
IEOR 8100: “Matchings” Fall 2012

Lecture 21: Distributed Greedy Maximum Weight Matching

Instructor: Cliff Stein Lecturer: Jelena Marašević

Even though most distributed algorithms seem very simple at a first glance, the analysis used to prove their
correctness and give bounds on the running time can be very challenging. To show the basic ideas used
in analyzing distributed matching algorithms, an example of a simple greedy algorithm for the maximum
weight matching will be considered. We will start by showing the approximation ratio of a greedy algorithm
that chooses (globally or locally) heaviest edge that can be added to the current matching in a centralized
manner, then show how to make this algorithm distributed, show that it is correct, and analyze its running
time. Finally, we will move to the case of a self-stabilizing algorithm, prove its correctness, and give some
bounds on the running time.

In all examples, we will observe an undirected, weighted graph G = (V,E), |V | = n, |E| = m, with a given
positive weight function w : E → R+\{0}. We will assume that all the weights on edges are unique, even
though all the results could be applied to a more general case in which weights are not necessarily unique.
This can be done by associating a unique ID with each edge and breaking ties in favor of edge with the
higher ID. Terms graph and network will be used interchangeably when referred to G.

21.1 Centralized Greedy Algorithm

Consider the following greedy algorithm, run in a centralized manner:

Greedy-Centralized-Global(G)
M = ∅
while(E 6= ∅)

select the heaviest edge e from E
M = M ∪ {e}
delete e and all the edges incident to it from E

return M

In [1], David Avis showed that this strategy gives a 1
2 -approximation ratio, as the following lemma states.

Lemma 21.1 For a given graph G = (V,E), let M∗ be a maximum weight matching, and M be the matching
obtained by running Greedy-Centralized-Global algorithm. Then w(M) ≥ 1

2w(M∗).

Proof: Every time the algorithm selects an edge e ∈ E and adds it to the current matching, it removes that
edge together with all the edges incident to it from the graph, with e being the heaviest among all the edges
that get removed. Observe e and all the edges incident to it. There can be three possible cases:

1. e ∈M ∩M∗

21-1

21-2 Lecture 21: Distributed Greedy Maximum Weight Matching

2. There is exactly one edge e1 ∈M∗ incident to e. As e is the heaviest: w(e) > w(e1) > 1
2w(e1)

3. There are exactly two edges e1 and e2 from M∗ incident to e. As w(e) > w(e1) and w(e) > w(e2), it
follows that w(e) > 1

2 (w(e1) + w(e2)).

Summing over all the edges from M , we get:

w(M) = w(M ∩M∗) + w(M\M∗)
= w(M ∩M∗) +

∑
e∈M\M∗

w(e)

> w(M ∩M∗) +
1

2

∑
e∈M∗\M

w(e)

>
1

2
(w(M ∩M∗) + w(M∗\M))

=
1

2
w(M∗)

Proof of the previous lemma shows even more than asserted: to achieve 1
2 -approximation ratio it is not

necessary to choose the globally heaviest edge; it is enough to select the one that is locally heaviest. Robert
Preis used this idea in [2] to develop an algorithm that runs in O(m) time (as compared to O(m log n) time
the above algorithm would have due to edge sorting). We won’t get into details of this algorithm, but only
state the (high-level) pseudocode for it:

Greedy-Centralized(G)
M = ∅
while(E 6= ∅)

select some locally heaviest edge e from E
M = M ∪ {e}
delete e and all the edges incident to it from E

return M

21.2 Distributed Greedy Algorithm

Imagine the situation in which we don’t want to run an algorithm for the entire graph from one machine.
Instead, we associate a computing device with each node in the network, letting each node know only about
its neighboring nodes and edges leading to those nodes. Two neighboring nodes can learn about each other
by either reading from designated memory registers that both can access (shared memory model), or by
exchanging messages (send/receive or message passing model). The goal is to run the same algorithm at
each node and obtain (an approximate) maximum weight matching. Jaap-Henk Hoepman showed in [3] how
this can be done by using a greedy algorithm. Before delving into the details of this algorithm, we will first
introduce basic notions about distributed algorithms in the following section.

