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Abstract

Rapid growth in mobile computing and other wireless multimedia services is in-

spiring many research and development activities concerning high-speed wireless

communication systems. The main challenges in this area include the development

of efficient coding and modulation techniques to improve the quality and spectral

efficiency of wireless systems. Multiple-input multiple-output (MIMO) techniques

for wireless communication have recently emerged and offer a powerful paradigm

for meeting these challenges. In particular, MIMO systems constitute a unified

way of modeling a wide range of different communication channels, which can be

handled with a compact vector-matrix notation. This thesis proposes new signal

processing techniques for two representative cases of MIMO systems:(a) systems

employing multiple transmit and receive antennas, and (b) systems with multi-

ple users transmitting simultaneously and overlapping in both time and frequency.

Owing to the common MIMO system model notation, similar signal processing

techniques are applicable to both scenarios as will be demonstrated in the thesis.

Chapter 2 gives an overview of the recent development in space-time coding

and signal processing techniques for MIMO communication systems having mul-

tiple antennas. We first review the information theoretic results on the capacities

of wireless systems employing multiple transmit and receive antennas. We then

describe two representative categories of space-time systems, namely, theBLAST

systems and systems employing space-time block coding. The extension of MIMO

techniques to frequency-selective channels is also addressed. Finally, alternative

coding and signal processing techniques for wireless systems employing multiple

transmit and receive antennas are also briefly touched upon.

The most costly element of a multiple antenna device is usually the RF chains

(amplifiers, filters, digital-to-analog converters, etc.). A promising approach for

reducing the cost and complexity while retaining a reasonably large fractionof

the high potential data rate of a MIMO system is to employ a reduced number of
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RF chains at the receiver (or transmitter) and attempt to optimally allocate each

chain to one of a larger number of receive (transmit) antennas. In this way, only

the bestset of antennas is used, while the remaining antennas are not employed,

thus reducing the number of RF chains required. Different approaches to selecting

the bestantennas are proposed in Chapter 3. In particular, we consider a new

framework for antenna subset selection in noisy environments and also fast antenna

selection algorithms.

Wireless communication using multiple antennas can increase the multiplex-

ing gain (i.e., throughput) and diversity gain (i.e., robustness) of a communication

system in fading channels. It has been shown that for any given number of an-

tennas there is a fundamental tradeoff between these two gains. Pioneering works

on space-time architectures had focused on maximizing either the diversity gain

or the multiplexing gain. However, recent works have proposed space-time ar-

chitectures that simultaneously achieve good diversity and multiplexing perfor-

mance. In Chapter 4 of this thesis a family of lattice space-time (LAST) codes

is presented that can achieve the optimum diversity-multiplexing tradeoff in delay-

limited MIMO channels. In Chapter 4, using stochastic optimization techniques

we design LAST codes that can further optimize the error rate. The designof

minimum error rate LAST codes is later extended to scenarios in which multiple

transmitting terminals cooperate by sharing their antennas.

In the final part of the thesis we consider MIMO systems with multiple users

instead of multiple antennas. In particular, we address the downlink of time do-

main duplex code division multiple access (TDD-CDMA) systems. First we ob-

tain and compare the capacity results of a downlink CDMA system with either

multiuser detection (i.e., receiver processing) or precoding (i.e., transmitterpro-

cessing). It is demonstrated that the two schemes exhibit similar capacity regions,

which motivates the development of efficient transmitter precoding techniques to

reduce the receiver complexity at the mobile units without degrading the system

performance. We then compare two classes of linear interference suppression tech-

niques for downlink TDD-CDMA systems over multipath fading channels, namely,

linear multiuser detection methods and linear precoding methods. We later develop

non-linear multiuser precoding methods, to remove multiuser interference, inter-

chip interference and inter-symbol interference. Efficient algorithms for multiuser

power loading and cancellation ordering are also developed.

In summary, a range of signal processing tools appropriate for use in MIMO

communication systems have been developed in the work presented in this thesis.
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Chapter 1

Introduction

Rapid growth in mobile computing and other wireless multimedia services is in-

spiring many research and development activities concerning high-speed wireless

communication systems. The main challenges in this area include the development

of efficient coding and modulation techniques to improve the quality and spectral

efficiency of wireless systems. Multiple-input multiple-output (MIMO) techniques

for wireless communication have recently emerged and offer a powerful paradigm

for meeting these challenges. In particular, MIMO systems constitute a unifiedway

of modeling a wide range of different communication channels, which can behan-

dled with a compact vector-matrix notation. In this thesis, we propose new signal

processing techniques for two representative cases of MIMO systems:(a) systems

employing multiple transmit and receive antennas, and (b) systems with multi-

ple users simultaneously transmitting and overlapping in both time and frequency.

Owing to the common MIMO system model notation, similar signal processing

techniques are applicable to both scenarios as will be demonstrated in the thesis.

The main motivation of this research is to propose powerful signal processing

techniques to improve the performance of MIMO communication systems.

1.1 Outline of the thesis and main contributions

Chapter 2 provides an overview on the recent developments in space-time coding

and signal processing techniques appropriate for MIMO communication systems

having multiple antennas. We first review the information theoretic results on the

capacities of wireless systems employing multiple transmit and receive antennas.

We then describe two representative categories of space-time systems, namely, the
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Bell-Labs Layered Space Time (BLAST) systems and systems employing space-

time block coding. Signal processing techniques for channel estimation andde-

coding in space-time systems are also discussed and compared. The extension of

MIMO techniques to frequency-selective channels is also addressed. Finally, some

other useful signal processing techniques for wireless systems employing multiple

transmit and receive antennas are also briefly touched upon.

