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Abstract—A method to improve the performance of mul-
tiple-input–multiple-output systems is to employ a large number
of antennas and select the optimal subset depending on the specific
channel realization. A simple antenna-selection criterion is to
choose the antenna subset that maximizes the mutual informa-
tion. However, when the receiver has finite complexity decoders,
this criterion does not necessarily minimize the error rate (ER).
Therefore, different selection criteria should be tailored to the
specific receiver implementation. In this paper, we develop new
antenna-selection criteria to minimize the ER in spatial multi-
plexing systems with lattice-reduction-aided receivers. We also
adapt other known selection criteria, such as maximum mutual
information, to this specific receiver. Moreover, we consider adap-
tive antenna-selection algorithms when the channel is not perfectly
known at the receiver but can only be estimated. We present sim-
ulation examples to show the ER of the different selection criteria
and the convergence of the adaptive algorithms. We also discuss
the difference in complexity and performance among them.

Index Terms—Adaptive algorithm, antenna selection, lattice
reduction, minimum error rate (ER), multiple-input–mul-
tiple-output (MIMO).

I. INTRODUCTION

MULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO)
communication systems have received significant atten-

tion during recent years due to the high capacity improvement
that they can offer over single-input–single-output (SISO)
systems [1], [2]. One concern when using MIMO systems is
the amount of hardware required for the radio-frequency (RF)
chains attached to each antenna, which consist of expensive
hardware blocks such as analog-to-digital converters, mixers,
and low-noise power amplifiers. On the other hand, antennas
(patch or dipole) are generally cheaper elements. Therefore,
an approach to obtain better performance in a MIMO system
is to use a fixed number of RF chains and a larger number
of antennas than actually being used. Then, given a specific
channel realization, a selection algorithm can be implemented
to combine the RF chains with the subset of antennas, which
gives better performance, e.g., in terms of capacity or error rate
(ER).
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Various antenna-selection schemes in MIMO systems have
been studied in the recent literature. A selection mechanism is
proposed in [3], according to which the best subset of transmit
or receive antennas is selected based on the mutual information
criterion. A suboptimal algorithm that does not need to perform
an exhaustive search over all possible subsets is proposed in [4].
A statistical analysis to relate the capacity when the whole set of
antennas is used and the channel capacity with subset selection
is reported in [5].

Antenna-selection algorithms to minimize the symbol error
rate (SER) when orthogonal space–time block codes are used
in MIMO systems, are proposed in [6]. Selection algorithms
that only assume knowledge of the second-order statistics of the
MIMO channel are also presented in [7]. In [8], a study of the
impact of antenna selection on the pairwise error probability is
conducted. In particular, this work looks at the impact of antenna
selection at the receiver on the diversity order and coding gain
of the underlying orthogonal space–time code, assuming that
the antenna subset maximizing the signal-to-noise ratio (SNR)
is selected. This work shows that the diversity gain provided
by the code is maintained, whereas the coding gain is reduced.
In [9], the authors design space–time codes for two transmit
antennas based on the pairwise error probability that perform
better when antenna selection at the receiver is used. Antenna-
selection algorithms at the transmitter are studied in [10] when
the Alamouti code and power allocation are implemented using
the feedback channel-state information and considering errors
in the information feedback to the transmitter.

Antenna selection in spatial multiplexing systems has also
been addressed recently. Antenna-selection algorithms that at-
tempt to minimize the bit-error rate (BER) in linear receivers
are presented in [11]. In [12], a statistical analysis on the MIMO
channel capacity is performed considering spatial multiplexing
systems with receive antenna selection. This work proves that
the diversity order, defined as the slope between the capacity and
outage rate in the region of small outage rates, which is achiev-
able through antenna selection, is the same as that of the full
system, which motivates the use of receive antenna selection in
spatial multiplexing systems. Other work on MIMO antenna se-
lection is also reported in [13]–[17].

In this paper, we propose receive-antenna-selection algo-
rithms for an arbitrary number of transmit antennas and

receive antennas when spatial multiplexing
systems are used at the transmitter and the recently proposed
lattice-reduction-aided (LRA) decoders are used at the receiver.
LRA receivers have a complexity similar to the linear receivers,
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Fig. 1. Schematic representation of a MIMO system with antenna selection at the receiver.

but the performance is close to that of the maximum likelihood
(ML) receiver [18]. We develop different antenna-selection
criteria assuming that the channel-state information is available
at the receiver. Simulations show that antenna selection leads
to an improvement of diversity and coding gain with respect to
the system without antenna selection and achieves the same di-
versity as the system using the whole set of available antennas.
In addition, we compare the ER achieved using each of the
selection criteria and discuss their complexity.