21.2.1 Distributed Algorithms–Modeling and Performance Measures

When modeling a distributed system, we assume that there is a computing element associated with each
node of the network. This computing element is often referred to as a process. Each process maintains

Lecture 21: Distributed Greedy Maximum Weight Matching 21-3

some set of variables that describe its state. These variables are initialized by values from some known set
before the algorithm is run. Each process can look into its own state and into states of all of its neighbors,
and based on this information transition to a new state (i.e., change values of the variables that describe its
state). Every node implements the same algorithm (the same set of rules): the algorithm describes how the
state of the process is updated, given the current state and the states of all the neighbors. The transition
from one state to another is often called a step. There are two models of communication between processes:

• shared memory model, in which a process can read its state and states of its neighbors from some
designated memory registers. Process can also write to the memory register that describes its own
state. Sometimes it is also assumed that there exists some set of registers that all the processes are
allowed to both read from and write to.

• send/receive (or message passing) model, in which processes learn about each other by exchanging
messages. For all the processes that can communicate, there is a channel (link) through which messages
are sent. In some models, the channel is uncertain and messages can get lost with a given probability.

Processes can either be assumed to run simultaneously and with the same speed, or to require an arbitrary
time to complete their actions. There is also a third model that represents a compromise between these two
cases. More specifically, there are three basic timing models [4]:

• synchronous model, in which all the nodes can communicate in a synchronous manner–this means
that they can transition from one state to another at the same speed, and that all the transitions occur
at the same time. As all the steps are taken simultaneously, it is said that the execution proceeds in
synchronous rounds. The time complexity is measured in the number of rounds it takes the algorithm
to converge.

• asynchronous model, a more general model, in which processes can take steps in an arbitrary order,
at arbitrary relative speeds. The system is more difficult to analyze, as events can happen in any
order. The time complexity is usually measured in the number of steps processes take (in the worst
case scenario) until the algorithm converges.

• partially synchronous (timing-based) model, which places some restrictions on the relative timing
of events, but there is less synchronism than in the synchronous model. Even though these models are
the most realistic, they are also the most difficult to program.

In the following section, we will consider an asynchronous, send/receive model. Later, for the analysis of the
self-stabilizing algorithm, we will adopt a shared memory asynchronous model.

21.2.2 Distributed Greedy Weighted Matching

Before looking into the pseudocode and the formal analysis of the algorithm, let us first gain some intuition
on how the algorithm works. Each process sitting on its corresponding node can see who are the neighboring
nodes, and what are the costs (weights) of edges that lead to those nodes. It can also communicate with
all the neighboring nodes by sending and receiving messages. How can a node tell if some edge is locally
heaviest? Well, suppose that for an edge e = (u, v) both u and v see this edge as the heaviest one of all the
edges they can see. Then, e is heavier than all the edges incident to it, that is, locally heaviest edge. Now,
if u and v choose each other as a matching pair, and notify all their remaining neighbors about it, their
neighbors can stop looking at the edges incident to (u, v), which corresponds to removing these edges from
the graph. Intuitively, by running this procedure on all the nodes over and over again, until all of them find
their matching pair (or become lonely–i.e., see no neighbors), we should eventually get the same matching
as we would for some run of the Greedy-Centralized algorithm.

21-4 Lecture 21: Distributed Greedy Maximum Weight Matching

To formalize the statement of the algorithm described above, let us introduce some notation. We will denote
by Γ(v) the set of neighbors of the node v in the original graph G. As every time a v’s neighbor u gets
matched it cannot be considered as a matching pair for v anymore, we want to drop an edge (u, v) from the
graph when this happens, and observe only those neighbors that v can still match to. We will assume that
when u gets matched to another node it sends a drop message to v (and all other non-matching neighbors),
and denote the set of neighbors who are possible matches for v by N(v). Looking at N(v), v will choose the
heaviest edge it can see and send a request to the neighbor adjacent to that edge. We will call this neighbor
a candidate and denote it by c(v). If v receives a request message from its candidate neighbor, it knows that
the edge (v, c(v)) is locally heaviest and chooses c(v) as its matching pair. We will allow every node to store
the list R of the unmatched nodes it received a request message from, and update it every time a request or
drop message arrives. The pseudocode for the algorithm run at the node v is stated below:

Greedy-Distributed(G, v)
R = ∅
N = Γ(v)
c = candidate(v,N)
if c 6= null

send < req > to c
while(N 6= ∅)

receive a message m from neighbor u
if m =< req >

R = R ∪ {u}
if m =< drop >

N = N\{u}
R = R\{u}
if u = c

c = candidate(v,N)
if c 6= null

send < req > to c
if c 6= null ∧ c ∈ R

forall w ∈ N\{c}
send < drop > to w

N = ∅

The candidate in the algorithm above is determined as:

candidate(v,N) = u ∈ N : (∀u′ ∈ N :: w(u, v) ≥ w(u′, v)),

that is, as the node in the set of the remaining neighbors that is adjacent to the heaviest edge that v can
see.

