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Abstract—It has been recently shown that queue-based carrier
sense multiple access (CSMA) algorithms are throughput-optimal.
In these algorithms, each link of the wireless network has two pa-
rameters: a transmission probability and an access probability.
The transmission probability of each link is chosen as an appro-
priate function of its queue length, however the access probabilities
are simply regarded as some random numbers since they do not
play any role in establishing the network stability. In this paper,
we show that the access probabilities control the mixing time of
the CSMA Markov chain and, as a result, affect the delay perfor-
mance of the CSMA. In particular, we derive formulas that relate
the mixing time to access probabilities and use these to develop the
following guideline for choosing access probabilities: Each link ¢
should choose its access probability equal to 1 /(d; 4+ 1), where d;
is the number of links that interfere with link . Simulation results
show that this choice of access probabilities results in good delay
performance.

Index Terms—Carrier sense multiple access (CSMA), Markov
chain, scheduling, wireless network.

I. INTRODUCTION

CHEDULING in wireless networks is of fundamental
S importance due to the inherent broadcast property of the
wireless medium. Two radios might not be able to transmit
simultaneously because they create too much interference
for each other causing the signal-to-noise-plus-interference
ratio (SINR) at their corresponding receivers to go below the
required threshold for successful decoding of the packets.
Therefore, at each time, a scheduling algorithm (MAC pro-
tocol) is needed to schedule a subset of users that can transmit
successfully at the same time.

The performance metrics used to evaluate a scheduling al-
gorithm are throughput and delay. Throughput is characterized
by the largest set of arrival rates under which the algorithm can
stabilize the queues in the network. The delay performance of a
scheduling algorithm can be characterized by the average delay
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experienced by the packets transmitted in the network. The de-
sign of efficient scheduling algorithms, to achieve maximum
throughput and low delay, is the main objective of this paper. It
is also essential for the scheduling algorithms to be distributed
and have low complexity/overhead, since in many wireless net-
works there is no centralized entity and the resources at the
nodes are very limited.

The wireless network is often modeled by its conflict graph
(or interference model) to capture the interference constraints
or technological ones (for example, a node cannot transmit and
receive at the same time). In the conflict graph, two commu-
nication links form two neighboring nodes of the graph if they
cannot transmit simultaneously. Therefore, at each time-slot, the
active links should form an independent set of the conflict graph,
i.e., no two scheduled nodes can share an edge in the conflict
graph. The well-known result of Tassiulas and Ephremides [1]
states that the Maximum Weight Scheduling (MWS) algorithm,
where weights are functions of queue-lengths, is throughput-op-
timal in the sense that it can stabilize the queues in the network
for all arrival rates in the capacity region of the network (without
explicitly knowing the arrival rates). However, for a general
network, MWS involves finding the maximum weight indepen-
dent set of the conflict graph, with time-varying weights, in each
time-slot, which requires the network to solve a complex com-
binatorial problem in each time-slot and, hence, is not imple-
mentable in practice. This has led to a rich amount of literature
on design of approximate algorithms to alleviate the computa-
tional complexity of the MWS algorithm. For example, alterna-
tives such as Maximal Scheduling and Greedy Maximal Sched-
uling have low complexity, but in general these algorithms can
only guarantee stability for a fraction of the capacity region (see,
e.g., [12]-[14]).

Carrier sense multiple access (CSMA)-type algorithms are
an important class of scheduling algorithms due to their sim-
plicity of implementation, and they have been widely used in
practice, e.g., in WLANs (IEEE 802.11 Wi-Fi) or emerging
wireless mesh networks. In these protocols, each user listens
to the channel and can transmit, with some probability, only
when the channel is not busy. In this paper, we consider design
of CSMA algorithms in order to maximize throughput and im-
prove delay performance.

From a local perspective, the CSMA algorithm might seem
easy to understand, but, at a global perspective, interactions
among different users might lead to a very complicated behavior
that makes the performance characterization difficult. In recent
years, fairly simple models have been proposed that are useful in
predicting the throughput of the CSMA algorithm [2], [4]-[7]. A
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more detailed representation of the IEEE 802.11 backoff mech-
anism can be found in [3]. While these models are idealized,
experimental measurements in actual IEEE 802.11 networks
match remarkably well with throughput estimates provided by
these models [8].

Building upon the above-mentioned models, recently, it has
been shown that it is possible to design CSMA algorithms that
are throughput-optimal, e.g., see [9] and [15] for the continuous-
time CSMA and [10] and [19] for the discrete-time CSMA. The
common component in all these works is a Markov chain (called
CSMA Markov chain) over the space of feasible schedules. The
transition probabilities of the CSMA chain are controlled, by
queue lengths or the differences between the average arrival
rates and the average departure rates of the links, to make sure
that a suitable schedule is selected at each time.

Essentially, the prior works on CSMA are mostly concerned
with ensuring network stability. Their main focus is often on
solving the maximum weight independent set problems in a
distributed manner by using the so-called Glauber Dynamics.
In CSMA algorithms, each user has two parameters: an access
probability that controls how often the user tries to access the
channel and a transmission probability that controls the length
of the data transmission once the user acquires access to the
channel. In the traditional ALOHA protocol, for a network of
N users, the access probabilities {a;}{ ; are chosen to be £ in
order to maximize the throughput and the maximum throughput
per user is approximately A% However, in the CSMA schemes,
as we will see in Section II, one of the parameters is fixed and
the other parameter is controlled, as a function of the user’s local
information to achieve the maximum throughput.

Unfortunately, such maximum throughput guarantees have
been established under a range of parameters that induce ex-
cessive backlogs and delays. This has triggered a strong in-
terest in developing approaches for improving the delay perfor-
mance of CSMA. Reference [17] proposes a modified CSMA
scheme, called Unlocking CSMA, which requires all nodes to
become silent periodically and operate as usual CSMA between
such epochs. They show that such unlocking can yield optimal
throughput and order-optimal delay in torus/grid graph topolo-
gies for uniform traffic patterns. The delay-order, as the number
of nodes N in the network grows, has been characterized in
[16], [21], and [22]. As shown in [16], for general networks, it
may not be possible to design low-complexity scheduling algo-
rithms that can achieve low delay (polynomial in the number of
nodes) for a small fraction (depending on the number of nodes)
of the capacity region. References [21] and [22] have reported
some positive results but again for some specific topologies;
they show that CSMA can achieve low delay (O(log N') or O(1)
as N — oc) when arrival rates are within a small fraction of
the capacity region. Establishing or improving such asymptotic
results is not the objective of the current paper. Instead, we con-
sider the delay performance of CSMA for general arrival rates
(inside the capacity region) and general network topologies and
investigate the potential to improve the delay performance by
optimizing over the range of parameters of CSMA. In particular,
we consider Queue-based CSMA (Q-CSMA) schemes, where
the access probabilities do not play a role in showing the sta-
bility/throughput optimality of CSMA because they do not ap-
pear in the steady-state distribution of the CSMA Markov chain.
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Hence, they have been simply regarded as some constants be-
tween zero and one. However, we will see that they do have
a significant impact on the mixing time of the chain, i.e., the
amount of time that it takes to reach close to the steady state
starting from some initial condition. Therefore, the access prob-
abilities control the rate at which CSMA responds to the queue
dynamics and, hence, have a significant effect on the delay per-
formance of the network. The relationship between the delay
of the scheduling algorithm and the mixing time of the CSMA
chain has been characterized in [21] where the expected queue
length is bounded from above by a multiple of the mixing time
(see the proof of [21, Theorem 6]).