The antenna-selection problem can be formulated as a dis-
crete optimization problem, i.e., find the antenna indices to be
used to maximize an objective function (e.g., mutual informa-
tion). When the channel is perfectly known, the optimization
problem becomes an exhaustive search over all possible solu-
tions. However, in real communication systems, the receiver
typically has a noisy estimate of the channel. Hence, in this
paper we present a globally convergent discrete stochastic ap-
proximation algorithm for selecting the optimal antenna subset
when the receiver can only evaluate a noisy estimate of the ob-
jective function. This algorithm is based on advanced discrete
stochastic optimization techniques that appeared in the opera-
tions research literature [19].

The remainder of this paper is organized as follows. In Sec-
tion II, the MIMO system model with traditional linear receivers
and antenna selection is presented. In Section III, the LRA re-
ceivers are described and in Section IV, several antenna-selec-
tion criteria are developed as bounds on the error probability.
Simulation examples are provided to demonstrate the improve-
ment in using antenna selection and the performance of different
selection criteria. In Section V, a globally convergent adaptive
selection algorithm is proposed when only noisy estimates of
the channel are available. Section VI contains the conclusion.

II. SYSTEM DESCRIPTION

We consider a MIMO system, as shown in Fig. 1, with
transmit and receive RF chains and suppose
that there are receive antennas. In this paper, we
consider that the antenna selection is implemented only at the
receiver. This selection may also be implemented at the trans-
mitter, with the difference that the receiver needs to feedback
information about the selected antennas or channel-state infor-

mation. The wireless channel is assumed to be quasistatic and
flat fading and can be represented by an matrix
whose element represents the complex gain of the channel
between the th transmit antenna and the th receive antenna.
The subset of receive antennas is determined by the
antenna-selection algorithm based on different criteria, which
will be developed in the next section. In this paper, we assume
that the channel matrix is known at the receiver, but not at the
transmitter.

Denote each of the antenna subsets as
Ant Ant Ant (e.g., selecting the

first, second, and sixth antennas is equivalent to ).
Denote the set of all possible antenna subsets as

and denote as the
channel submatrix corresponding to the receive antenna subset

, i.e., rows of corresponding to the selected antennas.
Then, the aim of antenna-selection algorithms in this paper is
to select one of the antenna subsets in to minimize the ER,
e.g., SER or BER. Thus, the optimization problem becomes

ER (1)

where we use to denote the global minimizer of ER . In
practice, exact expressions of the ER do not usually exist and,
therefore, we develop expressions that bound or approximate
the ER. As expected, the exact ER will depend on the specific
constellation, channel realization, and receiver structure.

The received signal can be expressed as

(2)

where is the transmitted
signal vector, is the received
signal vector, is the received noise vector, and is
the total SNR independent of the number of transmit antennas.
The entries of are independent and identically distributed
(i.i.d.) circularly symmetric complex Gaussian variables with
unit variance, i.e., . For notational convenience,
we do not explicitly specify the dependence of and on .

A. Traditional Linear Receivers

Linear receivers are the simplest receivers. In linear receivers,
the received signal vector is linearly transformed by a ma-
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Fig. 2. Traditional linear detector.

Fig. 3. Received constellation and linear receiver decision regions.

trix equalizer that basically undoes the effects of the channel to
obtain

(3)

which is later quantized to obtain an estimate of the transmitted
symbol vector . The whole process is shown in Fig. 2.
The matrix equalizer can be computed according to dif-
ferent criteria. For the zero-forcing (ZF) criterion, the equal-
izer is given by , where denotes
the pseudoinverse. The ZF criterion suffers from noise enhance-
ment since it focuses on canceling the effects of the channel re-
sponse at the expense of enhancing the noise, possibly signifi-
cantly. In [18], a good explanation of what occurs to the decision
regions of the received constellation in a linear receiver is pre-
sented. As an example, consider a real-valued MIMO system
with , where the transmitted symbols and
belong to a -PAM constellation, i.e.,

. Assume that the channel matrix is

. Therefore, the received constellation consisting

of will be a lattice of integer com-
binations of two vectors, namely and

, as shown in Fig. 3. Because of the equalizing operation
and the direction of the basis vectors, the decision regions be-
come narrow parallelograms for which small noise samples can
make the decoder make a wrong decision.

On the other hand, the minimum
mean-square error (mmse) linear equalizer

minimizes the error due to the noise and the interference
combined. Other receivers with complexity and performance
between the ML and the linear receivers are the BLAST

Fig. 4. Decision regions of a linear receiver on the reduced lattice basis.

receivers [20]. Although linear receivers have very low
complexity, the performance is far from the more complex
optimal ML receivers.

