarity.
Examples of rare objects include those that are requested
infrequently or even just once, a.k.a. one-hit wonders [23].
Another example is an object that is rare in a temporal sense
and is frequently accessed within a small time window, but
is seldom accessed again. Such a bursty request pattern can

occur during flash crowds [24]. In this section, we present a
content request model that captures these characteristics.
1) Content Description:

We consider T different types of content where each type
consists of both recurring objects and rare objects. The set of
recurring objects of type t is denoted by Kt with |Kt| = Kt

different objects, and the set of rare objects of type t is denoted
by Rt. The entire universe of objects is represented as U ≡
∪t∈T (Kt ∪Rt), and the set of recurring objects is represented
by a finite set K ≡ ∪t∈TKt. Let K ≡ |K| =

∑
t∈T Kt. In

our model, the number of types T is finite. For each type
t ∈ [T] there are finitely many recurring objects, i.e. Kt is
finite. However, the rare objects are allowed to be (potentially)
countably infinite in number.

Each object c ∈ U is represented by a tuple, c =
(ci, ctyp, cm), and its meta-data is represented as c̃ = (ci, ctyp).
Here, ci is the unique label for the object (e.g., its URL), ctyp
is the type that the object belongs to, and cm is the actual body
of the object c. If c ∈ K, then w.l.o.g., we can index ci = k
for some k ∈ {1, . . .K}. The object meta-data, c̃ = (ci, ctyp),
is assumed to have negligible size, and the size of object c is
denoted as wc = |cm| (in bytes). Note that the object meta-
data can be fully extracted from the incoming request. In our
model, for all objects c ∈ U , their sizes are uniformly bounded
as wc ≤ wmax. Moreover, we assume, for each type t ∈ [T],
all rare objects of type t have equal size w̄t.6

2) General Content Request Model:
We denote the object requested on l-th arrival as

c(l) ≡ (label : ci(l), type : ctyp(l), size : w(l)).

Further, let A(l) be the arrival time of the l-th request, and
X(l) be the l-th inter-arrival time, i.e., X(l) = A(l)−A(l−1).
We define a random variable Z(l) which specifies the label of
the l-th request if the request is for a recurrent object, and
specifies its type if the request is for a rare object (i.e. Z(l) =
ci(l) if c(l) ∈ K, and Z(l) = ctyp(l) otherwise). We also
require the following two definitions:

Xpre(l) = min{A(l)−A(l′) : l′ < l, c(l′) = c(l)}
Xsuc(l) = min{A(l′)−A(l) : l′ > l, c(l′) = c(l)},

hence Xpre(l) and Xsuc(l) represent the preceding and suc-
ceeding inter-arrival time for the object requested on l-th
arrival, respectively. By convention, min{∅} =∞.

For any constant R > 0, and l ≥ 1, define the set of objects
that arrived within R units of time from the l-th arrival, as

A(l;R) = {c(l′) : l′ ∈ N, A(l′) ≤ A(l)−R}.

We also define, for all R > 0 and type t ∈ [T], the
bursty arrival indicator βt(l;R) as the indicator function
of the event: (1) the l-th request is for some rare object
c of type t, and (2) the previous request of the same rare
object c happened (strictly) less than R units of time earlier.
Specifically, βt(l;R) = 1(c(l) ∈ Rt, Xpre(l) < R). Note that

6This could be relaxed to average size for type t rare objects, as long as
the average size over a large enough time window has o(1) difference from
the average, w.p. 1.

IEEE/ACM TRANSACTIONS ON NETWORKING 4

βt(l;R) does not depend on a specific c ∈ Rt, but accumulates
over all rare objects of type t.

The general content request model is built on a Markov
renewal process (A(l), Z(l))l∈N [25] (to model the stationary
components and potential Markovian dependence on the object
requests), followed by rare object labeling to model non-
stationary components. Formally, our general content request
model, parameterized by constant R > 0, is as follows.

Assumption 1.1. General Content Request Model (R):
• Markov renewal process (A(l), Z(l))l∈N
(i) The inter-arrival times X(l) = A(l)−A(l−1), l ∈ N, are

identically distributed, independently of each other and
Z(l). The inter-arrival time distribution follows a proba-
bility density function (p.d.f.), f(x) which is absolutely
continuous w.r.t a Lebesgue measure on (R,+) and has
simply connected support, i.e. if f(x) > 0, f(y) > 0 then
f(z) > 0 for all z ∈ (x, y). The inter-arrival time has a
nonzero finite mean denoted by 1/λ.

(ii) The process Z(l) is a Markov chain over (K + T)
states indexed by 1, · · · ,K + T . The first K states
represent the K recurring objects. The rare objects (pos-
sibly infinite in number) are grouped according to their
types, thus producing the remaining T states, i.e, the
states K + 1, · · · ,K + T represent rare objects of types
1, · · · , T , respectively. The transition probability matrix
of the Markov chain Z(l) is given by P , where

P (c, c′) := P (Z(l) = c′|Z(l−1) = c), ∀c, c′ ∈ [K+T].

We assume that the diagonal entries P (c, c) > 0, hence
the Markov chain is aperiodic. Also the Markov chain is
assumed to be irreducible, thus it possesses a stationary
distribution denoted by π.

• Object labeling process c(l)
(i) Recurrent objects: On the l-th arrival, if the Markov chain

Z(l) moves to a state k ∈ [K], the arrival is labeled by
the recurrent object k, i.e. ci(l) = k.

(ii) Rare objects: On the l-th arrival, if the Markov chain Z(l)
moves to a state K+ t, t ∈ [T], the arrival is labeled by a
rare object of type t, chosen from Rt such that the label
assignment has no stationary behavior in the time-scale
of O(1) arrivals and it shows a rarity behavior in large
time-scales. Formally, for each type t,

∑l
l′=1 βt(l

′;R) is
maintained for l ≥ 1 and an arbitrary constant at > 0 is
fixed. On l-th arrival, given Z(l) = K + t,
- if

∑l
l′=1 βt(l

′;R) ≤ at
√
l: select any rare object of

type t (arbitrarily), i.e., ci(l) ∈ Rt
- else: select any rare object of type t that was not

requested within R time units, i.e., ci(l) ∈ Rt\A(l;R).

The above labeling of rare objects respects a more general
R-rarity condition defined below (sufficient for our theoretical
results):

Definition 1 (R-rarity condition). For any type t ∈ T , and a
finite R > 0,

∀N t
m = ω(

√
m), lim

m→∞
1
Ntm

m+Ntm∑
l=m

βt(l;R) = 0, w.p. 1. (1)

For any type t, let αt be the aggregate fraction of total
request arrivals for rare objects of type t in the long run. Note
that by the Markov renewal construction, αt = π(K+t), where
π is the stationary distribution of the process Z(l). If αt > 0,
then for the the R-rarity condition to hold, it is sufficient to
have infinitely many rare objects of the same type t (over an
infinite time horizon).

Remark 1 (Comment on the R-rarity condition). The “R-rarity
condition” states that asymptotically (i.e, after m-th arrival, for
large enough m) for each type t, requests for rare objects of
that type can still arrive as bursty arrivals (i.e., request for
any particular rare object is separated by less than R time
units), as long as over large time windows (windows of size
N t
m = ω(

√
m)) the number of such bursty arrivals becomes

infrequent (i.e. o(N t
m) w.p. 1). Note that the definition of

bursty arrival and the associated “R-rarity condition” is not
specified for a particular constant R, but is parameterized by
R and we shall specify the specific value later. If R-rarity
condition holds then R′-rarity condition also holds for any
R′ ∈ [0, R), which easily follows from the definition.

Remark 2 (Relevance of the R-rarity condition). The condition
(1) is fairly general, as at any point in time, no matter how
large, it allows the existence of rare objects which may exhibit
burstiness for small time windows. Trivially, if the inter-arrival
time of each rare object is greater than R, then R-rarity
condition is satisfied. More interestingly, the following real-
world scenarios satisfy the (rare) object labeling process in
Assumption 1.1.

• One-hit wonders [23]. For each type t, a constant fraction
αt of total arrivals are for rare objects that are requested
only once. As the indicator βt(l;R) is zero for the first and
only time that an object is requested,

∑l
l′=1 βt(l

′;R) = 0,
for all l ≥ 1 and type t ∈ [T].

• Flash crowds [24]. Constant size bursts (i.e. a collection of
O(1) number of bursty arrivals) of requests for rare objects
may occur over time, with O(

√
τ) number of such bursts up

to time τ . This allows for infinitely many such bursts. In this
scenario, almost surely, for any type t,

∑l
l′=1 βt(l

′;R) =
O(
√
l). Therefore, it is a special case of our model.

Remark 3 (Generalization of rare object labeling). In our
proofs we only require that the R-rarity condition holds, for
a certain value of R. Therefore, we can generalize our result
to any rare object labeling process that satisfies the R-rarity
condition (Definition 1), for that specific value of R. Further,
it is possible to weaken the rarity condition by requiring the
condition to hold with high probability instead of w.p. 1.

Remark 4 (Relevance of the content request model). Most of
the popular inter-arrival time distributions, e.g., Exponential,
Phase-type, Weibull, satisfy the inter-arrival model in Assump-
tion 1.1. Moreover, it is easy to see that any i.i.d. distribution
for content popularity, including Zipfian distribution, is a
special case of our object labeling process. In fact, the labeling
process is much more general in the sense that it can capture
the influence of different objects on other objects, which may
span across various types.