A. Main Contributions and Organization

In this paper, we analyze the mixing time of the Q-CSMA
Markov chain and develop guidelines to choose access proba-
bilities that result in small mixing times. The main contributions
of the paper are the following.

1) In the case of collocated networks, we show that access
probabilities of the form 1/N yield mixing times that are
within a constant factor of the optimal mixing time, i.e.,
the minimum mixing time assuming the global knowledge
of the queues/weights of the network.

2) In d-regular networks, we show that access probabilities
of the form 1/, when ¥ is the chromatic number of the
graph, have the same kind of property when we replace the
mixing time with a suitable upper bound on it. In general,
x < d + 1, nevertheless, replacing the chromatic number
with the  + 1 still yields similar result, but for a larger
constant gap.

3) Based on these observations, in general graphs, we conjec-
ture that access probabilities of the form {a; = 27 1Y,
should yield good performance, where d; is the degree of
the link /. Our simulation results show that the conjectured
access probabilities have a good delay performance. In-
deed, they seem to yield average queue lengths that are
very close to the smallest queue lengths that can be ob-
tained with any fixed access probabilities.

The remainder of the paper is organized as follows. In
Section II, we give an overview the CSMA-type algorithms.
In Section III, we briefly explain some preliminaries and defi-
nitions used in the proofs of the results. Section IV is devoted
to the results for collocated networks. We extend the results
to the general networks in Section V. Section VI contains the
simulation results. Section VII contains concluding remarks
and possible directions for future research. The proofs of the
results are provided in the appendixes at the end of the paper.

II. DESCRIPTION OF CSMA-TYPE ALGORITHMS

In this section, we briefly overview the CSMA-type algo-
rithms reported in the literature with more emphasis on the
Q-CSMA algorithm, which is the one that has been considered
in this paper. We first introduce the following notations.

Let G(V, E) denote the conflict graph of the wireless network
consisting of N communication links. Formally, a schedule can
be represented by a vector X = [z, : s = 1,..., N] such that
s € {0,1} andz;+2,; < 1forall (¢, j) € E.Let M denote the
set of all feasible schedules and C'(¢) denote the set of neighbors
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of'i. Then, the basic idea of CSMA is to use Glauber Dynamics
(to be described) to sample the independent sets of such a graph.

A. Continuous-Time CSMA

In the continuous-time CSMA, each link { has two parame-
ters A; and ;. The parameter A; determines the attempt rate,
and p; determines the transmission length. In other words, the
link ! senses the channel at the end of exponentially distributed
backoff intervals with the parameter A;, and if it detects no on-
going transmissions (the channel is idle), it will transmit for
an exponentially distributed amount of time with the mean ;.
Note that if the links were independent, i.e., no interference con-
straints, then the stationary probability of a schedule X would
be proportional to [],. v Aipr. Now consider a collection of
N links with some scheduling constraints captured by a conflict
graph. Then, the corresponding Markov chain will be truncation
of the previous Markov chain to the set of feasible schedules M.
As the result, we have a reversible Markov chain over M with
the stationary distribution

_ HleX )‘l,ul
Yvem ey A
By choosing A;py; = e where w; is the weight of the link [,

i.e., an appropriate function of its queue length, the stationary
distribution will be in the form of

m(X) = %exp (Z wi) , XeM

1EX

7(X) VX € M.

)

where 7 is the normalizing constant. Hence, when the weights
are large, the algorithm picks the maximum weight schedule
with high probability in steady state. Therefore, the algorithm
is throughput-optimal [20] if we make sure that the instanta-
neous probability distribution and the stationary distribution are
close enough. To get a faster mixing time, one can let A\; grow
very large (and p; = exp(w;)/\;). However, this does not make
sense since, in practice, the carrier sensing is performed using
energy detection (and hence, cannot be instantaneous) and the
backoffinterval cannot be smaller than a certain mini-slot. Simi-
larly, the data transmission slot cannot be made arbitrarily small.
Moreover, this model is based on a perfect carrier sense assump-
tion and does not consider the collisions due to propagation de-
lays. Thus, in the rest of the paper, we consider the discrete-time
CSMA algorithm proposed in [10] called O-CSMA.

B. O-CSMA [10], [18]

Time is slotted, and arrival process to each link is assumed
to be discrete-time, where A4;(¢) is the number of packets ar-
riving at link / in time-slot ¢. For example, {A4;(¢)}52,, for
I =1,...,N,areindependent Bernoulli processes with param-
eter A = [A;;1 =1,..., N].Ineach time-slot, one packet can be
successfully transmitted over a link if there are no other trans-
missions from the neighboring links.

Each link / is associated with a queue ¢;, where the queue
dynamics are given by

a(t) = (@t — 1) —2(£)" + A(#)

fort > 0and! = 1,..., N.Recall thatuz;(f) = 1 ifthe link/ has
been chosen, by Q-CSMA, to be part of the data transmission

schedule X (#). The vector of queue lengths is denoted by ¢(t) =
[@(t) : 1 =1,...,N].

In Q-CSMA, each link / has two parameters a; and p;. The
parameter a; is the access probability and chosen to be constant,
and p; is the transmission probability and chosen to be

euv;(t)

)= 1w

2)
where wy; is an appropriate function of ¢; (the queue length at
link /) [10], [15], [18]. Let

1

Each time-slot is divided into a control slot and a data slot. In
the control slot, each link [ that wishes to become part of the
data transmission schedule transmits a short control message
called an INTENT message with probability a;. Those links
that transmit INTENT messages and do not hear any INTENT
messages from the neighboring links constitute a decision
schedule.! In the data slot, each link / that is included in the
decision schedule can transmit a data packet with probability p;
only if none of its neighbors have been transmitting in the pre-
vious data slot (see the description of the following algorithm).