III. LATTICE-AIDED-REDUCTION LINEAR RECEIVERS

As shown in Fig. 3, the problem with linear receivers is that
the decision regions are very narrow when the basis of the lattice
are highly correlated. A solution is to find a different basis for
the same lattice for which the decision regions are more robust
against the noise. Then, the equalizing operation is performed
in this new basis for which wrong decisions are more unlikely to
occur and, finally, the decoded symbols are transformed to the
original basis. In this section, we describe how the change of
basis can be optimized to improve the decision regions in linear
receivers and how the receiver can make use of this improve-
ment. For notational convenience, we will drop the subscript .

A. Constellations, Lattices, and Basis Change

An -dimensional lattice, though infinite, can be described
in terms of a generator basis . Associated to
them, there is a generator matrix whose columns are

and the lattice is described as integer (possibly
complex) combinations of the generators as

(4)

If is a basis of a lattice, also is a basis of the
same lattice if and have integer (possibly complex) en-
tries. Therefore, the aim of the LRA receivers is to find a change
of basis that transforms the generators into to optimize
the decision regions for an specific lattice and decoder. This
problem is known as the lattice-reduction problem. The goal of
lattice basis reduction is, given an arbitrary lattice basis, obtain
a basis of the shortest possible vectors; that is, vectors as close
as possible to mutually orthogonal. If we consider the lattice in
Fig. 3, a possible new basis and for the same lattice is the
one shown in Fig. 4. The generators of this basis are close to
orthogonal and, therefore, the decision regions are improved as
can be observed comparing both figures.
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Fig. 5. Linear detector using lattice reduction for a general QAM constellation.

B. Receiver Operations

The idea behind the LRA receivers is to operate in the more
appropriate reduced basis. An input symbol vector represented
by in the original basis with elements in can be represented
by in the reduced basis. Note that since has
entries restricted to , then also has elements in . The
LRA receiver uses the reduced basis, since the decision regions
are improved and, then, it returns the decoded symbols to the
original basis. We can assume that the received vector in (2)
is already in the reduced basis, i.e.,

(5)

In particular, for the linear receiver, the matrix equalizer will
compensate for the effects of the channel in the reduced basis,
i.e., . For the ZF receiver ,
obtaining a decision statistic of as

(6)

which is quantized to obtain an estimate of , i.e., .
Since the lattice points consist of elements in , the quantiza-
tion consists of a simple rounding operation in which real and
imaginary parts are rounded separately. Then, an estimate of the
transmitted vector is obtained, returning to the original basis
as . Note that the process can be implemented as long
as the original symbols belong to .

To make use of the lattice theory, original symbols in the
constellation are required to consist of symbols in , as
expressed in (4). Note that the origin also belongs
to the lattice. Common quadrature amplitude modulation
(QAM) constellations neither consist of contiguous integers
nor contain the origin; hence, a scaling and shifting of the
whole constellation is necessary. As an example, consider
16-QAM symbols, such that and

. A possible lattice satisfying our
requirement might be constructed shifting each symbol by

and scaling by . In this way, the QAM symbol
vector becomes , i.e.,
and . Therefore, a basis change with
consisting of entries converts lattice points into other points
in the same lattice, with the difference that the new lattice
is now treated as infinite, since entries in do not have any
size constraint. To make LRA receivers general to any spatial
multiplexing transmitter with standard QAM constellations and
assuming that the channel matrix is known at the receiver,
the scaling and shifting operation should be implemented at

the receiver. As an example, consider the shifting
vector . Then, assuming that the shifted
and scaled constellation was transmitted, the received vector
becomes

(7)

Considering that is the signal reaching the receiver and was
transmitted using the original symbol vector , the signal in (7)
can be obtained at the receiver as

(8)

Then, the operations at the receiver become scale, shift, and
equalize in the new basis

(9)

In particular, when and the channel matrix is
full rank, we have . Equation (9) can be
rewritten as

(10)

Hence, the second step at the receiver becomes slice, return to
original basis, and undo the scale and shift

(11)

Note that the slicer is just a rounding operation, since
the symbols in the lattice belong to . The whole process de-
scribed in (9) and (11) is shown in Fig. 5.