Figure 21.1 depicts an example of one algorithm run.

Correctness and the time complexity. To show that the algorithm is correct, we will show that it sim-
ulates the centralized greedy algorithm (Greedy-Centralized) we had before. For a run of the algorithm
described above, define a matching event as the event when a node u sends a < req > message to a node v
and v sends a < req > message to u (note that when this happens it is also true that c(u) = v and c(v) = u).
Order all the matching events in order of their occurrence, letting x0 be the wake up event and x1 be the
first matching event. Let ei = (ui, vi) denote the edge that gets matched by the event xi. Define the set of
remaining edges Ei inductively as:

E0 = E

Ei = Ei−1\{all edges incident to ui and vi}, i ≥ 1

Lecture 21: Distributed Greedy Maximum Weight Matching 21-5

Figure 21.1: An example of a Greedy-Distributed run. Solid arrows represent < req > messages, while
dashed arrows represent < drop > messages.

Lemma 21.2 In Greedy-Distributed algorithm, each node (process) sends at most one message over
each incident edge.

Proof: Fix an arbitrary node v. Throughout the execution of the algorithm, v sends one < req > message
to its first candidate, and can send another < req > message only if a new candidate is chosen, which can
happen only if the current candidate gets removed from N(v). The algorithm never adds new elements
to N(v). As < drop > message can be sent only to non-candidate nodes, after which N(v) gets cleared
(N(v) = ∅), it follows that v can send at most one message to each of the neighboring nodes, as claimed.

Lemma 21.3 After xi and before xi+1 (if it occurs), if (u, v) ∈ Ei, then u ∈ N(v) and v ∈ N(u).

Proof: The claim is true initially. Suppose that (u, v) ∈ Ei, but u got removed from N(v). How could this
happen? This happened either because v received a < req > message from its candidate neighbor c(v), or u
sent a < drop > message to v. In the first case, v gets matched to a node c(v), whereas in the second case
u gets matched to c(u) 6= v. In either case, as u or v (or both) get matched, (u, v) must have been dropped
from E before the matching event xi+1 occurred, which is a contradiction.

Lemma 21.4 For all i, ei ∈ Ei−1.

21-6 Lecture 21: Distributed Greedy Maximum Weight Matching

Proof: Suppose that ei = (u, v) got removed in some matching event xj , j < i. This can happen because
either (u, v) got matched, or some edge incident to it got matched. If xj matched (u, v), then both nodes have
cleared their neighbor lists in xj , so neither of them can send a < req > message in xi, which contradicts the
assumption that xi matches (u, v). Therefore, either u or v got matched (but not to each other), in which
case the node that got matched sent a < drop > message over (u, v). Suppose that u got matched (the proof
is symmetric for v). Then, v must have gotten removed from N(u) in xj , so v cannot be its candidate in the
matching event xi.

Lemma 21.5 Greedy-Distributed terminates for every node in the network, with Et = ∅ for some t.

Proof: The algorithm terminates when at each node v the list of neighbors N(v) becomes empty. By the
lemma 21.2, each node sends at most one (< req > or < drop >) message over each of its adjacent edges.
After a node v has received all the requests, it can only remove elements from N(v). Suppose that, for some
v, N(v) 6= ∅. Then c(v) = u 6= null, and v ∈ N(u). If u sends a < req > message to v, then they match
to each other and both of these nodes clear their neighbor lists, so N(u) = N(v) = ∅. Otherwise, if u gets
matched to another node, it sends a < drop > message to v, so v removes u from its list. By finiteness of
the graph, and lemma 21.2, u must eventually send either a < req > or < drop > message to v. Therefore,
eventually, N(v) = ∅. As v was chosen arbitrarily, this is true for all the nodes in the graph.

To show that Et = ∅ for some t < ∞, consider the moment when all the nodes have terminated. Then
Et = ∅ follows as a contrapositive of the lemma 21.3.