Algorithm 1: Q-CSMA in Time-Slot ¢

1: In the control slot, randomly select a decision schedule
m(t) € M by using access probabilities {a;};> ;.
2: —V i inm(t):
If no links in C() were active in the previous data slot,
Le, Y jcom it —1) =0
« x;(t) = 1 with probability p;(2), 0 < p;(t) < 1;
« ;(t) = 0 with probability p;(t) = 1 — p;(#).
Else z;(t) = 0.
—Vi ¢ m(t): x;(t) = z;(t — 1).
3: In the data slot, use X (¢) as the transmission schedule.

If the weights are constant, then the above algorithm is the
discrete-time version of the Glauber dynamics with multiple-
site updates that generates the independent sets of G. Thus, the
state space M consists of all independent sets of . Q-CSMA
algorithm uses a time-varying version of the Glauber dynamics,
where the weights change with time. This yields a time-inhomo-
geneous Markov chain, but for the proper choice of weights that
are log-type function of queue-lengths (to be discussed more in
Section II-C), it behaves similarly to the Glauber dynamics. By
[10, Proposition 1], the stationary distribution with fixed trans-
mission probabilities, i.e., when weights are fixed and do not
change with time, is given by

1 i
w0 =[5 vxem
'i,EXpZ

One can check the detailed balanced equations to show that this
is the true stationary distribution and the chain is reversible (see

More accurately, it is the transmitter of the link that transmits an INTENT
message, and it is the receiver of the link that hears INTENT messages. The
node-based implementation of the algorithm is obtained by a trivial modification
of the one considered in [11, Appendix] by choosing the control slot to be of size
1. Hence, we do not pursue this issue here and refer the interested reader to [11,
Appendix] for all the details.
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the proof of Proposition 1 in [10] or [11]). By choosing the trans-
mission probabilities to be in the form of (2), the stationary dis-
tribution will be the same as (1) and therefore can pick the max-
imum-weight schedule with high probability as the queue sizes
in the network grow.

Definition 1: The capacity region of the network is defined
to be the set of all arrival rates A that can be supported by the
network, i.e., for which there exists a scheduling algorithm that
can stabilize the queues. It is known, e.g., [1], that the capacity
region is given by

A={A>0:3p e Co(M), X < u}

where C'o( - ) is the convex hull operator.2
Definition 2: A scheduling algorithm is throughput-optimal
if it can stabilize the network for any arrival rate in A.

C. Throughput Optimality

The proof of throughput optimality of CSMA algorithms
follows from a time-scale separation assumption, i.e., the
Markov chain evolves much faster than the rate of changes in
the weights (due to queue dynamics in the network) such that
the chain always remains close to its stationary distribution.
This time-scale separation is justified in [15] and [18]. More
precisely, for Q-CSMA, it is shown in [18] that throughput
optimality is preserved with weight functions of the form
w(q) = log(l + q)/g(q), where g(q) can be a function that
increases arbitrarily slowly, e.g., w(q) = (log(1 + ¢))* ¢
for any small positive €. Roughly speaking, by choosing any
function slower than such a w( - ), the rate of changes in the
weights will be much smaller than the rate at which the CSMA
chain responds to these changes, although, for the sake of delay,
we will always choose the fastest weight function possible.

Remark 1: 1t turns out that the mixing time of the CSMA
Markov chain plays a fundamental role in establishing the
throughput optimality property. We will see later that the
mixing time is related to the Second Largest Eigenvalue Mod-
ulus (SLEM) of the transition probability matrix of the Markov
chain.

Remark 2: Reference [19] develops another version of the
CSMA, called preemptive CSMA, which is slightly different
from Q-CSMA. In the preemptive CSMA, again each link has
two parameters a; and p; but there is no exchange of control
messages. Each link [ grabs the channel with some probability a;
if it does not sense any transmissions from its neighbors. Once
it grabs the channel, it transmits a packet. It can continue data
transmission with some probability p; in the subsequent slots.
Again the throughput optimality is established under a time-
scale separation assumption, while the exact proof can be fol-
lowed using the techniques in [15] and [18]. Note that under
preemptive CSMA, if there is a collision due to propagation de-
lays, the whole data packet will be lost, while in the Q-CSMA,
the control messages will be lost which are of smaller size. On
the other hand, there is no exchange of the control messages in
the preemptive CSMA.

III. PRELIMINARIES

Before we state the main results, some preliminaries re-
garding the mixing time of Markov chains is needed.

2When dealing with vectors, inequalities are interpreted componentwise.
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Consider a time-homogenous discrete-time Markov chain
over the finite state space M. For simplicity, we index the
elements of M by 1,2,...,r, where r = |M]|. Assume the
Markov chain is irreducible and aperiodic, so that a unique
stationary distribution 7 = [x(1), ..., n(r)] always exists.

A. Distance Between Probability Distributions

First, we introduce two convenient norms on R” that are
linked to the stationary distribution [23]. Let #2(x) be the real
vector space R™ endowed with the scalar product

T

()e = 3 2Dyl (i).

i=1
Then, the norm of z with respect to 7 is defined as

. 1/2
(Z z(i)%(i)) .

=1

2]l =

We shall also use #2( %), the real vector space R™ endowed with
the scalar product

r

(zyds =D Z(i)y(i)%

i=1

and its corresponding norm. For any two strictly positive prob-
ability vectors y and 7, the following relationship holds:

1
- - 1H > 20— 7|y 3)
T s

o =7l =

where || — pf|7v is the total variation distance
IR
I = wllrv = 5 3 I7(@) = (i),
i=1

Note that the inequality in (3) is just a result of Cauchy—Schwarz
inequality.

B. Mixing Times of Markov Chains

Starting from some initial distribution g, the convergence to
steady-state distribution is geometric with a rate equal to the
second largest eigenvalue modulus (SLEM) of the transition
matrix [23] as it is described next.

Lemma 1: Let P be an irreducible, aperiodic, and reversible
transition matrix on the finite state space M with the stationary
distribution 7. Then, the eigenvalues of P are ordered in such a

way that
AM=1>X 2.2 >—1

and for any initial probability distribution u4 on M, and for all
n>1

o™ — 7lls < o™l — 7l 4)

where & = max{Az,|A.|} is the SLEM of P.
Therefore, if we define the mixing time as

7(e) = inf{n : ||weP" — 7||1/x < €}
for some small € > 0, then a simple calculation reveals that

(T = Dlog([[o = 7ll1x/€) < 7(€) < Tlog(|lpro — 7llay=/€)-
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where T' = % We will see that for Q-CSMA algorithm, 7’ is
exponential in number of links or the maximum weight of the
network. Therefore, 7' is approximately proportional to (),
and by abusing terminology, we will also sometimes refer to T’

as the mixing time.