C. Basis Reduction

So far, we have assumed that, given a basis for the lattice, a
reduced basis can be obtained, e.g., given a lattice as the one
shown in Fig. 3, we can obtain a reduced basis for the same
lattice as the one shown in Fig. 4. We now give an overview of
the Gauss basis reduction algorithm limited to rank ,
which is used in [18]. The reduction algorithm uses a method
similar to the Gram–Schmidt orthogonalization. Assume that

and are a basis of the lattice. Define the Euclidean inner
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Fig. 6. Lattice basis reduction of lattice in Fig. 3 using Algorithm 1.

product as and consider the Euclidean norm.
Assuming that , the basis reduction algorithm does
operations in the basis vectors of the form

(12)

which yields a different basis for the same lattice if .
Since the purpose of the lattice reduction is to make lattice
basis vectors as close to orthogonal as possible, Gram–Schmidt
orthogonalization can be used to find with the further con-
straint . The ideal Gram–Schmidt orthogonalization
uses , but this operation would
change the lattice, since is not in . The weakly reduced
Gram–Schmidt orthogonalization uses an integer rounding
of the ideal Gram–Schmidt coefficient as , where
real and imaginary parts of complex numbers are rounded
separately. Using a weak reduction, the lattice remains the
same. Once has been reduced with respect to , if
we have the possibility of reducing with respect to the
new . We first swap and . This second reduction will
occur if such exists, i.e., if
or . The algorithm repeats this
process until no more reduction is possible. As an example,
given the basis in Fig. 3, the steps performed in the algorithm
are represented in Fig. 6.

A notion of lattice reduction for a lattice basis
of arbitrary rank was proposed by Lenstra, Lenstra, and Lo-
vasz (LLL) in [21]. It uses ideas similar to the Gauss reduction
algorithm. For a given , the LLL reduction al-
gorithm modifies an input basis so that the output
basis satisfies the following -reduction properties:

for (13)

and

(14)

where the vectors denote the Gram–Schmidt or-
thogonalization of the output basis that can be obtained by the
recursion

for (15)

and the Gram–Schmidt coefficients are equal to

(16)

A possible implementation of the LLL algorithm to obtain the
reduced basis is given in Algorithm 1.

Algorithm 1 LLL lattice-reduction algorithm
INPUT: Lattice basis hhh1 = HHH[:; 1]; . . . ; hhhM = HHH[:;MT ] 2
M and (1=4) < � < 1 k = 2

WHILE k � MT DO

FOR i = k � 1; . . . ; 1 DO

hhhk = hhhk � b�k;iehhhi; round real and image separately
END FOR

Compute ĥhhk as in (15)
IF �kĥhhk�1k

2 > kĥhhk + �k;k�1ĥhhk�1k
2 THEN

hhhk�1 $ hhhk (exchange)
k = max(k � 1; 2)

ELSE k = k + 1

END WHILE

OUTPUT: Reduced lattice basis HHH 0 = [hhh1; . . . ; hhhM ] and

PPP defined as HHH 0 = HHHPPP

During the algorithm, we keep two sets of vectors, namely
the lattice reduced basis vectors and the
Gram–Schmidt vectors (with the corresponding
Gram–Schmidt coefficients ), which are continuously up-
dated. Note that only adjacent vectors and may be
exchanged. When the rank is and , Algorithm
1 is identical to the Gauss reduction algorithm used in [18].
Reduced bases with better properties can be obtained when the
constant is closer to one, although the number of iterations of
Algorithm 1 would increase. More efficient implementations of
the algorithm can be found in [22] and [23].

Other types of reduced bases are the Korkin–Zolotarev (KZ)
basis [24]–[26], the Minkowski basis [27], [28], the Seysen basis
[29], [30], and hybrids [31], which have different reduction cri-
teria. These bases have, in general, slightly better properties
(they are usually LLL reduced too), although the reduction is
more time consuming.

The performance of the LRA receivers will be closer to that
of the ML receiver as the size of the QAM constellation in-
creases. This occurs because LRA treats finite constellations as
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infinite and, therefore, constellation points on the boundary of
the constellation that originally had less constellation neighbors
end up having the same number of neighbors as the internal
constellation points. Hence, this loss in performance will be
smaller if the ratio of boundary constellation points and internal
points becomes smaller, which occurs in high-order QAM
constellations (e.g., 64 or 256 QAM). Moreover, it is known
that the computational complexity of the ML decoder in MIMO
systems with large constellations or large number of transmit
antennas becomes prohibitive. Therefore, LRA decoders are
a good alternative when large-order constellations or a large
number of transmit antennas are used. Note that the complexity
of the LRA receivers has two parts: 1) computing the reduced
basis of the lattice and 2) implementing the linear equalizer. In
quasistatic channels, the lattice is fixed during a long period
of time, so the basis reduction is performed just once and
then the resulting basis is stored for subsequent use. Thus, the
complexity of solving 1) is not of major concern.