Lemma 21.6 Matching edge ei is a locally heaviest edge in Ei−1.

Proof: Let ei = (u, v). By lemma 21.4, ei ∈ Ei−1. Suppose that (u, v) is not locally heaviest. Then there
is an edge (u,w) (or (v, w)) heavier than (u, v) and all other edges incident to (u, v). But then, by lemma
21.3, w ∈ N(u) (w ∈ N(v)), and c(u) = w (c(v) = w), which is a contradiction, as c(u) = v (c(v) = u).

Theorem 21.7 For any graph G = (V,E), Greedy-Distributed computes a matching M(G) in time
O(m) (where m = |E|), such that w(M) ≥ 1

2w(M∗).

Proof: To show that Greedy-Distributed algorithm gives 1
2 -approximation, we will observe that for

each run of the distributed algorithm there exists a run of Greedy-Centralized that produces the same
matching, and the result will follow. For the distributed algorithm, let xi be the ordered sequence of matching
events, Ei the set of remaining edges after ith matching event, as defined above.

Now, for the centralized algorithm (Greedy-Centralized), let E′i denote the set of remaining edges after
ith edge gets selected by the algorithm, E′0 = E0. By the lemma 23.6, every edge ei that gets matched by
Greedy-Distributed is locally heaviest at the time it gets matched, so let Greedy-Centralized choose
the edges in the same order as Greedy-Distributed. Then, E′i = Ei for each i. By lemma 21.5, for some
t Et = ∅, so when this happens also E′t = ∅, and Greedy-Centralized cannot add any additional edges,
and the approximation ratio of 1

2 follows.

The time complexity follows from the lemma 21.2.

Lecture 21: Distributed Greedy Maximum Weight Matching 21-7

21.3 Self-Stabilizing Algorithm and Analysis

We will now move to a more general concept of distributed systems–self-stabilizing systems, and see what is
the way in which a matching algorithm can be designed for this type of systems. Self-stabilization as an area
is quite young–it was first introduced by Edsger W. Dijkstra in 1973, but hasn’t received much attention
until 1983, when Leslie Lamport pointed out its significance in an invited talk at the ACM Symposium on
Principles of Distributed Computing (PODC). The book [5] written by S. Dolev in 2000 summarizes most of
the ideas and algorithms designed for self-stabilizing systems. We will focus here on a greedy algorithm for
maximum weighted matching, originally proposed by F. Manne and M. Mjelde in [6] and further analyzed
by V. Turau and B. Hauck in [7].

21.3.1 Background on Self-Stabilizing Algorithms

Self-stabilizing system represents a more general case of a distributed system, in which nodes (processes)
can start executing the algorithm from an arbitrary state (no specific initialization is assumed, unlike in
standard distributed systems), and must converge to a desired behavior after some bounded time. As the
system can start from an arbitrary state, it is able to recover from (any number of) transient faults after
finite time. This is the main motivation in designing self-stabilizing algorithms, as the system can handle
any dynamic structure of the underlying graph (as long as that structure remains unchanged for sufficiently
long time).

As before, each node v has a set of variables that describe its state sv and can read the states of its neighboring
nodes, by either reading some memory registers or by exchanging messages. For the algorithm described
here, we will assume the shared memory model, i.e., we will assume that a node accesses its neighbor state
variables by reading from designated memory registers. Based on its own state and states of neighboring
nodes, a node can determine whether is should update its state or not. We associate a Boolean predicate
with each node to determine whether it should perform an action or not–if the predicate evaluates true, the
node is required to update its state and we say that it is enabled, whereas if the predicate evaluates false, no
action is required for the node (it is not enabled). A single update of node’s state is called the move. Notice
here that as action of each node is dependent on the states of neighboring nodes, the relative order in which
moves are made determines the behavior of the algorithm. To model how the states of all the nodes in the
graph get updated, the algorithms execution is observed in (time) steps. At the beginning of a step, each
node determines whether it is enabled or not. After this happens, a scheduler determines which nodes will
make a step. There are three basic models of the scheduler:

• central scheduler (sequential model), which allows only a single node to make a move in one step,

• distributed scheduler (general distributed model), which can select any subset of the enabled
nodes and allow them to make a move, and

• synchronous scheduler (synchronous model), which lets all the enabled nodes make a move.