Previously published work has shown that it is possible to improve the per-

formance of MIMO systems by employing a larger number of antennas than is

actually used at any instant, where the optimal subset of antennas is selected based

on the channel state information. Existing antenna selection algorithms assume

perfect channel knowledge and optimize criteria such as Shannon capacity or vari-

ous bounds on error rate.Chapter 3 begins by examining MIMO antenna selection

algorithms where the set of possible solutions is large and only a noisy estimate of

the channel is available. Using an approach similar to that employed by traditional

adaptive filtering algorithms, we propose a new framework based on simulation

based discrete stochastic optimization algorithms to adaptively select a better an-

tenna subset using criteria such as maximum mutual information, bounds on error

rate, etc. These discrete stochastic approximation algorithms are ideally suitedto

minimize the error rate since computing a closed form expression for the error rate

is intractable. We also consider time-varying channels for which the antennase-

lection algorithms can track the time-varying optimal antenna configuration. We

present several numerical examples to show the convergence of thesealgorithms

under various performance criteria, and also demonstrate their tracking capabili-

ties. We later propose various new antenna selection criteria and also fastantenna

selection algorithms.

Wireless communications using multiple antennas can increase the multiplex-

ing gain (i.e., throughput) and diversity gain (i.e., robustness) of communication

systems in fading channels. It has been shown that for any given number of anten-

nas there is a fundamental tradeoff between these two gains. Pioneering works

on space-time architectures focused on maximizing either the diversity gain or

the multiplexing gain. However, recent works have proposed space-time archi-

tectures that simultaneously achieve good diversity and multiplexing performance.

In Chapter 4 of this thesis we consider a family of lattice space-time (LAST)

codes that can achieve the optimum diversity-multiplexing tradeoff in delay-limited

MIMO channels. Unfortunately, the diversity-multiplexing tradeoff analysis does

not say anything about the coding gain or error rate at signal-to-noise (SNR) ratios
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of interest (also note that the tradeoff analysis gives asymptotic results).That is,

two space-time codes belonging to the family of LAST codes can obtain differ-

ent error rate performance at the signal to noise ratios of interest. Therefore, in

Chapter 4 we design spherical LAST codes subject to the minimum error-rate cri-

terion by employing a stochastic approximation technique based on the well known

Robbins-Monro algorithm together with unbiased gradient estimation. The design

of minimum error rate LAST codes is later extended to scenarios in which multiple

transmitting terminals cooperate by sharing their antennas.

In Chapter 5 we consider MIMO systems with multiple users instead of mul-

tiple antennas. In particular, we address the downlink of time division duplexcode

division multiple access (TDD-CDMA) systems. First we obtain and compare

the capacity results of a downlink CDMA system with either mulituser detection

(i.e., receiver processing) or precoding (i.e., transmitter processing).It is seen that

the two schemes exhibit similar capacity regions for both sum-rate and maximum

equal rate, which motivates the development of efficient nonlinear transmitter pre-

coding techniques to reduce the receiver complexity at the mobile units without

degrading the system performance. We then compare two classes of linearinter-

ference suppression techniques for downlink TDD-CDMA systems overmultipath

fading channels, namely, linear multiuser detection methods and linear precoding

methods. For the linear precoding schemes, we assume that the channel state infor-

mation (CSI) is available only at the transmitter but not at the receiver. We propose

several precoding techniques and the corresponding power controlalgorithms. The

performance metric used in the comparisons is the total power required at thetrans-

mitter to achieve a certain Quality of Service (QoS) at the receiver (e.g., minimum

signal to noise ratio). Our results reveal that in general multiuser detectionand pre-

coding offer similar performance; but in certain scenarios, precoding can bring a

substantial performance improvement. These results motivate the use of precoding

techniques to reduce the complexity of the mobile terminals (only a matched-filter

to its own spreading sequence is required and CSI is not required). We later de-

velop both bit-wise and chip-wise Tomlinson-Harashima (TH) multiuser precod-

ing methods for downlink CDMA with multipath, to remove multi-user interfer-

ence, inter-chip interference and inter-symbol interference. Efficient algorithms

for multiuser power loading and ordering are also developed. Implementationof

the proposed TH-precoding schemes in time-varying channels based on channel

prediction is also addressed. Simulations results are provided to demonstratethe

effectiveness of the proposed techniques in suppressing interference in the CDMA
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downlink. It should be noted that CSI at the transmitter can facilitate efficient

user scheduling. We therefore further develop low-complexity user allocation al-

gorithms based on the proposed linear precoding techniques.

Chapter 6 concludes the dissertation summarizing the main results and enu-

merating future lines of work.
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Chapter 2

Overview of MIMO Systems

2.1 Introduction

Multiple-input multiple-output (MIMO) communication technology has received

significant recent attention due to the rapid development of high-speed broadband

wireless communication systems employing multiple transmit and receive anten-

nas. Information theoretic results show that MIMO systems can offer significant

capacity gains over traditional single-input single-output channels [40,119]. This

increase in capacity is enabled by the fact that in rich scattering wireless envi-

ronments, the signals from each individual transmitter appear highly uncorrelated

at each of the receive antennas. When conveyed through uncorrelated channels

between the transmitter and the receiver, the signals corresponding to each of the

individual transmit antennas have attained different spatial signatures.The receiver

can exploit these differences in spatial signatures to separate the signalsoriginating

from different transmit antennas.