C. Characterization of the Eigenvalues

Letf3;, =1—X;,s00 =01 < g--- < [,
vector f € RM! | define the Dirichlet form &, (6

£.(0,0) = (I — P)9.0),

< 2. For any
,0) as

and also the variance

Varg(0) = [|6]|7 — (8, 1)7.

ki

Lemma 2 (Raleigh Theorem [23]): Let P be an irreducible,
aperiodic, and reversible transition matrix on a finite state space
M, then for j > 2

E(6,0) L
3; = inf § ——= :{(f,u;), =0for 1 <i<j—1
& 60 {Varw(a) (6, vi) ortsr=y }
where v;s are the right eigenvectors of P. Moreover, any
vector ¢ achieving the infimum is an eigenvector of P corre-
sponding to the eigenvalue A\; = 1 — j3;.

Expanding the inner product, and using reversibility of the
Markov chain, reveals that

EB.0)= 5 3 wlidpi(t — 6

i,jEM

To characterize the SLEM o, we need to find As and A\,.. When
solving the minimization in Lemma 2 is difficult, one can still
use the result of the geometric convergence rate, Lemma 1, by
finding good bounds on Ay and A,.. In these cases, the following
lemmas are useful [23], [24]. First, for a nonempty set B C M,
define the following:

and

> wli)pi;

i€B,jeB"

Then, the conductance of an irreducible, aperiodic, and re-
versible transition matrix P is defined as
F(B)
P) = .
o(P) Bm(%l)g1/2 n(B)

Lemma 3 (Cheeger'’s Inequality):
¢*(P)

4

1-2¢(P) <A <1

Lemma 4 (Gershgorin'’s Bound): Let P = [p;;] be a finite
r x r matrix. Then, for any eigenvalue A and all & € [1, 7],

A — prx| < min(rg, sz)
where 7, = ngék: [pi;| and sp = Zj;ék Ipikl.

IV. MAIN RESULTS FOR COLLOCATED NETWORKS

In prior works, the access probabilities are chosen to be some
constant numbers strictly between zero and one to guarantee the
irreducibility of the CSMA Markov chain. In this section, we
will see that access probabilities affect the mixing time of the

Fig. . Q-CSMA Markov chain for a collocated network with V links.

CSMA chain that, in turn, controls the delay of the scheduling
algorithm. We aim to optimize the access probabilities in order
to minimize the mixing time of the chain. Recall that the mixing
time is proportional to ﬁ where o is the SLEM of the tran-
sition probability matrix. Therefore, we need to choose access
probabilities to maximize 1 — o.

Consider a collocated network under Q-CSMA where every
link interferes with all the other links, i.e., the conflict graph is
complete. In this case, we can index the feasible schedules by
0,1,2,...,N, as in Fig. 1, where 0 shows the empty schedule
and nonzero indices show the active link number. Every link
i, 1 < ¢ < N, can change its state, i.e., becomes active or
silent, if and only if it is selected in the decision schedule. Let
X be the Q-CSMA Markov chain as in Fig. 1 and p;; denote the
probability of transition from state ¢ to state j, i.e.,

pij = P(X(t+1) =7 X(f) =1).

Link 2 is selected in the decision schedule, when it sends an
INTENT message and nobody else transmits INTENT mes-
sages, which happens with probability

N

a; = a; H (1 —ay)

j=1

J#i
where a; is the access probability of link 7, 1 < ¢ < N, as
defined earlier. Therefore, it follows that the transition proba-
bilities of the Q-CSMA Markov chain are given by

poi = aipi [ [(1—ay), i #0
i
Pis :1—{1iﬁl‘H(1—(1,j), 1#£0
e
Pio = GiDi H(l — ay), i 0
j#i
N
poo =1 — ZZ’O'L’
i=1

where p; = 1 — p;.
Calculating Az and A, (r = |M]|) directly from the transi-
tion probability matrix, especially when NV is large and weights
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are different, is not an easy task. Instead, we use the Raleigh
Lemma (Lemma 2) to calculate A;. Solving the exact minimiza-
tion in Lemma 2 is possible, but it does not yield a closed-form
expression for J; = 1 — Ay (see Appendix E; 2 is expressed
as a zero of a complex polynomial). Hence, we do not present
the exact solution here, and instead present the following more
useful result about the upper and lower bounds on As. The proof
is provided in Appendix A.

Lemma 5: For a collocated network of N > 2 links, and
given a set of access probabilities {a;}¥ ; and a set of trans-
mission probabilities {p; }7¥ ;, A" < B2 < 35, where

low __ o Y — .
o = i pie [ (0= i) ®
SIS i
%P =2 min i [[(1 - a;). 6
[2 i;fglgull/Qpa L[Z( (]J) ( )

Note that in the case of N = 1, trivially, no scheduling is
needed and a} = 1. Thus, we can assume that there are at least
two links in the network. Next, we use the Gershgorin’s bound
(Lemma 4) to find a lower bound on all the eigenvalues. We state
the result as a lemma, whose proof is given in Appendix B.

Lemma 6: For a collocated network of N > 2 links, under
equal access probabilities and any set of transmission probabil-
ities, all the eigenvalues are nonnegative, i.e., A, > 0.

Note that for general access probabilities, T° = ﬁ > %
However, in the case of equal access probabilities, by Lemma 6,
SLEM is dominated by A and, hence, T' = 1//s.

We will use the following result in bounding the smallest pos-
sible mixing time.

Lemma 7: The optimal access probabilities that maximize
pYY, in Lemma 5, are in the form of o} = kfﬁ’ where the
constant & is chosen such that Zt\zl a; = 1.

The proof for Lemma 7 is provided in Appendix C. As a spe-
cial case, when all the p;’s are equal, i.e., weights are equal,
simple calculation reveals that the optimal access probabilities
in Lemma 7 are all equal to 1/N . Therefore, for such a choice of
access probabilities, the equality T = 1/0> holds and therefore,
T <1/ 65"“’. Hence, in the case of equal weights, the access
probabilities of the traditional ALOHA protocol, i.e., a; = %,
minimize the upper bound 1/85X".

In general, the ALOHA access probabilities are not optimal
for the queue-based random access protocols, and finding the
optimal access probabilities requires the knowledge of all the
weights in the network, which might not be feasible in practice.
In this case, one might be interested in a suboptimal solution that
does not require the global knowledge and the mixing time ratio,
i.e., the ratio of the optimal solution to the suboptimal solution,
remains bounded, i.e.,

T(subopt.)