Notice here that a scheduler is used to model the relative order of moves between enabled nodes and it
does not necessarily exist as an individual element of a self-stabilizing system. For central and distributed
schedulers, in general, there is no restriction on their scheduling policy. Therefore, it can happen that a node
is enabled infinitely often, but it never performs a move. In that case, a scheduler is said to be unfair. A
scheduler is said to be fair if every node that gets enabled at some step after finite number of steps either
makes a move or stops being enabled.

A configuration C of the graph G is defined as an n-tuple of all the nodes’ states: C = (sv1 , sv2 , ..., svn).
Therefore, we can also define a step as a transition from one configuration Ci to another configuration

21-8 Lecture 21: Distributed Greedy Maximum Weight Matching

Ci+1. We define an execution of the algorithm as a sequence C0, C1, C2, ... of configurations, such that each
configuration except for the first one is obtained from the previous one by performing a single step.

For an algorithm to be self-stabilizing, it should exhibit some desired behavior after finite number of steps.
We refer to this behavior as legal (or legitimate) and say that a configuration C in which algorithm shows
legal behavior is legal or stable. It is clear that for the algorithm to operate correctly, the following two
properties should be satisfied:

• closure property: if the system performs a step from some legal configuration Ci, the following
configuration Ci+1 must also be legal,

• convergence property: for every execution C0, C1, C2, ... there exists i <∞ such that Ci is legal.

The time complexity of self-stabilizing algorithms can be measured in the number of rounds (where a round
is the minimal sequence of steps in which every node enabled at the beginning of the round either makes a
move or becomes disabled), steps, or individual node moves until a legal (stable) configuration is reached.

21.3.2 Greedy Self-Stabilizing Algorithm

In the algorithm presented in this section, we will assume that every node v has two variables mv and wv

associated with it. In a stable configuration, mv should contain a pointer to the node u that v gets matched
to, and wv = w(v,mv) = w(v, u). If a node v doesn’t get matched to any node, then mv = null and wv = 0.
As for the distributed algorithm, we will use Γ(v) to denote the set of neighbors of node v in the graph G,
and N(v) ⊂ Γ(v) to denote the set of “candidate” neighbors that v can get matched to. A node u can be a
“candidate” for v if it is in its neighbor list and would achieve the same or a better matching if matched to
v, to wit: N(v) = {u ∈ Γ(v) : w(u, v) ≥ wu}. Note that if u is matched to v, it will also belong to this set.

The algorithm is quite simple: every node v ∈ V looks at its candidate neighbors and determines which one
of them, u, is adjacent to the heaviest edge from v (if N(v) = ∅, it sets u = null). Then, if v is not already
matched to this node (i.e., if mv 6= u) or if the information that v has about the weight of the edge (v,mv)
is inaccurate, it updates its state variables by setting mv = u and wv = w(u, v). The algorithm stabilizes
when (∀u ∈ V)(∀v ∈ V) u = mv ⇔ v = mu, and, at the same time wv = w(v,mv), ∀v. The pseudocode for
this algorithm is given below.

Greedy-SS(v)
if mv 6= BestMatch(v) or wv 6= w(v,mv)

mv = BestMatch(v)
wv = w(v,mv)

BestMatch(v) = arg max
u∈N(v)∪{null}

w(u, v)

Let us stop here for a moment and try to understand what this algorithm tries to achieve. Suppose that
we have reached a stable configuration, and let (u, v) be a matched edge, that is, an edge such that u =
mv and v = mu. Look at all the edges incident to (u, v). Every edge (v, w) 6= (u, v) is either incident
to another edge (w, x) such that w(w, x) > w(v, w) (so w doesn’t belong to N(v)), or it is true that
w(u, v) > w(v, w) (otherwise v would have chosen w as its matching pair). The same argument can be
made for all the edges (u,w) 6= (u, v). Therefore, (u, v) is locally heaviest, so Greedy-SS choses the same
matching as Greedy-Distributed, and the approximation ratio of 1

2 follows directly! However, to argue
the correctness of Greedy-SS, we must argue that it always reaches a stable configuration, regardless of its
initial configuration.

Lecture 21: Distributed Greedy Maximum Weight Matching 21-9

Figure 21.2: An example of a Greedy-SS run. Arrows point from a node to its chosen matching pair.