Many MIMO techniques have been proposed and are usually targeted atdif-

ferent scenarios in wireless communications. The Bell-Labs Layered Space Time

(BLAST) system [42, 131] is a layered space-time architecture originally proposed

by Bell-Labs to achieve high data rate wireless transmission. In this scheme, differ-

ent symbol streams are simultaneously transmitted from all transmit antennas (i.e.,

they overlap both in frequency and in time). The receive antennas yield thesuper-

position of all the transmitted symbol streams and recover them via proper signal

processing. On the other hand, in Space-Time Coding (STC) systems [3, 114, 115,

118], the same information symbol stream is transmitted from different transmit

antennas in an appropriate manner in order to obtain transmit diversity. Hence, in
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STC systems the MIMO channel is exploited to provide more reliable communica-

tions, whereas in the BLAST system the MIMO channel is used to provide higher

rate communications. Note that by employing higher level signal constellations,

STC systems can also achieve higher throughput. In this chapter, we givea general

overview of the capacity results for MIMO systems as well as for BLAST and STC

techniques.

The remainder of this chapter is organized as follows. In Section 2.2 we sum-

marize the capacity results for MIMO systems and discuss the impact of antenna

correlation on capacity. In Section 2.3, we describe the BLAST system andrelated

decoding and channel estimation techniques. In Section 2.4, we discuss space-time

coding techniques and in particular the space-time block codes. Performance com-

parisons between the BLAST system and the space-time block coding systemare

also made. In Section 2.5 we consider MIMO systems in frequency selectivechan-

nels. Finally, in Section 2.6, we briefly touch upon some other useful space-time

coding and signal processing techniques.

2.2 Capacity of MIMO Systems

In this section, we summarize the information theoretic results on the capacities of

MIMO channels, developed in the late 1990s [40, 119]. These results show the sig-

nificant potential gains in channel capacity by employing multiple antennas at both

the transmitter and receiver ends; and inspired an enormous surge of world-wide

research activities to develop space-time coding and signal processing techniques

that can approach the MIMO channel capacity.

2.2.1 Capacity Results

Consider a MIMO system withnT transmit antennas andnR receive antennas sig-

naling through flat fading channels, as shown in Figure 2.1. The input-output rela-

tionship of this system is given by

y = Hx + v, (2.1)

wherex = [x1, x2, ..., xnT ]T is the (nT× 1) transmitted signal vector,y = [y1, y2, ..., ynR ]T

is the (nR× 1) received signal vector,v = [v1, v2, ..., vnR ]T is the received noise
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Figure 2.1: Schematic representation of a MIMO system.

vector and

H =




h11 h21 · · · h1,nT

h21 h22 · · · h2,nT

...
.. .

...

hnR,1 hnR,1 · · · hnR,nT




(2.2)

is the (nR × nT ) MIMO channel matrix withhij representing the complex gain of

the channel between thejth transmit antenna and theith receive antenna.

It is assumed that the noise samplevi, i = 1, 2, ..., nR, is a circularly symmetric

complex Gaussian random variable with zero mean and varianceσ2, denoted as

vi ∼ Nc(0, σ2). That is,ℜ{vi} ∼ N (0, σ2

2 ), ℑ{vi} ∼ N (0, σ2

2 ), and that they are

independent. It is assumed that the complex channel gainshij ∼ Nc(0, 1). Note

that in general, the channel gains may be correlated.

Assuming that the channel matrixH is known at the receiver, but not at the

transmitter, the ergodic (mean) capacity of the MIMO channel with an average

total transmit powerP (i.e.,tr
(
E

{
xxH

} )
≤ P ) is given by [119, 40]

C = E

{
log det

(
InR +

1

nT

P

σ2
HHH

)}

= E

{
log det

(
InT +

1

nT

P

σ2
HHH

)}
bits/s/Hz, (2.3)

where the expectation is taken with respect to the distribution of the random chan-

nel matrixH.

To gain some insight on the capacity expression in (2.3), denoteρ = P/σ2 which

permits the capacity to be expressed as
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2.2 Capacity of MIMO Systems

C =

p∑

k=1

E{log(1+
ρ

nT
λk)}, (2.4)

wherep = min{nT , nR} andλ1, ..., λp are the eigenvalues of the matrixHHH

or HHH. Note that the matricesHHH andHHH have the same eigenvalues

which are all real and non-negative. If we compare (2.4) with the capacity of a

single-input single-output (SISO) channel [25], we observe that thecapacity of a

MIMO system is equivalent to the sum ofp parallel SISO channels, each one with

an equivalent signal-to-noise ratio equal toλi.

Furthermore, it can be shown that when bothnT andnR increase, the capacity

increaseslinearly with respect to min{nT , nR}. On the other hand, ifnR is fixed

andnT increases, then the capacity saturates at some fixed value; whereas ifnT

is fixed andnR increases, the capacity increases logarithmically withnR. These

asymptotic behaviors of the ergodic capacity are shown in Figure 2.2.
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Figure 2.2: Ergodic capacities of uncorrelated MIMO channels. The channel is
assumed to be known at the receiver but not at the transmitter.