IV. ANTENNA-SELECTION CRITERIA

In this section, we develop different antenna-selection criteria
to select an optimal antenna subset in LRA linear receivers when
the channel matrix is known at the receiver.

A. Maximum MIMO Mutual Information

Assuming that the MIMO channel is known at the re-
ceiver but not at the transmitter, the mutual information between
the transmitter and receiver is given by [2]

(17)

Then, one criterion to select the optimal antenna is to select the
antenna subset , which maximizes the above mutual informa-
tion [3]

(18)

In [4], a suboptimal algorithm is presented to reduce the com-
plexity when the number of antenna subsets in is high. This
method considers a recursive algorithm that successively elimi-
nates one receive antenna, i.e., one row of , until there are
antennas left. The loss performance of the suboptimal algorithm
is minimum.

B. Largest Minimum Eigenmode

As shown in [2], MIMO systems can be described in terms of
spatial eigenmodes that act as parallel SISO subchannels. The
SNR of each eigenmode is proportional to each of the singular
values of the MIMO channel . It is expected that the ER will
be influenced by the worst eigenmode of the channel. Define the
singular values of as .
Therefore, an antenna-selection criterion can be simplified to
[11]

(19)

Note that the two first criteria do not need to perform the lattice
basis reduction.

C. Minimum ER by Simulation

The maximum mutual information criterion can minimize the
error probability when the receiver has infinite complexity. For
finite complexity receivers, the maximum mutual information
criterion does not necessarily minimize the ER that depends on
the specific receiver operations. However, the ER cannot be ex-
pressed in closed form. Since it is difficult to find exact BER or
SER expressions in MIMO receivers; when the number of dif-
ferent antenna subsets is not very high, we could just run simu-
lations at the receiver with fake symbols to find the optimal an-
tenna subset. Assume that the channel and SNR are known
at the receiver. At the receiver, generate fake random symbol
vectors with belonging to the
original transmitted constellation. Each perform a simu-
lation of the form

(20)

where the matrix contains i.i.d. samples.
Note that the symbols are not sent through the channel; they are
simply generated with a computer simulation. At the receiver,
perform the LRA detection operations in (9) and (11) to obtain

and estimate the or comparing and .
Hence, a criterion to select an antenna subset that minimizes
the ER becomes

SER (21)

The disadvantage of the method is that in the high SNR regime,
SER can be very low and, therefore, a large amount of fake
symbols need to be sent if we want to obtain a good estimate
of the SER.

On the other hand, it has been observed by simulations that
the antenna subset having the minimum ER at high SNR values
corresponds to the antenna subset having the minimum ER at
lower SNR (as long as there is not a large SNR difference).
Therefore, to find the best antenna subset when the SNR is high,
we can reduce the SNR for the simulation and less fake symbols
may be needed to obtain a good estimate of the ER.

We note that although this approach is highly complex, it
could be used in other MIMO systems for which tight bounds
on the ER are not easy to find because of the specific receiver
or because of the channel model or noise model. Note that in
static channels, antenna selection needs to be performed only
once. Hence, a receiver could afford this complexity if an im-
provement in the performance can be obtained. Moreover, the
method can be used to minimize the bit, symbol or frame ER.

D. mse

In linear receivers, the error probability of each data stream is
influenced by the mean-square error (mse) between the symbol

and its estimate prior to being sliced. From (10) we have

(22)
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and, therefore, the mse of each of the data streams in the new
basis becomes

mse

(23)

where denotes the th row of . Then, the ER will
be influenced by the data stream with maximum mse. Thus, a
selection criterion can be simplified to select the antenna subset
with minimum maximum mse

mse (24)

1) Error Propagation: In the LRA receiver, after the slicing
operation the symbols are transformed to the original basis as

. Then, if an error has occurred in the reduced basis in
the th position, it will propagate to as many symbols as nonzero
elements exist in the th column of . Consider two antenna
subsets having similar maximum mse. Then, between these two
subsets, we would like to choose the one that does not prop-
agate the error (or, at least, it propagates to a lesser number of
symbols). To quantify the error propagation, we approximate the
symbol ER at the th position. If ,
then the distance between constellation points after the equal-
izer operation at the receiver is the same as the distance between
constellation points at the transmitter. The noise is Gaussian
since it is a linear combination of Gaussian random variables.
Further, it is circularly symmetric since it is a linear combi-
nation of a circularly symmetric Gaussian vector, i.e.,

. Since the data symbols in belong to , then
the minimum distance between any two constellation points is

. Then, for high SNR, the SER corresponding to the
th transmit antenna can be approximated by

(25)

with mse . Hence

mse
(26)

where is the integral of the tail of the unit variance
Gaussian distribution. Denote as the number of nonzero
elements in the th column of , i.e., . Then,
the selection criterion becomes

(27)

It is expected that this last criterion will improve the perfor-
mance when the number of rows of (i.e., the number of
transmit antennas ) is large.