Figure 21.2 shows one example of the algorithm run, assuming that one node makes a move at a time
(central scheduler–sequential model). The system starts from a configuration that doesn’t even correspond
to a matching. In the first step, node 1 is selected to make a move. At that point, N(1) = {4, 5}, m1 = 4,
and as BestMatch(1) = 5, node 1 updates its state, so as m1 = 5 and w1 = 13. In the following steps, nodes
4, 5, 2, 3, 6 make their moves, respectively.

Correctness. We start by an observation that follows directly from looking at the algorithm pseudocode:
in a stable configuration mv ∈ N(v) ∪ {null} and wv = w(v,mv), for every node v ∈ V .

The next step is to show that once the algorithm has converged, what we have obtained is a matching. The
following lemma formalizes this claim.

Lemma 21.8 In a stable configuration mv = u⇔ mu = v for every edge (u, v) ∈ E.

Proof: ⇒. Assume that the system has reached a stable configuration in which mv = u, but mu = w 6= v.

21-10 Lecture 21: Distributed Greedy Maximum Weight Matching

As all the edge weights are unique, we have the following two possibilities:

i) w(u, v) > w(u,w): in this case, as w(u, v) = wv, it follows that v ∈ N(u), and therefore u would be
enabled, which contradicts the assumption that the configuration was stable.

ii) w(u, v) < w(u,w): in this case u /∈ N(v), so u is not the best match for v (BestMatch(v) 6= u), so v is
enabled, which, again, contradicts the assumption that the system was in a stable configuration.

Therefore, mv = u ⇒ mu = v, and, by the symmetric argument, mu = v ⇒ mv = u, which proves the
lemma.

The following lemma will allow us to show that Greedy-SS gives 1
2 -approximation.

Lemma 21.9 In a stable configuration, for every edge (u, v) ∈ E we have w(u, v) ≤ max(wu, wv).

Proof: Assume that the system has reached a stable configuration, and that there is an edge (u, v) such
that w(u, v) > max(wu, wv). As w(u, v) > wu, it follows that u ∈ N(v). Since the configuration is stable,
there exists a node x ∈ N(v), such that w(x, v) ≥ w(u, v). But as all the edge weights are unique, if
w(x, v) = w(u, v), then x = u, otherwise w(x, v) > w(u, v). But the former cannot be the case, as we would
have w(u, v) = wv, which contradicts that w(u, v) > wv. The latter implies wv = w(x, v) > w(u, v), which
is, again, a contradiction, as we assumed that w(u, v) > wv.

In a given stable configuration of graph G, with respect to the algorithm Greedy-SS, we will call a stable
matching, denoted by M , a subset of edges (u, v) from E, such that mv = u (and mu = v, as given
configuration is stable). Now we are ready to prove the approximation ratio.

Theorem 21.10 Any stable matching M obtained by Greedy-SS algorithm provides a 1
2 -approximation

for the maximum weight matching problem.

Proof: Let M∗ denote the maximum weight matching for the graph G. Fix an arbitrary edge e = (u, v) ∈
M∗. By the previous lemma, w(e) ≤ max(wu, wv) < wu +wv, as all the weights are positive. Summing over
all the edges from M∗, we get w(M∗) < 2w(M), which proves the theorem.

Convergence and the time complexity. We will now bound the number of moves it takes the algorithm
to reach a stable configuration. As soon as we show that this number is finite, we have shown that the
algorithm converges, because in a stable configuration no node changes its state variables (look at the
pseudocode for Greedy-SS). The time complexity in the case of an unfair scheduler was shown in [7] to
be O(mn) moves. The analysis used for proving this bound is rather involved and won’t be covered here.
Instead, we will focus on the case of a fair distributed scheduler. Notice that this case subsumes the cases
of central and synchronous fair schedulers, as the former is obtained by selecting a single enabled node, and
the latter is obtained by selecting all the enabled nodes, in each step.

Recall that a round was defined as a minimal sequence of steps after which every node that was enabled at
the beginning of the round has either made at least one step, or became disabled. As the scheduler is fair,
every node that is enabled infinitely often moves infinitely often, so we can take that each round takes O(n)
moves.

Lemma 21.11 After at most one round: mv ∈ Γ(v) ∪ {null} and wv = w(v,mv), for every v ∈ V .