Another notion that is frequently used in practice is the outage capacity. The
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instantaneous capacity is defined as

φ (H, ρ) = log det

(
InR +

ρ

nT
HHH

)
. (2.5)

Obviouslyφ(H, ρ) is a random variable sinceH is random. Given a certain outage

probability Pout, the corresponding outage capacityCout is defined through the

following equation,

P {φ(H, ρ) ≤ Cout} = Pout. (2.6)

So far we have assumed that the channel matrixH is known at the receiver

but not at the transmitter. Another scenario is that the channel is known atboth the

transmitter and receiver. This is the case, for example, when the system employs

time-division duplex (TDD) so that the uplink and downlink channels are recipro-

cal to each other. In this case, the instantaneous capacity is given by the following

“water-filling” equation [112]

ψ(H, ρ) =

nT∑

i=1

[log (υλi)]
+ bits/s/Hz, (2.7)

whereλ1, ..., λnT are the eigenvalues of the matrixHHH, υ is chosen such that

ρ =
nT∑
i=1

[
υ − 1

λi

]+
and the operator(·)+ is specified as

(x)+ =

{
x if x > 0,

0 if x ≤ 0.
(2.8)

The ergodic capacity is then given byC = E{ψ(H, ρ)}. Moreover, the outage

capacity in this case is specified by

P {ψ(H, ρ) ≤ Cout} = Pout. (2.9)

Figure 2.3 shows the 10% outage capacity of uncorrelated MIMO channels

with and without water-filling. It is seen that by knowing the channel at the trans-

mitter, some capacity gain can be obtained at low signal-to-noise ratios.

2.2.2 Effects of Antenna Correlations

It has been observed that antennas placed with large enough separations will re-

ceive essentially uncorrelated signals [83]. However, in handsets or small termi-
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nals, large separations among the antennas may not be feasible. On the other hand,

when the transmitter or receiver is not surrounded by scatterers, no local scattering

or diversity occurs, and the spatial fading at the antennas is correlated. Hence, in-

sufficient antenna spacing and lack of scattering cause the individual antennas to

be correlated.

We next discuss the correlation model and the effect of antenna correlation

on capacity. Following [17], assuming correlations at both the transmitter and

receiver, the (nR × nT ) channel response matrix can be modeled as

H = R1/2
r HwR

1/2
t (2.10)

with Hw being a (nR × nT ) matrix with i.i.d. Nc(0,1) entries andRt andRr,

of size (nT × nT ) and (nR × nR), representing the covariance matrices inducing

transmit and receive correlations respectively. Note that for the case of uncorrelated

transmitter (receiver), we haveRt = I (Rr = I).

The form of cross-correlation between the waves impinging on antenna ele-

ments (i.e.,Rr or Rt) has been studied and modeled in several publications, e.g.,

[7, 17, 20, 36, 112]. These models use similar parameters to characterizethe corre-

lation. Specifically, assuming that no line of sight exists between the transmit and

the receive antennas, the signal reaching the receive antennas can be modeled as ar-

riving from a number of equivalent point sources or scatterers in the vicinity of the

receiver as shown in Figure 2.4. Assuming that the antennas are omnidirectional

(i.e. they radiate and receive from all directions in space), there are three main

parameters that characterize the correlation between antennas (see Figure 2.4):

• Distanced between antennas in terms of wavelengths,

• Angular spread of the arrival incident wavesaRx
o ,

• Mean angle of arrival of incident wavesfRx
o .

Large values of the angular spreadaRx
o result in uncorrelated signals at each of

the antennas. The angular spread is a function of the distance of the cluster to the

antenna array and radius of the cluster. For example, in an outdoor environment,

a cluster could be a building located far away from the antenna array yielding in a

small angular spreadaRx
o . In an indoor environment, the cluster of scatterers will

be the walls surrounding the array. In this case, there will be signals impinging

the antenna array from all directions resulting in a large value of angular spread;

therefore, uncorrelated fading among the antennas can be expected. Figure 2.5
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depicts various scattering scenarios similar to those defined for COST-259models

[112]. In this representation, the circle represents a cluster of scatterers. The five

different scenarios correspond to:

• Uplink: This scenario corresponds to a base station operating as a receiver

from some high point without any nearby scatterers. The receiver, usually

a handset or small terminal, will be surrounded by scatterers. The angular

spread at the receiver (i.e., base station) is very low, resulting in correlation

among the receive antennas.

• Downlink: This scenario is similar to the uplink but with the base station

acting as a transmitter.

• Urban area: Medium size angular spread for both the transmitter and the

receiver. Scatterer clusters represent buildings.

• Rural area: Low angular spread for both the transmitter and the receiver.

Scatterer clusters represent mountains and hills.

• Indoor: Large angular spread for both the transmitter and the receiver. Im-

pinging waves arrive from all directions in space.

Figure 2.6 shows the 10% outage capacities for the different scenarios defined

in Figure 2.5 withnT = nR = 4 and an antenna spacing ofd = 0.5λ. We assume

that the channel is known at the receiver but not at the transmitter. We have used

the correlation model described in [7]. We also show the SISO capacity forcom-

parison. It is seen that urban and indoor scenarios with rich scattering offer much

higher MIMO capacities than do rural environments.

Figure 2.7 shows the 10% outage capacities of a correlated MIMO channel

with and without water-filling. The correlation scenario corresponds to the urban

area depicted in Figure 2.5 with an antenna spacing ofd = 0.5λ. Comparing with

Figure 2.3, it is seen that significant capacity gain can be achieved with water-

filling in the presence of antenna correlations however the channel must be known

at both the transmitter and the receiver.

2.3 The BLAST System

The information theoretical results presented in the preceding section indicate the

large capacity gains available by employing multiple antennas at both ends of the
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communication systems. Identifying such a large potential gain, researchers at

Bell-Labs developed the first MIMO architecture for high-speed wireless commu-

nications, namely the BLAST systems.
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Figure 2.8: Schematic representation of a BLAST system.