IEEE/ACM TRANSACTIONS ON NETWORKING 5

3) Special case: Poisson Arrival with Independent Labeling:
We next consider a specific model for the arrival process

which is a well-studied special case of Assumption 1.1. We
will later show that under this arrival process we can achieve
stronger guarantees on the system performance.

Assumption 1.2. Poisson Arrival with Independent Labeling:
• The inter arrival times are i.i.d. and exponentially distributed

with rate λ > 0.
• The labels for the recurring objects are determined inde-

pendently. At each request arrival, the request is labeled a
recurring object c with probability πc, and is labeled a rare
object of type t with probability αt, following the same
rare object labeling process for rare objects of type t, as in
Assumption 1.1.

• For each recurrent object c, its size is given by wc, which is
non-decreasing w.r.t. probability πc and at most wmax. For
each type t ∈ [T], all rare objects of type t have size w̄t.

B. Object (Byte) Hit Rate and Normalized Size

There are two common measures of hit rate. The object hit
rate (OHR) is the fraction of requests that experience a cache
hit. The byte hit rate (BHR) is the fraction of requested bytes
that experience a cache hit. BHR measures the traffic reduction
between the origin and the cache severs. Both measures can
be computed for a single object or a group of objects. Here,
we consider all objects of the same type as being part of a
group.

We formally define OHR and BHR as follows. Given
a caching algorithm, define Y (l) = 1 if the l-th arrival
experiences a cache hit and Y (l) = 0 otherwise. Also, let
C(τ) be the set of objects in the cache at time τ , for τ ≥ 0.

Definition 2. The OHR for each type t ∈ T is defined as

ht = lim inf
τ→∞

∑
l:A(l)≤τ 1 (ctyp(l) = t, Y (l) = 1)∑

l:A(l)≤τ 1 (ctyp(l) = t)

Definition 3. The BHR for each type t ∈ T is defined as

ht = lim inf
τ→∞

∑
l:A(l)≤τ w(l)1 (ctyp(l) = t, Y (l) = 1)∑

l:A(l)≤τ w(l)1 (ctyp(l) = t)

The performance of a caching algorithm is often measured
using its hit rate curve (HRC) that relates the hit rate that it
achieves to the cache size (in bytes) that it requires. In general,
the hit rate depends on the request arrival rate which in turn
affects the cache size requirement. We define a new metric
called the normalized size which is defined as the ratio of the
time-average cache size (in bytes) utilized by the object(s) over
the time-average arrival rate (in bytes/sec) of the object(s). The
normalized size is formally defined below.

Definition 4. For a caching algorithm, and each type t ∈ T ,
the normalized size for type t is defined as

st = lim sup
τ→∞

∫ τ
τ ′=0

∑
c∈C(τ ′) wc1(ctyp = t)dτ ′∑

l:A(l)≤τ w(l)1 (ctyp(l) = t)

Remark 5. Dividing both the numerator and the denominator
by τ gives the interpretation of the normalized size as the

average cache size utilized by the objects of type t normalized
by their aggregate arrival rate. For example, if a CDN operator
wants to allocate an expected cache size of 100GB for type
t and its arrival rate is known to be 10GB/sec, then the
corresponding normalized size is 100GB

10GB/sec = 10sec.

C. Design Objective

The fundamental challenge in cache design is striking a
balance between two conflicting objectives: minimizing the
cache size requirement and maximizing the cache hit rate. In
addition, it is desirable to allow different Quality of Service
(QoS) guarantees for different types of objects, i.e., different
cache hit rates and size targets for different types of objects.
For example, a lower hit rate that results in a higher response
time may be tolerable for a software download that happens
in the background. But, a higher hit rate that results in a faster
response time is desirable for a web page that is delivered in
real-time to the user.

In this work, our objective is to tune the TTL parameters
to asymptotically achieve a target hit rate vector h∗ and a
(feasible) target normalized size vector s∗, without the prior
knowledge of the content request process. The t-th components
of h∗ and s∗, i.e., h∗t and s∗t respectively, denote the target hit
rate and the target normalized size for objects of type t ∈ [T].

A CDN operator can group objects into types in an arbitrary
way. If the objective is to achieve an overall hit rate and cache
size, all objects can be grouped into a single type. It should
also be noted that the algorithms proposed in this work do not
try to achieve the target hit rate with the smallest cache size;
this is a non-convex optimization problem that is not the focus
of this work. Instead, we only try to achieve a given target hit
rate and target normalized size.

III. ADAPTIVE TTL-BASED ALGORITHMS

A TTL-based caching algorithm works as follows. When a
new object is requested, the object is placed in cache and is
associated with a time-to-live (TTL) value. If no new requests
are received for that object, the TTL value is decremented in
real-time and the object is evicted when the TTL becomes
zero.7 If a cached object is requested, the TTL is reset to its
original value. In a TTL cache, the TTL helps balance the
cache size and hit rate objectives. When the TTL increases,
the object stays in cache for a longer period of time, increasing
the cache hit rate, at the expense of a larger cache size. The
opposite happens when TTL decreases.

We propose two adaptive TTL algorithms. First, we present
a dynamic TTL algorithm (d-TTL) that adapts its TTL to
achieve a target hit rate h∗. While d-TTL does a good job
of achieving the target hit rate, it does this at the expense of
caching rare and unpopular recurring content for an extended
period of time, thus causing an increase in cache size without
any significant contribution towards the cache hit rate. We
present a second adaptive TTL algorithm called filtering TTL
(f-TTL) that filters out rare content to achieve the target hit rate
with a smaller cache size. To the best of our knowledge, both

7The TTL-based cache presented here is known as reset-TTL.

IEEE/ACM TRANSACTIONS ON NETWORKING 6

d-TTL and f-TTL are the first adaptive TTL-based caching
algorithms that are able to achieve a target hit rate h∗ and a
feasible target normalized size s∗ for non-stationary traffic.

A. Dynamic TTL (d-TTL) Algorithm

We propose a dynamic TTL algorithm, d-TTL, that adapts
a TTL parameter on each arrival to achieve a target hit rate
h∗.

1) Structure: The d-TTL algorithm consists of a single TTL
cache C. It also maintains a TTL vector θ(l) ∈ RT+, at the time
of the l-th arrival, where θt(·) represents the TTL value for
type t. Every object c present in the cache C, has a timer ψ0

c

that encodes its remaining TTL and is decremented in real
time. On the l-th arrival, if the requested object c of type t
is present in cache, θt(l) is decremented, and if the requested
object c of type t is not present in cache, object c is fetched
from the origin, cached in the server and θt(l) is incremented.
In both cases, ψ0

c is set to the updated timer θt(l + 1) until
the object is re-requested or evicted. As previously discussed,
object c is evicted from the cache when ψ0

c = 0.
2) Key Insights: To better understand the dynamic TTL

updates, we consider a simple scenario where we have unit
sized objects of a single type and a target hit rate h∗.

Adaptation based on stochastic approximation. Consider
a TTL parameter θ. Upon a cache miss, θ is incremented by
ηh∗ and upon a cache hit, θ is decremented by η(1 − h∗),
where η > 0 is some positive step size. More concisely, θ
is changed by η(h∗ − Y (l))), where Y (l) = 1 upon a cache
hit and Y (l) = 0 upon a cache miss. If the expected hit rate
under a fixed TTL value θ is h, then the expected change
in the value of θ is given by η((1 − h)h∗ − h(1 − h∗)). It
is easy to see that this expected change approaches 0, as h
approaches h∗. In a dynamic setting, Y (l) provides a noisy
estimate of h. However, by choosing decaying step size, i.e. on
l-th arrival η = η(l) = 1

lα , for α ∈ (0.5, 1], we can still ensure
convergence, by using results from stochastic approximation
theory [26].

Truncation in presence of rare objects. In some scenarios,
the target hit rate h∗ may be unattainable due to the presence
of rare objects. Indeed, in the 9-day trace used in our paper,
around 4% of the requests are for one-hit wonders. Clearly, in
this scenario, a hit rate of over 96% is unachievable. Whenever
h∗ is unattainable, θ diverges with the above adaptation.
Therefore, under unknown amount of rare traffic it becomes
necessary to truncate θ with a large but finite value L to make
the algorithm robust.

3) Adapting θ(l): Following the above discussion, we
restrict the TTL value θ(l) to θ(l) � L.8 Here L is the
truncation parameter of the algorithm and an increase in L
increases the achievable hit rate (see Section IV for details).
For notational similarity with f-TTL, we introduce a latent
variable ϑ(l) ∈ RT where ϑ(l) ∈ [0, 1]. Without loss of
generality, instead of adapting θ(l), we dynamically adapt each
component of ϑ(l) and set θt(l) = Ltϑt(l), where ϑt(·) is the
latent variable for objects of type t. The d-TTL algorithm is

8This gives an upper bound, typically a large one, over the size of the
cache. Further it can control the staleness of objects.

presented in Algorithm 1, where the value of θ(l) dynamically
changes according to Equation (2).

Algorithm 1 Dynamic TTL (d-TTL)
Input:

Target hit rate h∗, TTL upper bound L.
For l-th request, l ∈ N, object c(l), size w(l) & type t(l).