1
< T(opt.)

<M 7

for some constant M independent of the network size N . It suf-
fices to find a suboptimal solution such that

TP (subopt.)

1<
Tlow(opt_)

<M (8)

where TP (subopt. ) is the upper bound on the suboptimal solu-
tion and 7'°" (opt.) is the lower bound on the optimal solution.
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Equivalently, for a suboptimal solution with equal access prob-
abilities, we need to show that

5 (opt.)

1< ————
BY (subopt.)

<M 9)

where 3, and A were defined in Lemma 5. To show such a
property, we need to consider an appropriate distribution of p;’s
as the number of nodes N grows. Here, we assume that there
exist m types of weights, such that a constant fraction v, of the
nodes have the weight py for & = 1,...,m. Note that in such
a setting, if there exists a state/link / with 7; > 1/2, then since
Py 1s one of the m possible weights, there must exist a, NV links
with the same transmission probability p;, and all of them should
have stationar% probabilities greater than 1/2 which is impos-
sible since Zi;o w; = 1. Therefore, all the states have the sta-
tionary probability less than 1/2, and F5° = 28", Hence, the
access probabilities that maximize 357, i.e., yield the smallest
lower bound on the mixing time, are given by Lemma 7. Then,
it is easy to see that the optimal £* in Lemma 7 is in the form of
~ for some constant pUN < ¢ < 1/2, where p™* = min, p;.
Thus, we have

_ m _ ap N
2Uup o L* Di _ 2¢ Di
g lopt) = 2k H Bp N (m + c/N> '

Putting everything together, the suboptimal access probabilities
of the form a; = % yield a bounded mixing time ratio indepen-
dent of IV because

pmin 1 N-1
3% (subopt.) = 1= 10
B35 (subopt.) N < N) (10)
and
3up 1. 2¢ s X
LR o)

N—oo 7% (subopt.) — pu® =1 Pk

(11)

Therefore the mixing time ratio is bounded for all values of
N. The importance of the above ratio is that it guarantees that
the mixing time of the suboptimal solution is within a constant
multiple of the optimal mixing time, independent of the network
size. Furthermore, choosing access probabilities independent of
N results in unbounded mixing time ratio. This is because, by
(5), any choice of equal access probabilities a, for some 0 <
a < 1,yields Y% = p™ina(1 — o) 1, and it is easy to check
that 35" (opt.)/ 85" grows unboundedly if a does not scale as
1/N.

The same analysis is possible for other kinds of weight as-
signment as well. Essentially, since there exists at most one
link { with m; > 1/2, we can prove that this does not change
the asymptotics. For example, for the weight assignment that
there are NV different weights, following the exact line of argu-
ments as above shows that

B (opt) < <

c 1
—1}31(11+%(N—1)>

where { is the link with p; = P and ¢ is a constant satis-
fying ™" < ¢ < 1/2. Hence, as N — oo, 8"*P(opt.) <
5 exp(—1/2c) and (10) still holds. Therefore, the mixing

2c

time ratio is bounded by == exp(l — 5.
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V. MAIN RESULTS FOR GENERAL NETWORKS

The extension of results to general networks is more dif-
ficult since the corresponding CSMA Markov chain is much
more complex than the Markov chain of collocated networks,
hence finding the second largest eigenvalue by solving the
optimization in Lemma 2 is cumbersome. Instead, we find an
upper bound on the SLEM based on the conductance bound
(Lemma 3).

Assume the current schedule is X () = X, forsome X € M,
and the CSMA Markov chain makes a transition to the next
state/schedule X (¢ + 1) = Y. Note that X\Y = {l : 2, =
1,9 = 0} is the set of links that change their states from 1
(active) to O (silent). Similarly YAX = {l : & = 0,4y, = 1}
is the set of links that change their states from 0 to 1. From the
scheduling algorithm, it is clear that a link can change its state
only when it belongs to the decision schedule. Therefore, X can
make a transition to Y when XAY C m, for some m € M,
where XAY := (X\Y) U (Y\X). Now, given that such a
decision schedule m has been chosen, with some probability
a(m), we can divide the links of mn into five cases.

1) { € X\Y: Link { decides to change its state from 1 to 0;

this occurs with probability p;.

2) k € Y\X: Link & decides to change its state from 0 to 1;

this occurs with probability py.

3) i € m N (X NY): Link i decides to keep its state 1; this

occurs with probability p;.
4) e € m\C(X) where C(X) = UjexC(l): Link e has to
keep its state 0; this occurs with probability 1.
5) 7 € m\(X UY)\C(X): Link j decides to keep its state 0;
this occurs with probability p;.
Note that m\C(Y\X) = 0 because Y\X C m, so we have
m\(XUYNC(X) =m\(XUY)\C(X UY). Then, it is not
hard to argue that P(X,Y’), the probability of transition from
the schedule X to the schedule Y, is given by

P(X.Y) =

Z a(m) H 7] H Di

mEM:XAY Cm IeX\Y keY\X

X H Pi H pj-

EmN(XNY)  jem\(XUY)\C(XUY)

(12)

Recall the mechanism for generating a decision schedule m
by transmitting the INTENT messages based on access proba-
bilities {a;} ¥ . All the links that are included in 1 should have
transmitted INTENT messages and have not heard any INTENT
messages from their interfering neighbors. Hence, the proba-
bility of generating a decision schedule a(m) = a(m;G) in
the graph GG can be characterized by

a(m,G) = H a; H (1 - a;)a(B; G\(m U C(m)))
iEm JEC(m)
where a(@; G\(mUC(m))) is the probability that no nodes are
included in the decision schedule in graph G\(m U C(m)), i.e.,
the graph obtained by removing all the links in e and C(mn)
from G. The expression for a(; G') could be quite complicated
since it has to account for all the events that yield a § schedule
due to either not transmitting INTENT messages or collision be-

tween INTENT messages transmitted by the nodes of G’. Nev-
ertheless, the mixing time can be upper-bounded by3

1 2
T=—<— (13)
P2 = ¢2(P)
where <;~S(P ) is an approximate conductance defined in the fol-
lowing lemma. The proof is presented in Appendix D.
Lemma 8: In a general network, under the Q-CSMA with
transition probability matrix P, the conductance $(F) is lower-
bounded by ¢(P), where

$(P)= min P(mg,0),

moEMo
Mo C M is the set of all maximal schedules, and P(myg, @) is
the probability of transition from the maximal schedule mg to
the empty schedule 0.
Therefore, we can try to find optimal access probabilities that
maximize ¢(F). In this case, the optimal access probabilities

are the solution to
H a;P; H (1 — (1/)

1€y j¢7n0

max min
{a;} mo€EMo

(14)
Solving the above optimization needs some global knowledge
of the network. Hence, we investigate possible suboptimal so-
lutions with the bounded mixing-time ratio (7) when we use the
upper bounds on the mixing times, based on (13), instead of the
exact values.