BLAST (Bell-Labs Layered Space Time) [42, 131] is a high speed wireless

communication scheme employing multiple antennas at both the transmitter and

the receiver. In a BLAST system, the transmitted data is split equally intonT

transmit antennas and then simultaneously sent to the channel overlapping inboth

time and frequency. The signals are received bynR receive antennas as shown in

Figure 2.8 and signal processing at the receiver attempts to separate the received

signals and recover the transmitted data. The input-output relationship of a BLAST

system can be expressed as

y =

√
ρ

nT
Hs + v (2.11)

wheres = [s1, s2, ..., snT ]T is the (nT ×1) transmit signal vector withsi belonging

to a finite constellationA, v = [v1, v2, ..., vnR ]T is the (nR × 1) receive noise

vector withvi ∼ Nc(0, 1), H is defined in (2.2) andρ is the total signal-to-noise

ratio independent of the number of transmit antennas. Unitary power is assumed

for the transmitted symbols,E
{
|si|2

}
= 1.

2.3.1 BLAST Detection Algorithms

It is seen from (2.11) that the receive antennas see the superposition of all the

transmitted signals. The task of a BLAST detector is to recover the transmitted

datas from the received signaly. Several BLAST detection algorithms will now

be described [41, 48]. Here we assume the channel matrixH is known at the
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2.3 The BLAST System

receiver. We will discuss channel estimation algorithms in Section 2.3.2.

Maximum Likelihood (ML) Receiver

The ML detector is the optimal receiver in terms of bit error rate. LetA be the

symbol constellation set (e.g., QPSK orM -QAM) whose size isM . Then, the ML

detection rule is given by

ŝ = arg min
s∈AnT

∥∥∥∥y −
√

ρ

nT
Hs

∥∥∥∥
2

. (2.12)

Note that the minimization problem is performed over all possible transmitted sig-

nal vectorss in the setAnT . The computational complexity of an exhaustive search

is thenO(MnT ). Hence, although the ML receiver is optimal, its complexity

grows exponentially with the number of transmit antennas. A low complexity local

search method called “sphere decoding” whose complexity isO(M3) is developed

in [26, 38].

Zero Forcing and Cancellation Receiver

A more simpler receiver is known as the zero forcing (ZF) receiver. The ZF re-

ceiver considers the signal from each transmit antenna as the desired signal and the

remainder as interferers. Nulling is performed by linearly weighting the received

signals to satisfy the ZF criterion, i.e., by inverting the channel response. Fur-

thermore, a superior performance can be obtained by using nonlinear techniques,

for example cancellation. Using symbol cancellation, the previously detectedand

sliced symbol from each transmit antenna is subtracted out from the received signal

vector, in a similar manner to that employed ino decision feedback equalization or

multiuser detection with successive interference cancellation. Therefore, the next

signal to be decoded will see one interferer less.

For simplicity, assumen = nT = nR. Denote the QR factorization ofH as

H = QR whereQ is unitary, i.e.,QQH = I andR is upper triangular. The

nulling operation of the received vectory is performed by

z = QHy =

√
ρ

nT
RS + QHv; (2.13)
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that is




z1

z2

...

zn




=

√
ρ

n




r1,1 r1,2 . . . r1,n

0 r2,2 . . . r2,n

...
.. . . ..

...

0 . . . 0 rn,n







s1

s2

...

sn




+




w1

w2

...

wn




. (2.14)

Note that sinceQ is unitary, there is no noise amplification, i.e.,w = QHv is

alsoNc(0, I). In (2.14), the decision statisticzn is just a noisy scaled version of

sn which can be directly estimated and then subtracted fromzn−1. Repeating the

estimating and subtracting operations until all transmitted signals are decoded,the

complete algorithms is summarized in Algorithm 1 where the quantizerQ(·) takes

values from the constellationA.

Algorithm 1 ZF and cancellation BLAST receiver

ŝn = Q
(

1
rn,n

√
n
ρ zn

)

ŝn−1 = Q
(

1
rn−1,n−1

(√
n
ρ zn−1 − rn−1,nŝn

))

...

ŝi = Q
(

1
ri,i

(√
n
ρ zi −

n∑
k=i+1

ri,kŝk

))

...

ŝ1 = Q
(

1
r1,1

(√
n
ρ zn−1 −

n∑
k=2

r1,kŝk

))

Nulling and Cancellation Receivers with Ordering

In the decoding algorithm discussed above, an incorrect decision in the detection

of a symbol adds interference to the next symbols to be detected. It is shown in

[41, 48] that it is advantageous to first find and detect the symbolsk with the highest

signal to-noise ratio, i.e., that with the highest reliability. The detected symbol is

then subtracted from the rest of the received signals. Therefore, after cancelling

sk, we have a system withnT − 1 transmit antennas andnR receive antennas,

i.e., the corresponding channel matrix is obtained by removing columnk from H.

The same process is then applied on this (nT − 1, nR) system and the algorithm

continues until all transmitted symbols have been detected. That is, the nulling and

cancellation operation is performed starting with the more reliable symbols and
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2.3 The BLAST System

moving to the less reliable ones.

The nulling operation can be performed by means of ZF or the minimum mean-

square error (MMSE) criterion. Similarly to ZF equalization in single antenna

systems, the ZF criterion yields the following problems: (1) The algorithm can

encounter singular matrices that are not invertible; and (2) ZF focuses on cancelling

the interference (i.e., overlapping signals) completely at the expense of enhancing

the noise, possibly significantly. On the other hand, the MMSE criterion minimizes

the error due to the noise and the interference combined. In the ordering operation,

the MMSE method nulls the component with the smallest MSE. Following [48],

the BLAST decoding algorithm based on the MMSE nulling and cancellation with

ordering is given in Algorithm 2.