Output: Cache requested object using dynamic TTL, θ.
1: Initialize: Latent variable ϑ(0) = 0.
2: for all l ∈ N do
3: if Cache hit, c(l) ∈ C then
4: Y (l) = 1
5: else Cache miss
6: Y (l) = 0

7: Update TTL θt(l)(l):

ϑt(l)(l + 1) = P[0,1]

(
ϑt(l)(l) + η(l)ŵ(l)

(
h∗
t(l) − Y (l)

))
θt(l)(l + 1) = Lt(l)ϑt(l)(l + 1)

(2)
where,

η(l) = η0
lα

is a decaying step size for α ∈ (1/2, 1),
P[0,1](x) = min{1,max{0, x}},
ŵ(l) = 1 for OHR and w(l) for BHR.

8: Cache c with TTL ψ0
c(l) = θt(l)(l + 1) in C.

B. Filtering TTL (f-TTL) Algorithm

Although the d-TTL algorithm achieves the target hit rate,
it could lead to cache sizes that are excessively large. d-TTL
could still cache rare and unpopular content that contribute
to a non-negligible portion of the cache size (for example
one-hit wonders still enter the cache while not providing any
cache hit). We propose a two-level filtering TTL algorithm (f-
TTL) that efficiently filters non-stationary content to achieve
the target hit rate along with a target normalized size (Def. 4).

1) Structure: The two-level f-TTL algorithm maintains two
caches: a higher-level (or deep) cache C and a lower-level
cache Cs. The higher-level cache (deep) cache C behaves
similar to the single-level cache in d-TTL (Algorithm 1),
whereas the lower-level cache Cs ensures that cache C stores
mostly stationary content. Cache Cs does so by filtering out
rare and unpopular objects, while suitably retaining bursty
objects. To facilitate such filtering, it uses additional sub-level
caches: shadow cache and shallow cache, each with their own
dynamically adapted TTLs. The TTL value associated with
the shadow cache is equal to the TTL value of deep cache C,
whereas the TTL associated with the shallow cache is smaller.

TTL timers for f-TTL. The complete algorithm for f-TTL
is given in Algorithm 2. f-TTL maintains a time varying TTL-
value θs(l) for the shallow cache, along with a TTL value θ(l)
for both the deep and shadow caches. Every object c present
in f-TTL has an exclusive TTL tuple (ψ0

c , ψ
1
c , ψ

2
c) indicating

remaining TTL for that specific object: ψ0
c for deep cache C,

ψ1
c for the shallow cache of Cs, and ψ2

c for the shadow cache
of Cs. Object c is evicted from C (resp., Cs) when ψ0

c (resp.,
ψ1
c) becomes 0. Further, the metadata c̃ is evicted from Cs

when ψ2
c equals 0.

Suppose on the l-th arrival, the request is for object c(l)
(of type t(l) and size w(l)). Let c(l) = c and t(l) = t. The
algorithm first updates the two TTL values to θ(l + 1) and

IEEE/ACM TRANSACTIONS ON NETWORKING 7

θs(l+1), according to the update rules which will be described
shortly. Then, it performs one of the operations below.

Cache hit: If a cache hit occurs, i.e., c is either in the deep
cache C or in the shallow cache of Cs, f-TTL caches object c
in the deep cache C with TTL θt(l+ 1), thus setting the TTL
tuple to (θt(l+1), 0, 0). Further, if c was in the shallow cache
at the time of the cache hit, the object c and its metadata c̃
are removed from the shallow cache and the shadow cache of
Cs, respectively. [lines 12-15 in Algorithm 2].

Cache miss: If both object c and its meta-data c̃ are absent
from C and Cs resp., we have a cache miss. In this event,
f-TTL caches object c in the shallow cache of Cs with TTL
θst (l + 1) and its meta data c̃ in the shadow cache of Cs with
TTL θt(l+1); i.e. the TTL tuple is set to (0, θst (l+1), θt(l+1))
[lines 19-20 in Algorithm 2].

Cache virtual hit: Finally, if c̃ is in the shadow cache of
Cs but object c is not in the shallow cache of Cs, we have
a cache virtual hit. In this event, f-TTL caches c in the deep
cache C with TTL tuple (θt(l+ 1), 0, 0), and evicts c̃ from Cs
[lines 16-18 in Algorithm 2].

2) Key Insights: We pause here to provide the essential
insights behind the structure and adaptation rules in f-TTL.

Normalized size of the f-TTL algorithm. We begin by
characterizing the normalized size of the different content
types in the f-TTL algorithm. For the l-th request arrival,
define ŝ(l) to be the time that the requested object will spend
in the cache until either it is evicted or the same object is
requested again, whichever happens first. We call ŝ(l) the
normalized size of the l-th arrival. Therefore, the contribu-
tion of the l-th request toward the cache size is w(l)ŝ(l),
where ŝ(l) = min{Xsuc(l), θ

s
t(l)(l + 1)} for cache miss and

ŝ(l) = min{Xsuc(l), θt(l)(l+1)} for cache hit/virtual hit. Then
the normalized size, defined in Def. 4, can be equivalently
characterized as

st = lim sup
τ→∞

∑
l:A(l)<τ w(l)ŝ(l)1(ctyp(l) = t)∑
l:A(l)<τ w(l)1(ctyp(l) = t)

,∀t ∈ [T].

(4)
To explain the key insights, we consider a simple scenario:

single content type, unit sized objects, hit rate target h∗ and
normalized size target s∗.

Shadow cache for filtering rare objects. The shadow
cache and shallow cache in Cs play complementary roles in
efficiently filtering out rare and unpopular objects. By storing
the meta-data (with negligible size) with TTL θ upon a new
arrival, the shadow cache simulates the deep cache but with
negligible storage size. Specifically, on the second arrival of
the same object, the presence of its meta-data implies that it
is likely to result in a cache hit if stored in C with TTL θ.
This approach is akin to ideas the use Bloom filters [23] and
2Q [27].

Shallow cache for recurring bursty objects. While the
shadow cache filters out rare objects (e.g. one-hit wonders),
it has an undesirable impact on the cache hit rate as the
first two arrivals of any object always result in cache misses.
This can lead to a larger TTL θ (for the deep cache), for
a given target hit rate, compared to d-TTL. This problem is
even more pronounced when one considers correlated requests

Algorithm 2 Filtering TTL (f-TTL)
Input:

Target hit rate h∗, target normalized size s∗, TTL bound L.
For l-th request, l ∈ N, object c(l), size w(l) & type t(l).

Output: Cache requested object using dynamic TTLs, θ and θs.
1: Intialize: Latent variables, ϑ(0) = ϑs(0) = 0.
2: for all l ∈ N do
3: if Cache hit, c(l) ∈ C ∪ Cs then
4: Y (l) = 1,

5: s(l) =

{
θt(l)(l)− ψ0

c(l), if c ∈ C
θt(l)(l)− ψ1

c(l), if c ∈ Cs.
6: else if Virtual hit, c(l) /∈ C ∪ Cs and c̃(l) ∈ Cs then
7: Y (l) = 0, s(l) = θt(l)(l).
8: else Cache miss
9: Y (l) = 0, s(l) = θst(l)(l).

10: Update TTL θt(l)(l):

ϑt(l)(l + 1) = P[0,1]

(
ϑt(l)(l) + η(l)ŵ(l)

(
h∗
t(l) − Y (l)

))
θt(l)(l + 1) = Lt(l)ϑt(l)(l + 1),

where,
η(l) = η0

lα
is a decaying step size for α ∈ (1/2, 1),

P[0,1](x) = min{1,max{0, x}},
ŵ(l) = 1 for OHR and w(l) for BHR.

11: Update TTL θst(l)(l):

ϑst(l)(l + 1) = P[0,1]

(
ϑst(l)(l) + ηs(l)w(l)(s∗t(l) − s(l))

)
θst(l)(l + 1) = Lt(l)ϑt(l)(l + 1)Γ

(
ϑt(l)(l + 1), ϑst(l)(l + 1); ε

)
(3)

where,
ηs(l) = η0

l
and ε is a parameter of the algorithm,

Γ(·, ·; ε) is a threshold function.

12: if Cache hit, c(l) ∈ C ∪ Cs then
13: if c(l) ∈ Cs then
14: Evict c̃(l) from Cs and move c(l) from Cs to C.
15: Set TTL tuple to (θt(l)(l + 1), 0, 0).
16: else if Virtual hit, c(l) /∈ C ∪ Cs and c̃(l) ∈ Cs then
17: Evict c̃(l) from Cs,
18: Cache c(l) in C and set TTL tuple to (θt(l)(l+ 1), 0, 0).
19: else Cache Miss
20: Cache c(l) and c̃(l) in Cs and

set TTL tuple to (0, θst(l)(l + 1), θt(l)(l + 1)).

(e.g. Markovian labeling in our model), where requests for an
object typically follow an on-off pattern—few request arrivals
in a short time-period followed by a long time-period with
no requests.9 Inspired from multi-level caches such as LRU-
K [28], we use a shallow cache to counter this problem. By
caching new arrivals with a smaller TTL θs in the shallow
cache, f-TTL ensures that, on the one hand, rare and unpopular
objects are quickly evicted; while on the other hand, a cache
miss for correlated requests on the second arrival is avoided.

Two-level adaptation. In f-TTL, the TTL θ is used to
achieve the target hit rate h∗ and is adapted in the same way
as in d-TTL. The TTL of the shallow cache, θs, is however
adapted to achieve the normalized size target s∗. Therefore,
θs must depend on the normalized size ŝ(l).