Proof: At the beginning of the first round, all the nodes that are enabled either have incorrect value for
the edge leading to their matching pair (wv 6= w(v,mv)), or are not matched to their best match. Nodes

Lecture 21: Distributed Greedy Maximum Weight Matching 21-11

that are not enabled must have mv ∈ {N(v) ∪ {null}} ⊂ {Γ(v) ∪ {null}} and wv = w(v,mv). As during
one round every enabled node makes at least one move, each one of them will set mv to some value from
{N(v) ∪ {null}} ⊂ {Γ(v) ∪ {null}} and wv to w(v,mv). No move can cause a node v to choose a matching
pair that doesn’t belong to its neighbor list, nor to set wv to a value different than w(v,mv).

Note that it is not necessarily the case that we have mv ∈ N(v) ∪ {null} after the first round, as mv can
match to a node x 6= v after v has made its move, and thus leave N(v).

Lemma 21.12 After at most two rounds, the heaviest edge (u, v) ∈ E is in M . Furthermore, once in M ,
(u, v) never leaves M .

Proof: From the previous lemma, after the first round every node v ∈ V has a correct value of wv and
mv ∈ Γ∪ {null}. If (u, v) is the heaviest edge in the graph, then it must be wu ≤ w(u, v) and wv ≤ w(u, v),
implying that u ∈ N(v) and v ∈ N(u). If mu 6= v, then u is enabled, and if mv 6= u, then v is enabled. If
these two nodes are not matched to each other, they will get matched to each other after at most one round,
as (u, v) is the heaviest edge and no other neighbor can offer a better matching.

Once u and v get matched to each other, neither of them can become enabled again, as wu = wv = w(u, v) >
w(e)∀e ∈ E, e 6= (u, v).

Theorem 21.13 Greedy-SS converges after at most 2|M |+ 1 rounds.

Proof: Let e1, e2, ..., e|M |, where ei = (ui, vi), represent edges from E sorted in the order as they would
get chosen by Greedy-Centralized-Global algorithm from the first section (recall that this algorithm
always choses globally heaviest edge that can be added to the matching).

By the previous lemma, we have that after at most 2 rounds e1 ∈ |M |. As wu1
= wv1

= w(e1) > w(e)∀e ∈
E, e 6= e1, neither of the nodes different from u1 and v1 can have one of these nodes in their neighbor list.
This means that after e1 gets matched, no edge incident to it can be added to the matching. Thus, after
e1 gets matched, e2 is the globally heaviest edge that can possibly be added to the current matching (if not
already in it). After at most one round it must be u2 ∈ N(v2) and v2 ∈ N(u2). If these two nodes are
not matched to each other, by the same argument as in lemma 21.12, they get matched by the end of the
round. Reapplying the same argument, we get that after 2|M | rounds all the nodes u1, ..., u|M |, v1, ..., v|M |
get matched correctly. As not all the nodes necessarily contribute to the matching |M |, after at most one
additional round these nodes set their matching pair to be null.

The bound of O(|M |n) = O(n2) moves for the time complexity now follows directly from the Theorem 21.13.

References

[1] D. Avis, “A survey of heuristics for the weighted matching problem,” Networks, vol. 13, no. 4, pp. 475–
493, 1983.

[2] R. Preis, “Linear time 1/2 -approximation algorithm for maximum weighted matching in general graphs,”
in Proceedings of the 16th annual conference on Theoretical aspects of computer science, STACS’99,
(Berlin, Heidelberg), pp. 259–269, Springer-Verlag, 1999.

[3] J.-H. Hoepman, “Simple distributed weighted matchings,” CoRR, vol. cs.DC/0410047, 2004.

[4] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1996.

[5] S. Dolev, Self-stabilization. Cambridge, MA, USA: MIT Press, 2000.

21-12 Lecture 21: Distributed Greedy Maximum Weight Matching

[6] F. Manne and M. Mjelde, “A self-stabilizing weighted matching algorithm,” in Proceedings of the 9h
international conference on Stabilization, safety, and security of distributed systems, SSS’07, (Berlin,
Heidelberg), pp. 383–393, Springer-Verlag, 2007.

[7] V. Turau and B. Hauck, “A new analysis of a self-stabilizing maximum weight matching algorithm with
approximation ratio 2,” Theor. Comput. Sci., vol. 412, pp. 5527–5540, Sept. 2011.