Algorithm 2 MMSE nulling and cancellation with ordering
G = H

r = y

FOR i = 1 : nT DO
P = ( ρ

nGHG + I)−1

ki = argmin{Pj,j}, j /∈ {k1, k2, ..., ki−1} (ordering: find min MSE)

w = (GP )(:, ki) (nulling vector)

z = wHr

ŝki = Q(z)

r = r −
√

ρ
nH(:, ki)ŝki (cancellation)

G = G \ H(:, ki) (remove column of that transmit antenna)

END

Figure 2.9 compares the BER performance of the four detection methods dis-

cussed previously in a BLAST system withnT = nR = 4 antennas and QPSK mod-

ulation. It is seen that the ML decoder has the best BER performance although for

every transmitted code vector, the receiver needs to evaluate (2.12) over 44 = 256

possibilities. On the other hand, the MMSE nulling and cancellation algorithm

with ordering exhibits the best performance among the suboptimal algorithms.

2.3.2 MIMO Channel Estimation Algorithms

So far, we have assumed that the MIMO channel matrixH is known at the re-

ceiver. In practice, the receiver needs to estimate this matrix prior to the start of

the decoding process. We next discuss the channel estimation methods based on a

training preamble [91].

SupposeT ≥ nT MIMO training symbol vectorss(1), s(2), ...,s(T ) are used
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Figure 2.9: BER performance of different BLAST decoding algorithms withnT =
nR = 4 and QPSK. Uncorrelated MIMO channels and perfect channel knowledge
at the receiver are assumed.
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to probe the channel. The received signals corresponding to these training symbols

are

y(i) =

√
ρ

nT
Hs(i) + v(i), i = 1, 2, ..., T. (2.15)

DenoteY =
[

y(1), y(2), ...,y(T )
]
, S =

[
s(1), s(2), ..., s(T )

]
andV =

[
v(1), v(2), ...,v(T )

]
. Then (2.15) can be written as

Y =

√
ρ

nT
HS + V . (2.16)

The maximum likelihood estimate of the channel matrixH is given by

ĤML = arg min
H

∥∥∥∥Y −
√

ρ

nT
HS

∥∥∥∥
2

=

√
nT

ρ
Y SH(SSH)−1. (2.17)

According to [91], the optimal training symbol sequenceS that minimizes the

channel estimation error should satisfy

SSH = T · InT . (2.18)

One way to generate such optimal training sequences is to use the Hadamard ma-

trices [61] (when they exist for specific values ofnT ). As an example, consider a

system withnT = 4 and a training sequence of lengthT = 16 symbol intervals. We

first generate a(4 × 4) Hadamard matrix as

A =
1 + i√

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




. (2.19)

Then the optimal training sequence can be constructed by concatenating four A

matrices as

S =
[

A A A A

]
. (2.20)

As an alternative to the ML channel estimator, the linear MMSE channel es-

timator is obtained as a linear transformation of the received signalsY that mini-
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mizes the estimation error and it is given by

ĤMMSE =

√
ρ

nT
Y SH

( ρ

nT
SSH + I

)−1
. (2.21)
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Figure 2.10: Effect of the training lengthT on the BER performance.

We next give a simulation example. Consider a BLAST system withnT =

nR = 4 antennas and QPSK modulation. We assume uncorrelated fading and a

signal-to-noise ratioρ = 10dB. Figure 2.10 shows the BER for various channel

estimation algorithms for different lengths of the optimal training sequence. The

MMSE nulling and cancellation with ordering algorithm is employed as the de-

coder in all cases. It is seen that the MMSE and ML channel estimators have

similar performance which gradually approaches optimum performance asT is in-

creased. Figure 2.11 compares the BER performance of the MMSE nulling and

cancellation with ordering decoder using the ML channel estimator with different

lengths of the optimal training sequence.
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2.4 Space-Time Coding

In the previous section, we discussed the BLAST system which increasesthe

data rate by simultaneously transmitting symbols from multiple transmit antennas.

However, the BLAST approach suffers from two major drawbacks: (1) it requires

nR ≥ nT that is not always feasible when the receiver is a small or battery operated

device; and (2) the performance of the suboptimal BLAST decoding algorithms is

limited by error propagation. In this section, we discuss the space-time coding

approach that exploits the concept of diversity.

2.4.1 The Concept of Diversity

With space-time codes (STC) [3, 114, 115, 118], instead of transmitting indepen-

dent data streams as in BLAST, the same information is transmitted in an appro-

priate manner simultaneously from different transmit antennas in order to obtain

transmit diversity. The underlying principle of transmit diversity is that if a mes-

sage is lost in a channel with probabilityp and if we can transmit replicas of the

message overn independent such channels, the loss probability becomespn. The
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2.4 Space-Time Coding

use of diversity improves the reliability of detection which allows modulation em-

ploying higher order constellation to be used and so yielding a higher throughput ,

as is possible with the BLAST system. The main difference between BLAST and

STC can be summarized as: (1) BLAST transmits more symbols, i.e.,nT symbol-

s/channel used; and (2) STC transmits only (at most) 1reliable symbol/channel

used by means of diversity.

As an example, consider a systems wishing to transmit 4 bit/s/Hz with 2 trans-

mit antennas. BLAST would use QPSK symbols per antenna, i.e., 4 bit/s/Hz. STC

can only send 1 symbol/channel used, therefore 16-QAM symbols would need to

be employed. In this case, the same quantity of data is transmitted through the use

of higher order constellations. There are two main types of STCs, namely space

time trellis codes (STTC) [118] and space time block codes (STBC) [115].