Consider the following adaptation strategy: Compute an
online unbiased estimate of the normalized size, denoted by

9Under our model, a lazy labelling Markov chain with K states where the
transitions are i → i w.p. 0.5 and i → (i + 1) mod K w.p. 0.5., for all
i ∈ [K], is such an example.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

s(l) for the l-th arrival, and then update θs to θs ← min{(θs+
ηs(s

∗−s(l)))+, θ} for some decaying step size ηs. Clearly, as
the expected normalized size s = E[s(l)] approaches s∗ and
the expected hit rate h = E[Y (l)] approaches h∗, the expected
change in TTL pair (θ, θs) approaches (0, 0).10

Two time-scale approach for convergence. Due to the
noisy estimates of the expected hit rate and the expected
normalized size, Y (l) and s(l) resp., we use decaying step
sizes η(l) and ηs(l). However, if η(l) and ηs(l) are of the same
order, convergence is no longer guaranteed as adaptation noise
for θ and θs are of the same order. For example, if for multiple
(θi, θ

s
i), the same target hit rate and normalized size can be

attained, then the TTL pair may oscillate between these points.
We avoid this by using η(l) and ηs(l) of different orders: on
l-th arrival, θ ← min{(θ + (h∗ − Y (l))/lα)+, L} for η(l) =
1/lα, α ∈ (0.5, 1) and θs ← min{(θs+(s∗−s(l))/l)+, θ} for
ηs(l) = 1/l. By varying θs much slower than θ, the adaptation
behaves as if θs is fixed and it changes θ to attain the hit rate
h∗. On the other hand, θs varies slowly to attain the normalized
size while h∗ is maintained through faster dynamics.

Mode collapse in f-TTL with truncation. Recall that in
the presence of rare objects, TTL θ is truncated by a large
but finite L. Consider a scenario where f-TTL attains hit rate
target h∗ if and only if both θ > 0 and θs > 0. Now, let s∗ be
set in such a way that it is too small to attain h∗. Under this
scenario the TTL value θs constantly decreases and collapses
to 0, and the TTL value θ constantly increases and collapses
to L. Mode collapse (θ, θs) = (L, 0) occurs while failing to
achieve the achievable hit rate h∗. In order to avoid such mode
collapse, it is necessary to intervene in the natural adaptation
of θs and increase it whenever θ is close to L. But due to this
intervention, the value of θs may change even if the expected
normalized size estimate equals the target s∗, which presents
a paradox!

Two time-scale actor-critic adaptation. To solve the mode
collapse problem, we rely on the principle of separating critics
(the parameters that evaluate performance of the algorithm and
serve as memory of the system), and actors (the parameters
that are functions of the critics and govern the algorithm). This
is a key idea introduced in the Actor-critic algorithms [21].
Specifically, we maintain two critic parameters ϑ and ϑs,
whereas the parameters θ and θs play the role of actors.11

The critics are updated as discussed above but constrained in
[0, 1], i.e on l-th arrival ϑ← min{(ϑ+ (h∗−Y (l))/lα)+, 1},
for α ∈ (0.5, 1) and ϑs ← min{(ϑs+(s∗−s(l))/l)+, 1}. The
actors are updated as, θ = Lϑ, and for some small ε > 0, (i)
θs = Lϑs if ϑ < 1− 3ε/2, (ii) θs = Lϑ if ϑ > 1− ε/2, and
(iii) smooth interpolation in between. With this dynamics ϑs

stops changing if the expected normalized size estimate equals
s∗, which in turn fixes θs despite the external intervention.

3) Estimating the normalized size: The update rule for θs

depends on the normalized size ŝ(l) which is not known upon
the arrival of l-th request. Therefore, we need to estimate
ŝ(l). However, as ŝ(l) depends on updated TTL values, and

10This is not the only mode of convergence for θs. Detailed discussion on
the convergence of our algorithm will follow shortly.

11It is possible to work with θ alone, without introducing ϑ. However,
having ϑ is convenient for defining the threshold function in (5).

future arrivals, its online estimation is non-trivial. The term
s(l), defined in lines 5, 7, and 9 in Algorithm 2, serves as an
online estimate of ŝ(l).12 First, we construct an approximate
upper bound for ŝ(l) as θst(l)(l) for cache miss and θt(l)(l)
otherwise. Additionally, if it is a deep (resp. shallow) cache
hit with remaining timer value ψ0

c(l) (resp. ψ1
c(l)), we update

the estimate to (θt(l)(l) − ψ0
c(l)) (resp. (θt(l)(l) − ψ1

c(l))), to
correct for the past overestimation. Due to decaying step sizes,
and bounded TTLs and object sizes, replacing ŝ(l) by s(l) in
Eq. (4) keeps st unchanged ∀t ∈ [T]. We postpone the details
to Appendix A.

4) Adapting θs(l) and θ(l): The adaptation of the param-
eters θ(l) and θs(l) is done following the above actor-critic
mechanism, where ϑ(l) and ϑs(l) are the two critic parameters
lying in [0, 1]T . Like d-TTL, the f-TTL algorithm adaptively
decreases ϑ(l) during cache hits and increases ϑ(l) during
cache misses. Additionally, f-TTL also increases ϑ(l) during
cache virtual hits. Finally, for each type t and on each arrival
l, the TTL θt(l) = Ltϑt(l) [line 10 in Algorithm 2].

The external intervention is implemented through a thresh-
old function, Γ(x, y; ε) : [0, 1]2 → [0, 1]. Specifically, the
parameter θs(l) is defined in Equation 3 as

θst (l) = Ltϑt(l)Γ (ϑt(l), ϑ
s
t (l); ε) ∀t ∈ [T].

Here, the threshold function Γ(x, y; ε) takes value 1 for
x ≥ 1 − ε/2 and value y for x ≤ 1 − 3ε/2, and the partial
derivative w.r.t. x is bounded by 4/ε. Additionally, it is twice
differentiable and non-decreasing w.r.t. both x and y.

This definition maintains the invariant θst (l) ≤ θt(l) ∀t, l.
Note that, in the extreme case when ϑs(l) = 0, we only cache
the metadata of the requested object on first access, but not
the object itself. We call this the full filtering TTL.

One such threshold function can be given as follows with
the convention 0/0 = 1,

Γ(x, y; ε) =

(
y +

(1− y)((x− 1 + 3ε
2)+)4

((x− 1 + 3ε
2)+)4 + ((1− ε

2 − x)+)4

)
.

(5)
If the estimate s(l) > s∗t(l), intuition suggests more aggressive
filtering is required. To enhance filtering we decrease ϑst(l)(l)
and consequently θst(l)(l). The opposite occurs when s(l) <
s∗t(l) [line 11 in Algorithm 2].

IV. ANALYSIS OF ADAPTIVE TTL-BASED ALGORITHMS

In this section we present our main theoretical results. We
consider a setting where the TTL parameters live in a compact
space. Indeed, if the TTL values become unbounded, then
objects never leave the cache after entering it. This setting
is captured through the definition of L feasibility, presented
below.

Definition 5. For an arrival process A and the d-TTL algo-
rithm, object (byte) hit rate h is ‘L-feasible’ if there exists
a θ 4 L such that the d-TTL algorithm with fixed TTL θ
achieves h asymptotically almost surely under A.

12With slight abuse of notation, we use ‘s’ in s(l) and ŝ(l) to denote
‘normalized size’; whereas in Cs, θs(l), ϑs(l), and ηs(l) ‘s’ denotes
‘secondary cache’.

IEEE/ACM TRANSACTIONS ON NETWORKING 9

Definition 6. For an arrival process A and the f-TTL caching
algorithm, the object (byte) hit rate and normalized size tuple
(h, s) is ‘L-feasible’ if there exist θ 4 L and θs 4 θ, such
that f-TTL algorithm with fixed TTL pair (θ,θs) achieves
(h, s) asymptotically almost surely under A.

A hit rate h∗ or a tuple (h∗, s∗) are ‘L′-feasible’ if they
are ‘L-feasible’ for all L′ � L, where L′ feasibility is more
strict than L feasibility. To avoid trivial cases (hit rate being
0 or 1), we consider typical hit rates as defined below.

Definition 7. A hit rate h is ‘typical’ if ht ∈ (0, 1), ∀t ∈ [T].

A. Main Results

We now show that both d-TTL and f-TTL asymptotically
almost surely (a.a.s.) achieve any ‘feasible’ object (byte) hit
rate, h∗ for the arrival process in Assumption 1.1, using
stochastic approximation techniques. Further, we prove a.a.s
that f-TTL converges to a target (h∗, s∗) tuple for object (byte)
hit rate and normalized size.

Theorem 1. Under Assumption 1.1 with ‖L‖∞-rarity condi-
tion (i.e. R = ‖L‖∞):

d-TTL: if the hit rate target h∗ is both L-feasible and ‘typ-
ical’, then the d-TTL algorithm with parameter L converges
to a TTL θ∗ a.a.s. Further, the average hit rate converges to
h∗ a.a.s.

f-TTL: if the target tuple of hit rate and normalized size,
(h∗, s∗), is (1−2ε)L-feasible, with ε > 0, and h∗ is ‘typical’,
then the f-TTL algorithm with parameter L and ε converges
to a TTL pair (θ∗,θs

∗
) a.a.s. Further the average hit rate

converges to h∗ a.a.s., while the average normalized size
converges to some ŝ a.a.s.. Additionally, ŝ for each type t,
satisfies one of the following three conditions:

1) The average normalized size converges to ŝt = s∗t a.a.s.
2) The average normalized size converges to ŝt > s∗t a.a.s.

and θs
∗

t = 0 a.a.s.
3) The average normalized size converges to ŝt < s∗t a.a.s.

and θs
∗

t = θ∗t a.a.s.