E. Optimal Geometrical Decision Region

Since the improvement of LRA detectors comes from opti-
mizing the decision regions, it would be interesting to see the
selection criterion from a geometrical perspective. As illustrated

Fig. 7. Decision region in the LRA linear receiver and minimum noise level ddd
required to make a wrong decision.

in Fig. 4 in a real case with , the decision boundaries are
defined by the reduced lattice basis. The corresponding decision
region is shown in Fig. 7 and is equivalent to a parallelepiped
decision region spanned by lattice basis vectors around each lat-
tice point in the center of the region. The minimum value of the
noise that provokes a wrong decision is shown in this figure as

and is influenced by both the length of the shortest vector in
the reduced lattice basis and the relative angle between the two
basis vectors. Note that if the basis vectors are mutually orthog-
onal, the minimum noise vector that produces an error is clearly
the shortest vector in the lattice basis. Since these vectors are
not orthogonal, this value can be quantified by orthogonalizing
the shortest vector in the reduced lattice basis with respect to the
other one and computing its length.

We want to generalize this notion to the more general
case. Define the orthogonal projection op-

erator of a vector with respect to the subspace
span as

proj (28)

where proj can be easily obtained by finding a
Gram–Schmidt basis of and projecting onto it. The
most probable error in the symbol transmitted from the th
transmit antenna will occur if the noise level in the direction of

is larger than half its length. Define .
Then, an antenna-selection criterion can be simplified to se-
lecting the antenna subset with the largest . Then, denoting

as the th column of , the geometrical selection crite-
rion becomes

(29)

where proj and
span .

Note that the optimal decision region criterion and the mse
criterion are two different ways of looking at the same metric. In
the optimal decision region criterion, we view the system before
applying the equalizer. In the mse criterion, we view the
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Fig. 8. Error performance comparison among different receivers with and without antenna selection.

system after the equalization has been performed. Therefore, the
performance of both criteria will be the same.

1) Error Propagation: Similar to the mse criterion, we
would like to select an antenna subset that not only optimizes
the lattice reduced decision region, but also minimizes the error
propagation. The noise vector before applying the equalizer is
circularly symmetric in each dimension with all the dimensions
orthogonal. The most probable error will occur if the noise in
the direction of is greater than the absolute value of it.
Then, we can rotate all the axes so one of the components of the
noise is aligned with with variance . Therefore, the
probability of error in that direction can be approximated by

(30)

where we have applied that . The cor-
rect scaling factor in in the computation of needs to
be considered, i.e., consider vectors scaled as
and the original separation between constellation symbols (e.g.,

in the QAM case considered in this paper). As before,
denote as the number of nonzero elements in the th column
of . Then, the geometrical selection criterion considering error
propagation becomes

(31)

F. Simulation Results

To show the improvement of employing antenna selection in
LRA receivers, we consider a system with
RF chains. We use 16 QAM symbols generated as

and , i.e., 10
dB. We assume that the uncorrelated MIMO channel is ran-
domly generated with , perfectly known at the
receiver and remains constant for several data bursts. For com-
parison, the performance of the ML and the traditional ZF linear
receiver without antenna selection is also considered. In Fig. 8, it
is seen that without antenna selection, the ZF LRA receiver be-
haves better than the traditional ZF linear receiver and achieves
a diversity similar to the one of the ML decoder. In the same
figure, we consider antenna selection with ZF LRA receivers.
We show the performance of the LRA receiver with

, and antennas. The optimal antenna
subset is found by exhaustive search over all possible antenna
subsets for which we have run long simulations to find the SER
associated to each antenna subset in . It is seen in Fig. 8 that
there is an improvement of several orders of magnitude by em-
ploying antenna selection at the receiver with a minimum ad-
ditional complexity, cost, and hardware requirements. It is also
observed that antenna selection increases both the diversity (i.e.,
the slope of the SER curve with respect to the SNR) and the
coding gain with respect to the system without selection. Note
that by employing only an additional antenna, i.e., , the
simple ZF LRA receiver already provides better performance
than the optimal ML receiver with no antenna selection that, for
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Fig. 9. Symbol ER comparison between full systems (4� 2), antenna selection (2� 2 with four receive antennas to select), and limited systems (2� 2).

the 16-QAM constellation case, requires as much as 256 com-
parisons for every decoded symbol. Therefore, a simple LRA
linear receiver with antenna selection with only one extra an-
tenna are good candidates to improve the MIMO performance
while reducing the receiver complexity.