The STTC is an extension of trellis coded modulation [15] to the case of mul-

tiple transmit and receive antennas. It provides both full diversity and coding gain.

However, it has the disadvantage of high decoding complexity which growsexpo-

nentially with the number of antennas. Specific space-time trellis codes designed

for two or four antennas perform very well in slow fading environments and come

within 2-3 dB of the outage capacity. STTC’s are designed to achieve full diversity

and then, among the codes that achieve full diversity, maximize the coding gain.

For further references on STTC refer to [11, 118].

In the hope of reducing the exponential decoding complexity of STTC, Alam-

outi proposed a simple space-time coding scheme using two transmit antennas

[3]. Later, the STBC introduced in [114], generalized the Alamouti transmission

scheme to an arbitrary number of transmit antennas. STBC achieves full diversity

as does the STTC although they do not provide any coding gain. This is nota

problem since they can be concatenated with an outer channel code [12]. Besides

achieving full diversity, the main property of STBC is that there is a very simple

ML decoding algorithm based only on linear processing. These codes are based

on some specific linear matrices and the reduced complexity receiver is due tothe

orthogonal properties of these matrices.

2.4.2 Space-Time Block Codes

We assume a wireless communication system where the transmitter is equipped

with nT and the receiver withnR antennas. A space time block code matrix is

represented as
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2.4 Space-Time Coding

Cp,nT =

←space→




c1,1 c1,2 . . . c1,nT

c2,1 c2,2 . . . c2,nT

...
. . .

...

cp,1 cp,2 . . . cp,nT




↑
time

↓

(2.22)

At each time slott, signalsct,i, i=1,2,. . . ,nT , are transmitted simultaneously from

thenT transmit antennas as shown in Figure 2.12. Therefore, at timet, transmitter

antennai will transmitct,i in the matrix (1≤ t ≤ p and 1≤ i ≤ nT , wherep is the

length of the block code). Next, we describe the encoding and decoding operations

of the STBC for two transmit antennas, namely the Alamouti code.

Tx

 

ct,nT

ct,1

ct,2

yt,nR

yt,1

yt,2

 
 
 

 
 
 

h2,1

Tx

Tx

Rx

Rx

Rx

ML

decoder

(linear
processing)

STBC

C
p,nT 

=

G(s1,...,sk)

Tx
Data

[s
1
...,s

k
]

Rx
Data

Figure 2.12: Schematic representation of an STBC system.

STBC with nT = 2: Alamouti Code

The Alamouti code is an STBC usingnT = 2 transmit antennas and any number of

receive antennas. The Alamouti code matrixOc,2 is defined as [3]

Oc,2 =

[
x1 x2

−x∗
2 x∗

1

]
. (2.23)

Consider transmitting symbols of a signal constellationA of size 2b. Every two

time slots,2b bits arrive at the encoder and select constellation signalss1 ands2.

Settingx1 = s1 andx2 = s2 in Oc,2, we arrive at the following transmission

matrix

C2,2 =

[
s1 s2

−s∗2 s∗1

]
. (2.24)

Then, in the first time slot, antenna 1 transmitss1 and antenna 2 transmitss2. In
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2.4 Space-Time Coding

the next time slot, antenna 1 transmits−s∗2 and antenna 2 transmitss∗1. Since two

time slots are needed to transmit two symbols (s1, s2), the rate of the code isR =

1 symbol/channel used.

At the receiver, the signal received by antennai during two consecutive time

slots (t=1,2) is

[
y1,i

y2,i

]
=

√
ρ

2
C2,2hi + vi

=

√
ρ

2

[
s1 s2

−s∗2 s∗1

] [
hi,1

hi,2

]
+

[
v1,i

v2,i

]
, i= 1, 2, (2.25)

which can be rewritten as
[

y1,i

y∗2,i

]

︸ ︷︷ ︸
yi

=

√
ρ

2

[
hi,1 hi,2

h∗
i,2 −h∗

i,1

]

︸ ︷︷ ︸
Hi

[
s1

s2

]

︸ ︷︷ ︸
s

+

[
v1,i

ṽ2,i

]

︸ ︷︷ ︸
ṽi

, i= 1, 2. (2.26)

We note that the orthogonality of the codeOc,2 implies the orthogonality ofH i,

i.e., HH
i H i =

(
|hi,1|2 + |hi,2|2

)
I2. Assuming that the receiver has knowledge

of the channel coefficientshi,j , we form a decision statistic at each receive antenna

by left multiplying the received vector in (2.26) byHH
i which results in

zi =

[
z1,i

z2,i

]
= HH

i yi =

√
ρ

2
HH

i H is + HH
i ṽi. (2.27)

Hence, using the orthogonality property ofH i yields

zi =

[
z1,i

z2,i

]
=

√
ρ

2

(
|hi,1|2 + |hi,2|2

) [
s1

s2

]
+

[
w1,i

w2,i

]
. (2.28)

Adding all the decision statistics from allnR receive antennas we obtain

z =

[
z1

z2

]
=

nR∑

i=1

[
z1,i

z2,i

]

=

√
ρ

2

nR∑

i=1

(
|hi,1|2 + |hi,2|2

) [
s1

s2

]
+

nR∑

i=1

[
w1,i

w2,i

]
. (2.29)

In (2.29), in the absence of noise,z1 will be just an scaled version ofs1 andz2 will

be an scale version ofs2 without any cross dependency. To estimate the symbols

25



2.4 Space-Time Coding

that were sent, we just scale and quantize the decisions statistics in (2.29) as

ŝ1 = Q(z1),

and ŝ2 = Q(z2). (2.30)

We recall that the decoupling has been possible because of the orthogonality of the

Alamouti code matrix.
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Figure 2.13: BER performance comparison between BLAST (BPSK modulation)
and Alamouti (QPSK modulation) withnT = nR = 2 (transmission rateR = 2
bit/s/Hz). Uncorrelated MIMO channel and perfect channel knowledge at the re-
ceiver are assumed.