As stated in Theorem 1, the f-TTL algorithm converges
to one of three scenarios. We refer to the second scenario
as collapse to full-filtering TTL, because in this case, the
lower-level cache contains only labels of objects instead of
caching the objects themselves. We refer to the third scenario
as collapse to d-TTL, because in this case, cached objects have
equal TTL values in the deep, shadow and shallow caches.

The f-TTL algorithm ensures that under Assumption 1.1,
with ‖L‖∞-rarity condition, the rate at which the rare objects
enter the deep cache C is a.a.s. zero (details deferred to
Appendix A), thus limiting the normalized size contribution
of the rare objects to those residing in the shallow cache of
Cs. Theorem 1 states that f-TTL converges to a filtration level
which is within two extremes: full-filtering f-TTL where rare
objects are completely filtered (scenario 2) and d-TTL where
no filtration occurs (scenario 3).

We note that in f-TTL, scenario 1 and scenario 3 have
‘good’ properties. Specifically, in each of these two scenario,
the f-TTL algorithm converges to an average normalized size

which is smaller than or equal to the target normalized size.
However, in scenario 2, the average normalized size converges
to a normalized size larger than the given target under general
arrivals in Assumption 1.1. Further, under Assumption 1.2, we
show in Corollary 1 that scenario 2 cannot occur.

Corollary 1. Assume the target tuple of hit rate and nor-
malized size, (h∗, s∗), is (1 − 2ε)L-feasible with ε > 0
and additionally, h∗ is ‘typical’. Under Assumption 1.2 with
‖L‖∞-rarity condition, an f-TTL algorithm with parameters
L, ε, achieves asymptotically almost surely a tuple (h∗, s)
with normalized size s 4 s∗.

B. Proof Sketch of Main Results
Here we present a proof sketch of Theorem 1, and Corol-

lary 1. The complete proof can be found in Appendix.13

The proof of Theorem 1 consists of two parts. The first
part deals with the ‘static analysis’ of the caching process,
where parameters ϑ and ϑs both take fixed values in [0, 1] (i.e.,
no adaptation of parameters). In the second part (‘dynamic
analysis’), employing techniques from the theory of stochastic
approximation [26], we show that the TTL θ for d-TTL and the
TTL pair (θ,θs) for f-TTL converge almost surely. Further,
the average hit rate (and average normalized size for f-TTL)
satisfies Theorem 1.

The evolution of the caching process is represented as a
discrete time stochastic process uniformized over the arrivals
into the system. At each arrival, the system state is as follows:
(1) the timers of recurrent objects (i.e. (ψ0

c , ψ
1
c , ψ

2
c) for c ∈ K),

(2) the current value of the pair (ϑ,ϑs), and (3) the object
requested on the last arrival. However, due to the presence of a
constant fraction of non-stationary arrivals in Assumption 1.1,
we maintain a state with incomplete information. Specifically,
our (incomplete) state representation does not contain the
timer values of the rare objects present in the system. This
introduces a bias (which is treated as noise) between the actual
process, and the evolution of the system under incomplete state
information.

In the static analysis, we prove that the system with fixed
ϑ and ϑs exhibits uniform convergence to a unique stationary
distribution. Further, using techniques from regeneration pro-
cess and the ‘rarity condition’ in Equation (1), we calculate
the asymptotic average hit rates and the asymptotic average
normalized sizes of each type for the caching process. We
then argue that asymptotic averages of both the hit rate and
normalized size of the incomplete state system is the same as
the original system. This is important for the dynamic analysis
because this characterizes the time averages of the adaptation
of ϑ and ϑs.

In the dynamic analysis, we analyze the system under
variable ϑ and ϑs, using results of almost sure convergence of
(actor-critic) stochastic approximations with a two timescale
separation [29]. The proof follows the ODE method; the
following are the key steps in the proof:
1) We show that the effects of the bias introduced by the non-

stationary process satisfies Kushner-Clark condition [26].

13Due to lack of space we present the appendices as supplementary material
to the main article.

IEEE/ACM TRANSACTIONS ON NETWORKING 10

2) The expectation (w.r.t. the history up to step l) of the l-th
update as a function of (ϑ,ϑs) is Lipschitz continuous.

3) The incomplete information system is uniformly ergodic.
4) The ODE (for a fixed ϑs) representing the mean evolution

of ϑ has a unique limit point. Therefore, the limit point of
this ODE is a unique function of ϑs.

5) (f-TTL analysis with two timescales) Let the ODE at the
slower time scale, representing the mean evolution of ϑs,
have stationary points {(ϑ,ϑs)i}. We characterize each
stationary point, and show that it corresponds to one of
the three cases stated in Theorem 1. Finally, we prove
that all the limit points of the evolution are given by the
stationary points of the ODE.

As stated in Theorem 1, the f-TTL algorithm converges
to one of three scenarios, under general arrivals in Assump-
tion 1.1. However, under Assumption 1.2, we show that the
scenario 2 cannot occur, as formalized in Corollary 1. The
proof of Corollary 1 follows from Theorem 1 and the following
Lemma 1.

Lemma 1. Under Assumption 1.2 with ‖L‖∞-rarity condition
and for any type t, suppose f-TTL algorithm achieves an
average hit rate ht with two different TTL pairs, 1) (θt, θ

s
t)

with θst = 0 (full filtering), and 2) (θ̂t, θ̂
s
t), with θ̂st > 0, where

max{θt, θ̂t} ≤ Lt. Then the normalized size achieved with the
first pair is less or equal to the normalized size achieved with
the second pair. Moreover, in the presence of rare objects of
type t, i.e. αt > 0, this inequality in the achieved normalized
size is strict.

The proof of this lemma is presented in Appendix A and the
technique, in its current form, is specific to Assumption 1.2.
The condition that object size is non-decreasing w.r.t. πc (third
bullet) in Assumption 1.2, is necessary for the guarantee to
hold for object hit rate target under our proof. This condition
can be removed if all objects of each type have the same size
or a byte hit rate is targeted.

V. IMPLEMENTATION OF D-TTL AND F-TTL

One of the main practical challenges in implementing d-
TTL and f-TTL is adapting θ and θs to achieve the desired
hit rate in the presence of unpredictable non-stationary traffic.
We observe the following major differences between the
theoretical and practical settings. First, the arrival process in
practice changes over time (e.g. day-night variations) whereas
our model assumes the stationary part is fixed. Second, the hit
rate performance in finite time horizons is often of practical
interest. While our content request model accounts for non-
stationary behavior in finite time windows, the algorithms are
shown to converge to the target hit rate asymptotically. But,
this may not be true in finite time windows. We now discuss
some modifications we make to translate theory to practice
and evaluate these modification in Section VI.

Fixing the maximum TTL. The truncation parameter
(maximum TTL value) L defined in Section III is crucial in the
analysis of the system. However, in practice, we can choose
an arbitrarily large value such that we let θ explore a larger
space to achieve the desired hit rate in both d-TTL and f-TTL.

Constant step sizes for θ and θs updates. Algorithms 1
and 2 use decaying step sizes η(l) and ηs(l) while adapting
θ and θs. This is not ideal in practical settings where the
traffic composition is constantly changing, and we need θ and
θs to capture those variations. Therefore, we choose carefully
hand-tuned constant step sizes that capture the variability in
traffic well. We discuss the sensitivity of the d-TTL and f-TTL
algorithms to changes in the step size in Section VI-F.

Target cache size to target normalized size. In the f-
TTL algorithm a normalized size is targeted. However, a CDN
operator may specify target cache sizes, cs∗t bytes for type t,
based on the performance requirements of different content
types. In this scenario, the target cache size is translated to a
normalized size target. Using the (estimated) arrival rate, λt
bytes/sec, we compute the normalized size target s∗t = cs∗t /λt
sec, for each type t. In our experiments in Section VI, for
a target cache size that is 50% of the cache size of d-TTL,
f-TTL achieves the same hit rate as d-TTL but at almost half
the cache space.

Tuning normalized size targets. In practice, f-TTL may not
be able to achieve small normalized size targets in the presence
of time varying and non-negligible non stationary traffic. In
such cases, CDN operators can use the target normalized size
as a tunable knob to adaptively filter out unpredictable non-
stationary content. For instance, with a small target normalized
size during a sudden surge of non-stationary content, θs is
aggressively reduced. This in turn filters out a lot of non-
stationary content while an appropriate increase in θ maintains
the target hit rate. However, an extremely aggressive normal-
ized size target may not be the right choice, as it could lead
to a large average cache size due to an excessive increase in
θ. Specifically, in our simulations, at a target OHR of 40%,
setting a non-zero target normalized size leads to nearly 15%
decrease in the average cache size as compared to a target
normalized size of 0.

VI. EMPIRICAL EVALUATION

We evaluate the performance of d-TTL and f-TTL, both in
terms of the hit rate achieved and the cache size requirements,
using actual production traces from a major CDN.