As a special case, consider a d-regular network with /V links,
i.e., each link has exactly d interfering neighbors. Furthermore,
assume that the weights are equal, i.e.,p1 = ... = Py . [tis easy
to show that, in this case, in the optimization (14), we need to
consider the minimization over the maximal schedules with the
maximum Ssize, i.e., over the set of nodes with the same color in
a valid node coloring of the graph. Let x denote the chromatic
number of the corresponding graph. Note that since there is no
unique way of constructing a d-regular graph with NV nodes, the
chromatic number depends on the construction, but we know
that

maximum clique size <y <d+ 1.

Since the graph is symmetric, all the access probabilities must
be equal and the maximum size of the maximal schedule is s =
[%l . Then, the optimal access probabilities in (14) are all equal
and simply the solution to

maxa®(l —a)¥ ¢
a

5

ie,a= % = %f%} or

1 1 1

This suggests using 1/ as the access probability. Since, in gen-
eral, the chromatic number of the network might not be known,

3Here, we assume that the SLEM is X». To ensure this, one may have to
modify the CSMA Markov chain slightly to make it a lazy chain [25] by adding
self-loops of probability at least 1/2 to each state. This will not change the
steady-state distribution but changes the transition probability matrix to P’ =
2(P+ 1), and hence, A, = 2(X; + 1). This shows that all the eigenvalues of
P’ are nonnegative and the lazy chain is at most twice slower than the original
CSMA chain.
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our conjecture is that ﬁ is a good candidate for the access
probabilities when each node only knows the number of its in-
terfering neighbors. We validate this conjecture through simu-
lations later.

Next, consider a more general case of a d-regular network
with different weights. Although 1/x or 1/(d + 1) are not the
optimal access probabilities, we argue that they yield a bounded
gap between the upper bound (13) on the mixing time of the op-
timal access probabilities and the corresponding upper bound on
the suboptimal solution. To prove such a property, similar to the
collocated network, we need to consider an appropriate scaling
of the network and a weight assignment as we add more nodes
to the network. For the assignment of transmission probabili-
ties/weights, we consider the worst assignment that is possible
for the suboptimal solution: Consider transmission probabilities
D1 < po... < Py, and then assign p; to all the links in the ith
maximal schedule, forz = 1. ..., x. Itis clear that the following
optimization gives an upper bound on (14):

$"P(P) = max min

in 5tas 1—a.)*
(o} 19iay D1 .1;[( )
J ¥

(16)

where s is the maximum size of a maximal schedule. The rest of
calculations follows in parallel with those of the complete graph.
The optimal access probabilities, maximizers of (16), are given
by

(17)

X
*
a, =

i=1

Next, we prove that the suboptimal solution has a bounded
mixing time property, i.e.,

. 2 . 2
_ <~¢(0pt-) ) < <¢ " (opt-) ) < o
¢(subopt.) ¢(subopt.)

To show such a property, we need to consider an appropriate
scaling of the network as the number of nodes N grows. We
assume that the degree d grows uniformly for all the nodes
in G as N increases, i.e., the number of interfering neighbors
of each node increases uniformly. Therefore, the chromatic
number grows linearly in N (x = x ), and the maximum size
of a schedule remains constant s. Moreover, there are m types
of weights such that oy, fraction of maximal schedules have
the transmission probability pj for & = 1,...,m. Noting that
constant £ is in the form of £* = ¢ for some Pt < e < 1/2,

T"P(subopt.)
T {opt.)

the optimal PP is given by
e (T2
(i)Y
X~ k=1 Pk + C/XN
( i) exp [ —es S
Xn 1 Pk

where “~” shows the asymptotic as V' — oo. The suboptimal
o is

- b s\ N/s—1 8 \5
~ t' — 7777777 <1 _ '_) 2 (/77”/1,77, )
¢(subopt.) (p N N ) PN

1

IEEE/ACM TRANSACTIONS ON NETWORKING

and hence
upy n . 5 m '
lim fb (opt.) = (f(.)- ) exp 7”2 (f_k ’
N—oo ¢(subopt.) pmn k=1 Pk

(18)

The importance of the above ratio is that it guarantees that the
gap between the upper bounds on the mixing times of the subop-
timal solution and the optimal solution is a constant independent
of the network size.

Similarly, using 1/(dx + 1) as the suboptimal access prob-
ability still yields a bounded ratio, but the corresponding ratio

will be
> (19)

¢ (opt.) ( ¢
> 1 and ze'/™ > e for

8
dy +1 X
‘ N+ edw+1)
p"LL,L Xl\v

X exp (cs Z

dn+1
XN

m =
N—o0 ¢(subopt.)

’E|‘D

which is greater than (18) (since
allz > 1.).

VI. SIMULATION RESULTS

In this section, we evaluate the performance of different ac-
cess probabilities via simulations. For this purpose, we have
considered different topologies for the wireless network. In the
algorithm, we have selected the transmission probabilities at

time ¢ as pi(t) = % where wi(t) = log(q:(t) + 1),
1 < [ < N. This choice makes the network stable [18] and
yields the best delay performance.

The first example is a collocated network of N = 8 links. To
choose the arrival rates, choose a point v = (v; - - - vg) on the
boundary of the capacity region which satisfies Z,?:l v, < 1
and v; > 0, and consider the arrival rates of the form A = pv
foraload 0 < p < 1. Note that, as p — 1, A approaches a point
on the boundary of the capacity region. For example, we have
chosenwy = -+~ =wvy =3/16,v5 =--- =wvg=1/16and p =
0.8. The queue length behavior (averaged over the links) for
two access probabilities + ~ and < ~ have been depicted in Fig. 2.
Fig. 3 shows the average queue length (averaged over time and
over the links) for different values of the access probability a
(all the links have the same access probability). The simulation
time is set to 10° time-slots since, as it is seen from Fig. 2,
the queues show a steady-state behavior in this duration. For
each access probability, we have repeated the experiment five
times and averaged over the experiments. It can be seen that
a = 1/N{(= 1/8) yields the smallest average queue size.