Fig. 9 compares the performance of antenna selection on
traditional linear receivers (ZF and mmse) and LRA receivers
when , and . The rest of the param-
eters are the same as before. We also consider the full system
on both linear receivers and LRA receivers, i.e., when all the

receive antennas are used. With two transmit antennas, ZF
and mmse traditional linear receivers give similar performance
and the curves almost overlap. It is seen that LRA ZF receivers
with antenna selection can obtain better performance than the
full system used with traditional linear receivers. Similar to
space–time coding systems with antenna selection [8], the
diversity of spatial multiplexing systems with antenna selection
is the same as the diversity of the full system (the curves
have the same slope). This result highly motivates the use of
antenna selection in spatial multiplexing systems. However,
there is a small loss in the coding gain. As in space–time coding
systems [8], it has been observed that the loss is bounded by

.

We now compare the performance among the different an-
tenna-selection criteria proposed in this paper. We first consider
a system with and antennas. The
SER associated with each antenna subset is found running long
simulations and averaged among multiple channel realizations.
It is seen in Fig. 10 that all the different criteria bound the SER
very tightly. The mse and geometrical criteria considering error
propagations are the best criteria for this task and have the same

performance. The worst antenna-selection criteria in terms of
SER correspond to the maximum mutual information and max-
imum minimum eigenmode. However, these criteria have the
smallest computational complexity since they do not require a
lattice basis reduction. Note that and criteria defined
in (24) and (29), respectively, do not depend on the SNR of the
channel and select the best antenna subset in most cases, which
justifies our claim in Section IV.3 that, in general, the antenna
subset minimizing the SER at high SNR is the same as the an-
tenna subset minimizing the SER at low SNR.

We now consider a larger number of antennas, i.e.,
and . The reduction parameter in Algo-

rithm 1 is . In this scenario, there are 220 possible an-
tenna subsets. Note that this is not the required number of dif-
ferent channel estimations, since by combining the rows of two
different channel estimates we can have access to the 220 dif-
ferent channel matrices. The results are shown in Fig. 11. As
expected, the performance of the mse and the optimal decision
region criteria is the same (the curves completely overlap) with
and without considering the error propagation. It is seen that
the selection criteria that consider error propagation are the best
selection criteria in terms of SER. When considering simple se-
lection criteria, the mutual information criterion does not give a
very good performance, whereas the minimum eigenmode gives
slightly better results. Notice that with a ML decoding algorithm
with 16-QAM symbols and nine transmit antennas, the receiver
would require as much as comparisons.

V. ADAPTIVE ANTENNA SELECTION

So far, we have assumed that the channel is perfectly
known at the receiver and based on it; different selection criteria
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Fig. 10. Symbol ER of ZF LRA receivers employing different antenna-selection criteria in a 2� 2 (6� 2) system.

Fig. 11. Symbol ER of ZF LRA receivers employing different antenna-selection criteria in a 9� 9 (12� 9) system.

perform an exhaustive search of an objective function evaluated
over all possible antenna subsets. We now consider situations
in which the receiver only has access to noisy estimates of the
channel obtained using training sequences. Then, the objec-

tive function in the different selection criteria cannot be evalu-
ated analytically, but can only be estimated. In this case, we con-
sider antenna selection using discrete stochastic approximation
algorithms based on the discrete stochastic optimization tech-
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niques found in the recent operations research literature [19].
These techniques have recently been applied to solve several
other problems in wireless communications [32]. These algo-
rithms optimize an objective function (e.g., maximum
mutual information in Section IV.A, mmse in Section IV.D, or
minimum error distance in Section IV.E) over a set of feasible
solutions (e.g., antenna subsets to be used) when the objective
function cannot be evaluated analytically, but can only be esti-
mated. The algorithms take ideas from the traditional adaptive
filtering algorithms such as the least-mean-squares (LMS) al-
gorithm, in which at each iteration, the algorithm makes a move
toward a better solution. But, in this case, the parameters to be
optimized take discrete values (i.e., antenna indices to be used).
The algorithm is useful in very slow-varying channels. In the
antenna-selection application, it is applicable to fixed wireless
access systems, for example.