A. Experimental setup

Content request traces. We use an extensive data set
containing access logs for content requested by users that
we collected from a typical production server in Akamai’s
commercially-deployed CDN [3]. The logs contain requests
for predominantly web content (hence, we only compute TTLs
for a single content type in our evaluation). Each log line
corresponds to a single request and contains a timestamp, the
requested URL (anonymized), object size, and bytes served
for the request. The access logs were collected over a period
of 9 days. The traffic served in Gbps captured in our data set
is shown in Figure 1. We see that there is a diurnal traffic
pattern with the first peak generally around 12PM and the
second peak occurring around 10-11PM. There is a small dip
in traffic during the day between 4-6PM. This could be during
evening commute when there is less internet traffic. The lowest

IEEE/ACM TRANSACTIONS ON NETWORKING 11

Time

Tr
af

fic
, G

bp
s

0.4

0.8

1.2

0 0

0.2

0.4

0.6

0.8

1

1.2

1.4

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Tr
af
fic
,,G

bp
s

Time,

xxxxx xxxx YES

12:00,,,,12:00,,,12:00,,,12:00,,,,12:00,,,12:00,,,,12:00,,,12:00,,,12:00,,,12:001212 1212 1212 1212 12 12

Fig. 1: Content traffic served to users
from the CDN server, averaged every 2
hours. The traces were collected from
29th January to 6th February 2015.

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

, %

Number of Access
0

20

40

𝟏𝟎𝟑 𝟏𝟎𝟒 𝟏𝟎𝟓

100

80

60

𝟏𝟎𝟏𝟏𝟎𝟎
0

20

40

60

80

100

1 10 100 1000 10000 100000

Pe
rc
en
t-o

f-o
bj
ec
ts
,-%

Number-of-accesses

𝟏𝟎𝟐

Fig. 2: Popularity of content accessed by
users in the 9-day period.

0

20

40

60

80

100

0 20 40 60 80 100

Pe
rc
en
ta
ge
/o
f/r
eq
ue
st
s,/
%

Percentage/of/objects,/%/

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s,
 %

Percentage of objects, %
0

20

40

60 80 100

100

80

60

40200

Fig. 3: A large fraction of the requests
are for a small fraction of the objects.

traffic is observed at the early hours of the morning between
4AM and 9AM.

The content requests traces used in this work contain 504
million requests (resp., 165TB) for 25 million distinct objects
(resp., 15TB). From Figure 2, we see that about 70% of the
objects in the trace are one-hit wonders. This indicates that a
large fraction of objects need to be cached with no contribution
towards the cache hit rate. Moreover, from Figure 3, we see
that about 90% of the requests are for only 10% of the
most popular objects indicating that the remaining 90% of the
objects contribute very little to the cache hit rate. Hence, both
these figures indicate that the request trace has a large fraction
of unpopular content. The presence of a significant amount
of non-stationary traffic in the form of “one-hit-wonders” in
production traffic is consistent with similar observations made
in earlier work [20].

Trace-based cache simulator. We built a custom event-
driven simulator to simulate the different TTL caching algo-
rithms. The simulator takes as input the content traces and
computes a number of statistics such as the hit rate obtained
over time, the variation in θ, θs and the cache size over time.
We implemented and simulated both d-TTL and f-TTL using
the parameters listed in Table I.

We use constant step sizes, η=1e-2 and ηs=1e-9, while
adapting the values of θ and θs. The values chosen were found
to capture the variability in our input trace well. We evaluate
the sensitivity of d-TTL and f-TTL to changes in η and ηs in
Section VI-F.

TABLE I: Simulation parameters. In this table s∗ is the target
normalized size and wavg is the average object size.

Simulation length 9 days Number of requests 504 m
Min TTL value 0 sec Max TTL value 107 sec
Step size for θ η Step size for θs ηs

s∗wavg

B. How TTLs adapt over time

To understand how d-TLL and f-TTL adapt their TTLs
over time in response to request dynamics, we simulated these
algorithms with a target object hit rate of 60% and a target
normalized size that is 50% of the normalized size achieved by
d-TTL. In Figure 4 we plot the traffic in Gbps, the variation in
θ for d-TTL, θ for f-TTL and θs over time, all averaged over 2
hour windows. We consider only the object hit rate scenario to

explain the dynamics. We observe similar performance when
we consider byte hit rates.

0

100

200

θf
or(

d*T
TL,

(s

0

0.5

1

1.5

Tra
ffic

,(G
bp

s

0

150

300

450

θf
or(

f*T
LL,

(s

0

10

20

30

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

θs
,(s

Time
12:00(((12:00((((12:00((((12:00(((12:00((((12:00(((12:00((((12:00((((12:00(((12:00(((

YES

Tr
af
fic
,	G

bp
s

𝜽
d-
TT
L,
	s

𝜽
f-T

TL
,	s

𝜽𝒔
f-T

TL
,	s

0

0.5

1.5
1.0

100

200

0

0

150

400
300

0

10

30

20

Time
12:0012:00 12:00 12:00 12:00 12:0012:00 12:00 12:00 12:00

Fig. 4: Variation in θ for d-TTL, θ for f-TTL and θs over time
with target object hit rate=60%.

From Figure 4, we see that the value of θ for d-TTL is
smaller than that of f-TTL. This happens due to the fact that
f-TTL filters out rare objects to meet the target normalized
size, which can in turn reduce the hit rate, resulting in an
increase in θ to achieve the target hit rate. We also observe
that θ for both d-TTL and f-TTL is generally smaller during
peak hours when compared to off-peak hours. This is because
the inter-arrival time of popular content is smaller during peak
hours. Hence, a smaller θ is sufficient to achieve the desired hit
rate. However, during off-peak hours, traffic drops by almost
70%. With fewer content arrivals per second, θ increases to
provide the same hit rate. In the case of f-TTL, the increase in
θ, increases the normalized size of the system, which in turn
leads to a decrease in θs. This matches with the theoretical
intuition that d-TTL adapts θ only to achieve the target hit
rate while f-TTL adapts both θ and θs to reduce the cache
size while also achieving the target hit rate.

C. Hit rate performance of d-TTL and f-TTL

The performance of a caching algorithm is often measured
by its hit rate curve (HRC) that relates its cache size with
the (object or byte) hit rate that it achieves. HRCs are useful

IEEE/ACM TRANSACTIONS ON NETWORKING 12

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

Av
er
ag
e.
ca
ch
e.s

ize
,.G

B

Average.object.hit.rate,.%

d=TTL

f=TTL

Av
er
ag
e	
Ca

ch
e	
Si
ze
,	G

B 100

10

1

0.1

Average	object	hit	rate,	%
20 40 60 80

d-TTL
f-TTL

Fig. 5: Hit rate curve for object hit
rates.

0

20

40

60

80

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Ob
je
ct
,h
it,
ra
te
,,%

Time

2:hour,average

Cumulative,average

60%,ohr vos from,ttl:1
YES

12:00,,,,12:00,,,12:00,,,12:00,,,,12:00,,,12:00,,,,12:00,,,12:00,,,12:00,,,12:00

O
bj
ec
t	h

it	
ra
te
,	%

80

60

40

20

0

Time
12:00 12:00 12:00 12:00 12:00

2-hour	average
Cumulative	average

Fig. 6: Object hit rate convergence over
time for d-TTL; target object hit rate=60%.

0

20

40

60

80

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Ob
je
ct
,h
it,
ra
te
,,%

Time

2:hour,average

Cumulative,average

60%,ohr vos from,ttl:2
YES

12:00,,,,12:00,,,12:00,,,12:00,,,,12:00,,,12:00,,,,12:00,,,12:00,,,12:00,,,12:00

O
bj
ec
t	h

it	
ra
te
,	%

80

60

40

20

0

Time
12:00 12:00 12:00 12:00 12:00

2-hour	average
Cumulative	average

Fig. 7: Object hit rate convergence over
time for f-TTL; target object hit rate=60%.

for CDNs as they help provision the right amount of cache
space to obtain a certain hit rate. We compare the HRCs of
d-TTL and f-TTL for object hit rates and show that f-TTL
significantly outperforms d-TTL by filtering out the rarely-
accessed non-stationary objects. The HRCs for byte hit rates
are shown in Appendix B.

To obtain the HRC for d-TTL, we fix the target hit rate at
80%, 70%, 60%, 50% and 40% and measure the hit rate and
cache size achieved by the algorithm. Similarly, for f-TTL, we
fix the target hit rates at 80%, 70%, 60%, 50% and 40%.

Further, we fix target cache sizes of f-TTL as given in 9-th
column in Table II.14 Next, using the average traffic arrival
rate (over the entire 9-day trace) we set the corresponding
normalized size targets (= size target/ arrival rate) for f-TTL.

The HRCs for object hit rates are shown in Figures 5. Note
that the y-axis is presented in log scale for clarity. The hit rate
performance for byte hit rates is discussed in Appendix B.

From Figure 5 we see that f-TTL always performs better
than d-TTL i.e. for a given hit rate, f-TTL requires lesser
cache size on average than d-TTL. In particular, on average,
f-TTL achieves the target cache size with less than 6% error.
In Appendix C, we discuss the performance of f-TTL for other
target cache sizes.

D. Convergence of d-TTL and f-TTL

For the dynamic TTL algorithms to be useful in practice,
they need to converge to the target hit rate with low error.
In this section we measure the object hit rate convergence
over time, averaged over the entire time window and averaged
over 2 hour windows for both d-TTL and f-TTL. We set
the target object hit rate to 60% and a target cache size as
given in Table II. The byte hit rate convergence is discussed
in Appendix B.

From Figures 6 and 7, we see that the 2 hour averaged
object hit rates achieved by both d-TTL and f-TTL have a
cumulative error of less than 1.3% while achieving the target
object hit rate on average. We see that both d-TTL and f-TTL
tend to converge to the target hit rate, which illustrates that
both d-TTL and f-TTL are able to adapt well to the dynamics
of the input traffic.

14The size targets are chosen to achieve 50% size of d-TTL. In practice it
can be set according to the choice of the designer.