The second example is a 5x 5 grid conflict graph con-
sisting of N = 25 links in Fig. 4. Consider the point
v = (1/2,...,1/2) on the boundary of the capacity re-
gion and the the load p = 0.7 so the arrival rates are all equal
to 0.35. Note that v is a combination of two maximal sched-
ules: one consisting of all the links with even indices and one
consisting of all the odd links. Fig. 5 shows the performance
of different access probabilities, where we choose equal access
probabilities for all the links. Again, a; = 1/(4 + 1) = 1/5,
¢t = 1,...25, gives the smallest average queue length. More-
over, its average queue size was almost identical to the one
obtained by using a; = 1/(d; + 1) as the access probabilities.
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Queue length (averaged over links)

Time x10°

Fig. 2. Queue behavior for two access probabilities, 1/N and 3/N, in a col-
located network of N = 8 links.

600 T T T T

500 q

300 - nl

200 - 1

Average queue length (per link)

100 - b |

N

|
0 0.5 1 1.5
Access probability x N

25 3

Fig. 3. Average queue size versus access probability in a collocated network
with N = 8 links.

Fig. 4. Conflict graph where links consista 5 x 5 grid. Links are indexed from
1 to 25.

Next, consider the grid network of Fig. 6. Note that this is the
actual network not its conflict graph. The network has 16 nodes
and 24 links. We consider a one-hop interference constraint, i.e.,
two links interfere if they are adjacent (share a node in the net-
work). Consider the following maximal schedules:

M; =1{1,3,8,10,15,17,22,24}
Ms ={4,5,6,7,18,19,20,21}

M; =1{1,3,9,11,14,16,22,24}
My =1{2,4,7,12,13,18,21, 23}.

600 T T T T

500 - &

400 -

300 - =1

200 - B

Average queue length (per link)

100

. .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Access probability

Fig. 5. Average queue size versus access probability for the network of Fig. 4.
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8 9 10
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15 16 17
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18 19 20 21
22 23 24
@ O @® O

Fig. 6. Grid network consisting of 16 nodes and 24 links.

With a little abuse of notation, let M, also be a vector whose ¢th
elementis 1ifi € M;, and 0 otherwise. We consider arrival rates
that are a convex combination of the above maximal schedules
scaled by p = 0.8, e.g.,

4
A=pY eM;,  ¢=[02,03,02,03]
=1

Our conjecture is that access probabilities of the form {1/(d; +
1)}, (d; is the number of interfering links of the link 7) should
result in good performance. We compare the performance of
the network under this choice of access probabilities to the per-
formance of the network under equal access probabilities, i.e.,
a; = a, 1 < ¢ < 24, for some constant ¢ between zero and
one. Fig. 7 verifies our conjecture where the dashed line at the
bottom of the figure is the average queue size resulted by using
1/(d;+1) as the access probabilities. Next, to make the topology
more asymmetric, we remove a random set S of links from the
network. In the simulation shown here, S = {3,4,12,14,23}.
Fig. 8 shows the resulting network. For the arrival rates, we
consider the same convex combination of 4 maximal schedules
M to M, with links of the set S removed from the maximal
schedules, with different loads p = 0.5, 0.8, and 0.9. For each
load p, the average queue size for the equal access probabilities,
ranging from 0.05 to 0.55, and also for probabilities of the form
1/(d; + 1), the dashed line, have been depicted in Figs. 9-11.
Again, we see that the choice of a; = 1/(d;+1) performs nearly
as well as the best choice of fixed access probabilities. However,
it is important to note that the choice 1/(d; + 1) adapts itself to
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Fig. 7. Average queue size versus access probability for the grid network of

Fig. 6.
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Fig. 8. Network obtained, from the grid of Fig. 6, by removing links 3, 4, 12,
14, 23.
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Fig. 9. Average queue size versus access probability for the network of Fig. 8,
p = 0.5.

the topology of the network, whereas it is not clear how one can
choose the best fixed access probabilities a priori for a network.

VII. CONCLUDING REMARKS

Access probabilities affect the mixing time of the CSMA
Markov chain, which, in turn, has a significant impact on the
delay performance of the algorithm. It turns out that character-
izing the optimal mixing time, as a function of access proba-
bilities, in general, is a formidable task. Even if we are able to
characterize the optimal mixing time and find the optimal ac-
cess probabilities, they will depend on global knowledge of the
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Fig. 10. Average queue size versus access probability for the network of Fig. 8,
p = 0.8.
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Fig. 11. Average queue size versus access probability for the network of Fig. 8,
p = 0.9.

network and, thus, will not be suitable for the distributed op-
eration of the CSMA algorithm. Instead, we have shown that
access probabilities of the form 1/(d; 4+ 1), where d; is the
number of interfering neighbors of link /, can yield mixing times
that are within a constant factor of the optimal mixing time,
independent of the number of nodes in the network. This was
proved for fully connected networks and d-regular networks.
We conjecture that, in general topologies, such access probabili-
ties should have good delay performance. This conjecture is ver-
ified through extensive simulations, some of which are shown
in the paper. It would be interesting to prove such a conjecture
for general networks as future work.

APPENDIX A
PROOF OF LEMMA 5
Note that v; = 1, because 7P = 17, and £,(6,0) = £,.(0 —
c1,0 — ¢l), and Var.(0#) = Var,(f# — ¢1) for any constant
vector cl. Therefore, without loss of optimality, we can only
consider zero mean vectors #. Then, it is easy to show that the
minimization in Lemma 2 can be written as

N

1, .
/32 = 5 Hélf -Z[)W(Z)pij(ej - 0i)2 (20)
2,1=
subject to the constraints
N N
040 > w(@)0i=0 > =) =1 21)

=0 =0
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Note that, for the complete graph

lpL 1

70 == exp(w;)

(i) =
fori = 0,1,..., N, where we have defined pyp = 1/2 = py.
Hence, the optlmlzatlon can be written as

ﬂ :—mf Zpo;e _60 +Z_p70 60_9)

subject to the constraints in (21). Using the reversibility of the
Markov chain, we have ;— Pi0 = Pos, and therefore

N

B = —mprm i 90

subject to the constraints in (21).

Although solving the above optimization is possible, it does
not yield a closed-form expression for 3> (see Appendix E).
Instead, we try to find upper and lower bounds on 5. By a
change of variable yy; = §; — 6y, 7 = 1, ..., N, the optimization
problem simplifies to

(22)

N
B = = 1nf Z Yi 0iPi H(l - a;) 23)
i#
subject to
N
Z &U? Z(1+60)* > %m =—tz. (24

i=1

To get a lower bound on 32, we ignore the last constraint, i.e.,
the lower bound is the solution to

low = —mqu,pﬂz,H 1—ay) (25)
P
N
Z = Z(1+ 6y)>. (26)
where we have used a change of variable u; = | %yz Then,

it is clear that 6§ = 0, and the optimal value, which is a lower
bound on s, is given by (5) for any set of access probabilities.