We first consider channel estimation at the receiver using
training sequences [33]. Suppose that MIMO training
symbols are used to probe the channel. Then, the received signal
corresponding to the training sequence can be written as

(32)

where is the received matrix, is the
training sequence, and is the received noise matrix.
Then, the ML estimate of the channel matrix associated to the
antennas subset is given by

(33)

According to [33], the optimal training symbol matrix to min-
imize the channel-estimation error should be orthogonal, i.e.,

.
Suppose that at time the receiver obtains an estimate of the

channel and computes a noisy estimate of the objective
function denoted as . Given a sequence of i.i.d.
random variables , if each is an
unbiased estimate of the objective function , then the op-
timization problem can be reformulated as the following dis-
crete stochastic optimization problem:

(34)

To solve the problem in (34), we now present a globally con-
vergent stochastic approximation algorithm based on [19]. We
use the unit vectors as labels for the possible an-
tenna subsets, i.e., , where denotes the

vector with a one in the th position and zeros else-
where. At each iteration, the algorithm updates the
probability vector representing
the state occupation probabilities with elements
and . Let be the antenna subset chosen at
the th iteration. For notational simplicity, it is convenient to

map the sequence of antenna subsets to the sequence
of unit vectors where if
.

Algorithm 2 Discrete stochastic approximation algorithm for antenna
selection
Initialization

n ( 0

select initial antenna subset !(0) 2 
 and set

�[0; !(0)] = 1

set �[0; !] = 0 for all ! 6= !(0)

FOR n = 0; 1; . . . DO

Sampling and evaluation

given !(n) at time n, obtain a channel estimate

ĤHH
!

[n]

obtain the corresponding �[n; !(n)]

choose another ~!(n) 2 
n!(n) uniformly
obtain the corresponding channel estimate

ĤHH ~! [n] and �[n; ~!(n)]

Acceptance

IF {�[n; ~!(n)] > �[n; !(n)], THEN
set !(n+1) = ~!(n)

ELSE

!(n+1) = !(n)

END IF

Adaptive filter for updating state occupation

probabilities

���[n + 1] = ���[n] + �[n + 1](DDD[n + 1]� ���[n])

with the decreasing step size �[n] = 1=n

Computing the maximum

IF �[n + 1; !(n+1)] > �[n + 1; !̂(n)], THEN
!̂(n+1) = !(n+1)

ELSE

set !̂(n+1) = !̂(n)

END IF

END FOR

Under certain conditions [19], the sequence almost
surely converges to the global maximizer . Therefore,

denotes the estimate at time of the optimal antenna
subset . If we denote for each as a
counter of the number of times the Markov chain has vis-
ited antenna subset by time , we can observe that

. Therefore, the al-
gorithm chooses the antenna subset that has been visited most
often by the Markov chain so far.

A. Simulation Results

To illustrate the convergence of Algorithm 2 in static
channels, we consider the antenna-selection criterion based
on the optimal geometrical decision region, which gives
a good bound on the ER, as shown in Section V. Define

. Then, the objective function to be
maximized becomes . Suppose that at time
the receiver obtains an estimate of the channel , when
the antenna subset chosen is . Then, the estimate of the lattice
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Fig. 12. Single run of the algorithm: kddd k of the chosen antenna subset versus time n.

Fig. 13. Average of 280 iterations of the algorithm over 100 different MIMO channel realizations: kddd k of the chosen antenna subset versus time n.

reduced basis becomes and Algorithm 2 uses a noisy
estimate of the objective function as

(35)

where denotes the th column of . For the simu-
lations, we consider and antennas.
We use the ML channel estimate in (33) with orthogonal
training symbols. We set dB and dB. The
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channel is randomly generated and fixed during
the whole simulation. Fig. 12 shows a single run of the algorithm
with 84 iterations. In this same figure, we show the distance

of the best antenna subset and the worst antenna subset, as
well as the median distance among the antenna config-
urations, found by exhaustive search. Next, in Fig. 13 we con-
sider 280 iterations in each execution and average the distance

of the antenna subset selected at each iteration by the algo-
rithm over 100 different channel realizations. From both figures,
it is seen that the algorithm adaptively moves to the best antenna
subset. We observe that although the algorithm takes some time
to converge to the optimal antenna subset, it very quickly moves
to an antenna subset with a large value of .

VI. CONCLUSION

In this paper, we have proposed different antenna-selection
criteria for lattice-aided-reduction linear receivers. The insights
of these kind of receivers have been described to understand
how the selection criteria are related to the operations at the re-
ceiver. The performance of the different antenna-selection cri-
teria has been compared in terms of symbol ER and it has been
observed that we can obtain an improvement of several orders of
magnitude by considering antenna selection at the receiver that
does not require any increase of decoding complexity and only
very little extra hardware. Moreover, we have developed adap-
tive versions of the antenna-selection algorithms in situations
where only noisy estimates of the channel are available. Simu-
lation results have demonstrated excellent convergence proper-
ties of these algorithms.
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