In general, we also see that d-TTL has a lower variability
for object hit rates compared to f-TTL due to the fact that
d-TTL does not have any bound on the normalized size while
achieving the target hit rate, while f-TTL is constantly filtering
out non-stationary content to meet the target normalized size
while also achieving the target hit rate.

E. Accuracy of d-TTL and f-TTL

A key goal of d-TTL and f-TTL is to achieve a target
hit rate, even in the presence of bursty and non-stationary
requests. We evaluate the performance of both these algorithms
by fixing the target hit rate and comparing the hit rates
achieved by d-TTL and f-TTL with caching algorithms such as
Fixed TTL (TTL-based caching algorithm that uses a constant
TTL value) and LRU (constant cache size), provisioned using
Che’s approximation [15]. We only present the results for
object hit rates (OHR) in Table II. Similar behavior is observed
for byte hit rates.

For this evaluation, we fix the target hit rates (column 1)
and analytically compute the TTL (characteristic time) and
cache size using Che’s approximation (columns 2 and 6) on
the request traces assuming Poisson traffic. We then measure
the hit rate and cache size of Fixed TTL (columns 3 and 4)
using the TTL computed in column 2, and the hit rate of
LRU (column 5) using the cache size computed in column 6.
Finally, we compute the hit rate and cache size achieved by d-
TTL and f-TTL (columns 7,8,10 and 11) to achieve the target
hit rates in column 1 and a target cache size that is 50% of
that of d-TTL (column 9).

We make the following conclusions from Table II.
1) The d-TTL and f-TTL algorithms meet the target hit rates
with a small error of 1.2% on average. This is in contrast to
the Fixed TTL algorithm which has a high error of 14.4% on
average and LRU which has an even higher error of 20.2%
on average. This shows that existing algorithms such as Fixed
TTL and LRU are unable to meet the target hit rates while
using heuristics such as Che’s approximation, which cannot
account for non-stationary content.
2) The cache size required by d-TTL and f-TTL is 23.5%
and 12% respectively, of the cache size estimated by Che’s
approximation and 35.8% and 18.3% respectively, of the
cache size achieved by the Fixed TTL algorithm, on average.
This indicates that both LRU and the Fixed TTL algorithm,

IEEE/ACM TRANSACTIONS ON NETWORKING 13

TABLE II: Comparison of target hit rate and average cache size achieved by d-TTL and f-TTL with Fixed-TTL and LRU.

Target Fixed TTL (Che’s approx.) LRU (Che’s approx.) d-TTL Target f-TTL
OHR (%) TTL (s) OHR (%) Size (GB) OHR (%) Size (GB) OHR (%) Size (GB) Size (GB) OHR (%) Size (GB)
80 2784 83.29 217.11 84.65 316.81 78.72 97.67 48.84 78.55 55.08
70 554 75.81 51.88 78.37 77.78 69.21 21.89 10.95 69.14 11.07
60 161 68.23 16.79 71.64 25.79 59.36 6.00 3.00 59.36 2.96
50 51 60.23 5.82 64.18 9.2 49.46 1.76 0.88 49.47 0.86
40 12 50.28 1.68 54.29 2.68 39.56 0.44 0.22 39.66 0.20

TABLE III: Impact of exponential changes in constant step size η on the performance of d-TTL (robustness analysis).

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR (%) η = 0.1 η = 0.01 η = 0.001 η = 0.1 η = 0.01 η = 0.001 η = 0.1 η = 0.01 η = 0.001
60 59.35 59.36 59.17 9.03 6.00 5.41 0.01 0.01 0.05
80 79.13 78.72 77.69 150.56 97.67 75.27 0.07 0.11 0.23

TABLE IV: Impact of linear changes in constant step size η = 0.01 on the performance of d-TTL (sensitivity analysis).

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR (%) η(1+0.05) η η(1-0.05) η(1+0.05) η η(1-0.05) η(1+0.05) η η(1-0.05)
60 59.36 59.36 59.36 5.98 6.00 6.02 0.01 0.01 0.01
80 78.73 78.72 78.71 98.21 97.67 97.1 0.11 0.11 0.11

TABLE V: Impact of exponential changes in constant step size ηs on the performance of f-TTL (robustness analysis).

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR (%) ηs = 1e-8 ηs = 1e-9 ηs = 1e-10 ηs = 1e-8 ηs = 1e-9 ηs = 1e-10 ηs = 1e-8 ηs = 1e-9 ηs = 1e-10
60 59.36 59.36 59.36 5.46 2.96 1.88 0.01 0.01 0.02
80 78.65 78.55 78.47 89.52 55.08 43.34 0.12 0.14 0.17

TABLE VI: Impact of linear changes in constant step size ηs = 1e-9 on the performance of f-TTL (sensitivity analysis).

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR (%) ηs(1+0.05) ηs ηs(1-0.05) ηs(1+0.05) ηs ηs(1-0.05) ηs(1+0.05) ηs ηs(1-0.05)
60 59.36 59.36 59.36 3.01 2.96 2.91 0.01 0.01 0.01
80 78.55 78.55 78.54 55.65 55.08 54.27 0.14 0.14 0.14

provisioned using Che’s approximation, grossly overestimate
the cache size requirements.

We note that sophisticated models, such as the shot noise
model [6] or the advanced popularity estimation [30], can
potentially improve the accuracy over simple Che’s approx-
imation. We leave such study for future work.

F. Robustness and sensitivity of d-TTL and f-TTL

We use constant step sizes while adapting the values of θ
and θs in practical settings for reasons discussed in Section
V. In this section, we evaluate the robustness and sensitivity
of d-TTL and f-TTL to the chosen step sizes. The robustness
captures the change in performance due to large changes in
the step size, whereas the sensitivity captures the change due
to small perturbations around a specific step size. For ease of
explanation, we only focus on two target object hit rates, 60%
and 80% corresponding to medium and high hit rates. The
observations are similar for other target hit rates and for byte
hit rates.

Table III illustrates the robustness of d-TTL to exponential
changes in the step size η. For each target hit rate, we measure
the average hit rate achieved by d-TTL, the average cache size
and the 5% outage fraction, for each value of step size. The
5% outage fraction is defined as the fraction of time the hit

rate achieved by d-TTL differs from the target hit rate by more
than 5%.

From this table, we see that a step size of 0.01 offers the best
trade-off among the three parameters, namely average hit rate,
average cache size and 5% outage fraction. Table IV illustrates
the sensitivity of d-TTL to small changes in the step size. We
evaluate d-TTL at step sizes η = 0.01 × (1 ± 0.05). We see
that d-TTL is insensitive to small changes in step size.

To evaluate the robustness and sensitivity of f-TTL, we
fix the step size η = 0.01 to update θ and evaluate the
performance of f-TTL at different step sizes, ηs, to update
θs. The results for robustness and sensitivity are shown in
Tables V and VI respectively. For f-TTL, we see that a step
size of ηs=1e-9 offers the best tradeoff among the different
parameters namely average hit rate, average cache size and
5% outage fraction. Like, d-TTL, f-TTL is insensitive to the
changes in step size parameter ηs.

In Table III and Table V, a large step size makes the d-TTL
and f-TTL algorithms more adaptive to the changes in traffic
statistics. This results in reduced error in the average OHR
and reduced 5% outage fraction. However, during periods of
high burstiness, a large step size can lead to a rapid increase
in the cache size required to maintain the target hit rate. The
opposite happens for small step sizes.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

VII. RELATED WORK

Caching algorithms have been studied for decades in differ-
ent contexts such as CPU caches, memory caches, CDN caches
and so on. We briefly review some relevant prior work.

TTL-based caching. TTL caches have found their place in
theory as a tool for analyzing capacity based caches [9], [12],
[13], starting from characteristic time approximation of LRU
caches [14], [15]. Recently, its generalizations [5], [18] have
commented on its wider applicability. However, the generaliza-
tions hint towards the need for more tailored approximations
and show that the vanilla characteristic time approximation
can be inaccurate [5]. On the applications side, recent works
have demonstrated the use of TTL caches in utility maximiza-
tion [13] and hit ratio maximization [11]. Specifically, in [13]
the authors provide an online TTL adaptation highlighting the
need for adaptive algorithms. However, unlike prior work, we
propose the first adaptive TTL-based caching algorithms that
provides provable hit rate and normalized size performance in
the presence of non-stationary traffic such as one-hit wonders
and traffic bursts.

We also review some capacity-based caching algorithms.
Capacity-based caching. Capacity-based caching algo-

rithms have been in existence for over 4 decades and have
been studied both theoretically (e.g. exact expressions [31]–
[33] and mean field approximations [34]–[36] for hit rates,
mixing time of caching algorithms [37]) and empirically (in
the context of web caching [38]). Various cache replacement
algorithms have been proposed based on the frequency of
object requests (e.g. LFU), recency of object requests (e.g.
LRU) or a combination of the two parameters (e.g., LRU-K,
2Q, LRFU [27], [28], [39]). Given that CDNs see a lot of non-
stationary traffic, cache admission policies such as those using
bloom filters [23] have also been proposed to maximize the hit
rate under space constraints. Further, non-uniform distribution
of object sizes have led to more work that admit objects based
on the size (e.g., LRU-S, AdaptSize [40], [41]). While several
capacity-based algorithms have been proposed, most don’t
provide theoretical guarantees in achieving target hit rates.