Next, we prove the upper bound. By Lemma 3, 32 < 2¢(P),
so it remains to calculate the conductance

ZZEB ,jeB* ( )PIJ
ZieB (i)

Consider the set I3 to only contain singletons. Then, the optimal
B does not contain 0 since 7(0) < (i) for any ¢ # 0, and,
by the reversibility, 7(i)p;o = w(0)pg; for any i # 0. Thus,
considering only the singletons, we have

¢(P) =

in
B:x(B)<1/2

$(P) < min{pig : w(i) < 1/2,i # 0} 7
< min qpa [J0 - a5) m(@ <1725 28)

J#

Equation (28) is obviously an upper bound on the actual con-
ductance. Nevertheless, it yields the statement of lemma. Note
that if there is only one link in the network, the set (27) is empty.

APPENDIX B
PROOF OF LEMMA 6

By Gershgorin’s bound, Lemma 4, A\, > —1 4+ 2min; p;;,
where we have used the fact that E]‘ 2ibij = 1 — p;;. Note that
since p; < 1/2, p;; > 1/2 for ¢ # 0. Furthermore

N

Poo :1—2&1:1)1:1_[(1—@)2 1—ZaH(1—a)

i=1 i#i i=1  j#i

N 1 1 N—-1
-7 ()

i=1

N-1
(1oL >1/2
~ >

where we used the assumption that there are at least two links in
the network. Hence, p;; > 1/2 forall 0 < 7 < N, and therefore
Ar > 0.

APPENDIX C
PROOF OF LEMMA 7

First, we argueythat, at the optimal solution, all the values
piola) = pia LH;\#(l a;),fori =1,..., N, are equal. As-
sume that this is not true, then let § C {1, 1, 2,...,N} be the
set of indices that are minimizers of min; plo( ). Therefore,
pio(a) < pjola) for every i € S and every j € S°. How-
ever, decreasing the values of a;, j € S¢, increases the values
of pig(a), i € S, which is a contradiction. Hence, this means
that

]
a; )Piﬁ =k,
Ji=1 *
for some constant &’ independent of a. Therefore, the optimal
access probabilities are in the form of

. k
a; = .
k4

(29)

Returning to the maximization problem, the constant £ must be
chosen as the solution to

Taking the log( - ) and finding the zeros of the derivative yields

}A|)_‘
.
—_
ol
*

Putting everything together, the optimal access probabilities
must satisfy
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APPENDIX D
PROOF OF LEMMA 8

Let mg be a maximal schedule such that X AY C g, then
it is clear that

PX.Y)>a(mo) [[ o [ o

[EX\Y keY\X

X H Ppi H P

1EmeN(XNY) Jemp\(XUY)N\C(XY)

> T o IT 0~ ) IT 2= Pomo.0)

1€mg jémo lEmg

where we have used the fact p; > p;, for all ¢, due to (2). The
conductance can be lower-bounded by

_ F(B)
=

_ F(B)
HP) = Bm(%’l)gl/z 7(B)

since if B = ), we can replace B with B and get a smaller
conductance because then 7(B¢) > w(B) and F(B) = F(B®)
by reversibility. Note that there is a transition between X and Y
whenever X AY is a valid schedule, therefore a direct transition
from the empty schedule § to any schedule X, and vice versa, is
possible. Hence, the conductance can be further lower-bounded
as follows:

ZXeB,YeB«: T(X)P(X,Y)

HP) 2 Il 7(B)
. 2xep T(X)P(X,0)
o= D Yo
= min P(X,0).
X#0

Hence

H(P)> min P(mg,B) = $(P)

mgEMy

(30)

where M denotes the set of all maximal schedules in M.

APPENDIX E
EXACT 32 FOR COLLOCATED NETWORKS

As we saw from the proof of Lemma 5 in Appendix A, in the
case of collocated networks, the exact 35 is the optimal value of
the following optimization:

N
1. .
Z llgf 4_5 - p()i(ei - 9[))2, S.t. Varﬂ-(e) =1

where # € RV*1. Here, we show that 3 can be expressed as
a zero of a polynomial. First, since shift by a constant does not
change the variance, the above optimization is equivalent to

1 ‘ N
7 igf leoiy?, s.t. Var: (y) = 1.
1=
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Note that since yg = 0

Var,(y) = (Z riyf) - <Z 7Ti2/i>

so we can consider the minimization over y = (y; - --yn )T €
R . It is not hard to show that Var,(y) = y* Ay, where Ay x n
is a symmetric positive definite matrix such that A;; = m;(1 —
m;) and A;; = —myw; for j # 4. Moreover, define Dy« to
be a diagonal matrix consisting of diagonal elements py;/Z =
PoiTo. Then, the optimization can be written as

2

infy” Dy, st.yl Ay = 1.
y

Since A is a real symmetric matrix, by using eigen decompo-
sition, it can be written as A = UAUT, where where U is an
orthonormal matrix (the columns of which are eigenvectors of
A), and A is diagonal (having the eigenvalues of A on the di-
agonal). Since A is positive definite, all A;;’s are positive. Con-
sider a change of variable w = A*/2U/Ty, then the optimization
can be written as

inf  wlAYV2UTDUA Y2y,

wiw T w=1

B2 =

Hence, 32 is the smallest eigenvalue of the matrix
A YV2UTpUA Y2

i.e., the smallest zero of the following determinant:

IAYV2UTDUAY2 — ul| = |D — pUAUT|
= |D — pA|.
Define 7 = (my -+ - 7rN)T. Note that 7o is not an element of 7

so 7 is not a probability vector. Then, A can be written

A = diag(7;) — 77t

where diag(7;) isa N x N diagonal matrix with elements of ©
on the diagonal. However

|D — pA| = |D — pdiag(7) + paz’|
= |diag(mopoi — pi) + pir” |
= |diag(mopo; — ps)

x (I + praT (diag(mopo; — pi) )|

From the Sylvester’s determinant theorem, we know |/ +AB| =
|/ + BA| for any two matrices A and B. Hence

|D — pA| = |diag(mope; — pii)

1
‘ (1 T T ding (7) ) .
TP — U7

Therefore, o is the smallest 4 that satisfies

N N 7-[-_2
ToPoi — KT 1+ p — =0
(T =) (10052 )

i=1 1=1
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