Cache tuning and adaptation. Most existing adaptive
caching algorithms require careful parameter tuning to work
in practice. There have been two main cache tuning methods:
(1) global search over parameters based on prediction model,
e.g. [42], [43], and (2) simulation and parameter optimization
based on shadow cache, e.g. [44]. The first method often
fails in the presence of cache admission policies; whereas, the
second method typically assumes stationary arrival processes
to work well. However, with real traffic, static parameters
are not desirable [22] and an adaptive/self-tuning cache is
necessary. The self-tuning heuristics include, e.g., ARC [22],
CAR [45], PB-LRU [46], which try to adapt cache partitions
based on system dynamics. While these tuning methods are
meant to deal with non-stationary traffic, they lack theoretical
guarantees unlike our work, where we provably achieve a
target hit rate and a feasible normalized size by dynamically
changing the TTLs of cached content.

Finally, we discuss work related to cache hierarchies, high-
lighting differences between those and the f-TTL algorithm.

Cache hierarchies. Cache hierarchies, made popular for
web caches in [15], [47], [48], consist of separate caches,
mostly LRU [48], [49] or TTL-based [9], arranged in multiple
levels; with users at the lowest level and the server at the
highest. A requested object is fetched from the lowest possible
cache and, typically, replicated in all the caches on the request
path. Analysis for network of TTL-caches were presented
in [9], [10]. In a related direction, the performance of complex
networks of size based caches were approximated in [49].

While similar in spirit, the f-TTL algorithm differs in its
structure and operation from hierarchical caches. Besides the
adaptive nature of the TTLs, the higher and lower-level caches
are assumed to be co-located and no object is replicated
between them—a major structural and operational difference.
Further, the use of shadow cache and shallow cache in lower-
level cache Cs distinguishes f-TTL from the above.

VIII. CONCLUSIONS

In this paper we designed adaptive TTL-based caching
algorithms that can automatically learn and adapt to the
request traffic and provably achieve any feasible hit rate and
cache size. Our work fulfills a long-standing deficiency in the
modeling and analysis of caching algorithms in the presence
of bursty and non-stationary request traffic. In particular,
we presented a theoretical justification for the use of two-
level caches in CDN settings where large amounts of non-
stationary traffic can be filtered out to conserve cache space
while also achieving target hit rates. On the practical side, we
evaluated our TTL caching algorithms using traffic traces from
a production Akamai CDN server. The evaluation results show
that our adaptive TTL algorithms can achieve the target hit rate
with high accuracy; further, the two-level TTL algorithm can
achieve the same target hit rate at a much smaller cache size.

ACKNOWLEDGMENT

This work is partially supported by the US Dept. of Trans-
portation supported D-STOP Tier 1 University Transportation
Center, NSF grants CNS-1652115, CNS-1717179, and CNS-
1413998. We are grateful to the anonymous reviewers for their
valuable comments that helped improve this paper.

REFERENCES

[1] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,
“Adaptive ttl-based caching for content delivery,” in Proceedings of the
2017 ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems. ACM, 2017, pp. 45–46.

[2] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” Internet Computing, IEEE,
vol. 6, no. 5, pp. 50–58, 2002, http://www.computer.org/internet/ic2002/
w5050abs.htm.

[3] E. Nygren, R. Sitaraman, and J. Sun, “The Akamai Network: A platform
for high-performance Internet applications,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[4] Cisco, “Visual Networking Index: The Zettabyte Era—Trends and
Analysis,” june 2016, goo.gl/id2RB4.

[5] F. Olmos, B. Kauffmann, A. Simonian, and Y. Carlinet, “Catalog dy-
namics: Impact of content publishing and perishing on the performance
of a lru cache,” in Teletraffic Congress (ITC), 2014 26th International.
IEEE, 2014, pp. 1–9.

[6] E. Leonardi and G. L. Torrisi, “Least recently used caches under the shot
noise model,” in Computer Communications (INFOCOM), 2015 IEEE
Conference on. IEEE, 2015, pp. 2281–2289.

IEEE/ACM TRANSACTIONS ON NETWORKING 15

[7] N. Gast and B. Van Houdt, “Asymptotically exact ttl-approximations
of the cache replacement algorithms lru (m) and h-lru,” in Teletraffic
Congress (ITC 28), 2016 28th International, vol. 1. IEEE, 2016, pp.
157–165.

[8] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling ttl-based internet
caches,” in INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications. IEEE Societies, vol. 1.
IEEE, 2003, pp. 417–426.

[9] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of ttl-based
cache networks,” in Performance Evaluation Methodologies and Tools
(VALUETOOLS), 2012 6th International Conference on. IEEE, 2012,
pp. 1–10.

[10] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of ttl
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[11] D. S. Berger, S. Henningsen, F. Ciucu, and J. B. Schmitt, “Maximizing
cache hit ratios by variance reduction,” ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 2, pp. 57–59, 2015.

[12] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, vol. 1,
no. 3, p. 12, 2016.

[13] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. C.
Tay, “A utility optimization approach to network cache design,” in
Computer Communications, IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on. IEEE, 2016, pp. 1–9.

[14] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222–250, 1977.

[15] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[16] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in Computer Com-
munications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference
on. IEEE, 2012, pp. 310–315.

[17] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for lru cache performance,” in Proceedings of the 24th
International Teletraffic Congress. International Teletraffic Congress,
2012, p. 8.

[18] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: what is the performance price of content integrity verification
in lru caching?” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 3, pp. 59–67, 2013.

[19] F. Guillemin, B. Kauffmann, S. Moteau, and A. Simonian, “Experimen-
tal analysis of caching efficiency for youtube traffic in an isp network,”
in Teletraffic Congress (ITC), 2013 25th International. IEEE, 2013,
pp. 1–9.

[20] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 3, pp. 52–
66, Jul. 2015. [Online]. Available: http://doi.acm.org/10.1145/2805789.
2805800

[21] V. R. Konda and J. N. Tsitsiklis, “Onactor-critic algorithms,” SIAM
journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[22] N. Megiddo and D. S. Modha, “Outperforming lru with an adaptive
replacement cache algorithm,” Computer, vol. 37, no. 4, pp. 58–65,
2004.

[23] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 3, pp. 52–66, 2015.

[24] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications for cdns and web
sites,” in Proceedings of the 11th international conference on World
Wide Web. ACM, 2002, pp. 293–304.

[25] B. Fox, “Semi-markov processes: A primer,” DTIC Document, Tech.
Rep., 1968.

[26] H. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithms and applications. Springer Science & Business Media,
2003, vol. 35.

[27] T. Johnson and D. Shasha, “X3: A low overhead high performance buffer
management replacement algorithm,” 1994.

[28] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” ACM SIGMOD Record, vol. 22,
no. 2, pp. 297–306, 1993.

[29] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor–critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

[30] F. Olmos and B. Kauffmann, “An inverse problem approach for content
popularity estimation,” in Proceedings of the 9th EAI International
Conference on Performance Evaluation Methodologies and Tools. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2016, pp. 33–40.

[31] W. King, “Analysis of demand paging algorithms.” in FIP Congress,
1971, pp. 485–490.

[32] E. Gelenbe, “A unified approach to the evaluation of a class of replace-
ment algorithms,” IEEE Transactions on Computers, vol. 100, no. 6, pp.
611–618, 1973.

[33] O. I. Aven, E. G. Coffman, and Y. A. Kogan, Stochastic analysis of
computer storage. Springer Science & Business Media, 1987, vol. 38.

[34] R. Hirade and T. Osogami, “Analysis of page replacement policies in
the fluid limit,” Operations research, vol. 58, no. 4-part-1, pp. 971–984,
2010.

[35] N. Tsukada, R. Hirade, and N. Miyoshi, “Fluid limit analysis of fifo and
rr caching for independent reference models,” Performance Evaluation,
vol. 69, no. 9, pp. 403–412, 2012.

[36] N. Gast and B. Van Houdt, “Transient and steady-state regime of a
family of list-based cache replacement algorithms,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 1, pp. 123–136, 2015.

[37] J. Li, S. Shakkottai, J. Lui, and V. Subramanian, “Accurate learning or
fast mixing? dynamic adaptability of caching algorithms,” arXiv preprint
arXiv:1701.02214, 2017.

[38] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[39] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (lru) and least frequently used (lfu) policies,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 27, no. 1. ACM,
1999, pp. 134–143.

[40] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance evaluation, vol. 46, no. 2, pp. 125–137, 2001.

[41] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery net-
work,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, 2017, pp. 483–498.

[42] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache:
Dynamic cloud caching,” in 7th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 15), 2015.

[43] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson, “Dy-
namic performance profiling of cloud caches,” in Proceedings of the
ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–14.

[44] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: Scaling
performance cliffs in web memory caches,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), 2016, pp.
379–392.

[45] S. Bansal and D. S. Modha, “Car: Clock with adaptive replacement.” in
FAST, vol. 4, 2004, pp. 187–200.

[46] Q. Zhu, A. Shankar, and Y. Zhou, “Pb-lru: a self-tuning power aware
storage cache replacement algorithm for conserving disk energy,” in
Proceedings of the 18th annual international conference on Supercom-
puting. ACM, 2004, pp. 79–88.

[47] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and
K. J. Worrell, “A hierarchical internet object cache.” in USENIX Annual
Technical Conference, 1996, pp. 153–164.

[48] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, “Overlay
networks: An Akamai perspective,” in Advanced Content Delivery,
Streaming, and Cloud Services. John Wiley & Sons, 2014.

[49] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in INFOCOM, 2010 Proceedings IEEE. IEEE,
2010, pp. 1–9.