We now compare the performance of the Alamouti scheme with that of the

BLAST system discussed in the previous section. For both systems, we consider

nT = nR = 2. We assume that both schemes have a transmission rateR = 2 bit/s/Hz.

This rate can be achieved using BLAST with BPSK or using the Alamouti code

with QPSK modulation. For a fair comparison, we compare the two systems in

terms of signal-to-noise ratio per bit, i.e.,Eb/No. Assuming perfect channel esti-

mation at the receiver and no antenna correlations, Figure 2.13 shows that Alamouti

performs better than BLAST and this improvement is greater at higher signal-to-
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bit/s/Hz). Correlated MIMO channel (urban environment in Figure 2.5) and perfect
channel knowledge at the receiver are assumed.
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noise ratio. We next compare their performance in correlated MIMO channels. We

consider a medium level of correlation typical of urban environments as described

in Figure 2.5. It is seen from Figure 2.14 that Alamouti performs much better than

BLAST in such a scenario.

General STBC Based on Orthogonal Designs (nT ≥ 2)

The Alamouti scheme presented previously only works with two transmit antennas.

This scheme was later generalized in [114, 115] to an arbitrary number of transmit

antennas. In a similar manner to the Alamouti code in (2.23), the general STBC

is defined by a code matrix with orthogonal columns. Just like in the Alamouti

scheme, a simple linear receiver is also obtained owing to the orthogonality of

the columns of the code matrix. In general, an STBC is defined by a (p × nT )

matrixG. The entries of the matrixG are linear (possibly complex) combinations

of the variablesx1, x2, ..., xk (representing symbols). The columns of the matrix

represent antennas and the rows time slots. Therefore,p time slots are needed to

transmitk symbols, resulting in a code rateR = k/p symbols/channel used. It is of

special interest code matrices achieving the maximum transmission rate permitted

by the STC theory, i.e,R = 1 symbol/channel used. For a fixednT , among the

code matrices that achieve the maximum rate, we will be interested in those with

minimum values ofp or equivalently, the minimum number of time slots needed

to transmit a block. These code matrices are referred as delay optimal and they are

interesting because they minimize the memory requirements at the transmitter and

at the receiver (i.e., encoding and decoding delay). We recall thatp ≥ nT .

STBC for real constellations

For real signal constellations such as pulse amplitude modulation (PAM), the en-

tries of the code matrices are only real linear combinations ofx1, x2, ..., xk. Gen-

eral STBC based on real orthogonal designs achieving full diversityand full rate,

can be found for any number of transmit antennasnT [118]. UsingnT = 2, 4 and 8

antennas, STBC code matrices can be found withp = nT (i.e., minimum possible

delay in STBC). As an example, an STBC suitable for real constellations withnT

= 4 is

G4 =




x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1




(2.31)

28



2.4 Space-Time Coding

for which it can be verified thatGT
4 G4 =

(
4∑

i=1
x2

i

)
· I4. The encoding process

at the transmitter is similar to that for the Alamouti code, as follows. Consider a

real constellation of size 2b. At time instant 1, 4b bits arrive at the encoder and

select symbolss1, s2, s3, s4. Let xi = si in matrixG4 in (2.31) to obtain the code

matrixC4. At time t = 1,2,3 and 4, thet-th row ofC4 is transmitted from the four

transmit antennas simultaneously. Therefore, withnT = 4 transmit antennas and

employing the code matrixC4, four symbols are transmitted during four symbol

intervals achievingR = 1 symbol/channel used, i.e., the maximum rate allowed by

the STC theory. At the receiver, the orthogonality of the matrixC4 simplifies the

ML decoder by decoupling the detection of each of the transmitted symbols.

STBC for complex constellations

Complex STBC are analogous to the real ones except that the code matricescontain

entries±x1,±x2, ...,±xk, their conjugates, and them multiplied by
√
−1, making

them useful for complex constellations such as M-PSK or M-QAM. As an example,

an STBC withnT = 4 for complex constellations can be constructed using the real

orthogonal design in (2.31) as

Gc,4 =

[
G4

G∗
4

]
=




x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

x∗
1 x∗

2 x∗
3 x∗

4

−x∗
2 x∗

1 −x∗
4 x∗

3

−x∗
3 x∗

4 x∗
1 −x∗

2

−x∗
4 −x∗

3 x∗
2 x∗

1




. (2.32)

As before, the codeCc,4 can be obtained substitutingxi by the data symbols

si in Gc,4. In this code, transmitting each row at a time, 8 symbols intervals are

needed to transmit 4 symbols, therefore giving a rateR = 1/2 symbol/channel used,

i.e., half of the maximum rate permitted by the STC theory. Complex STBC ofR

= 1/2 achieving full diversity can be built for any number of transmit antennasnT

from real STBC usingGc,nT =

[
GnT

G∗
nT

]
.

It has been shown that complex STBC having full symbol rate (i.e.,R = 1)

only exist fornT = 2, i.e., the Alamouti code. In this sense, the Alamouti codes is

unique. Codes that achieve a rateR = 3/4 with complex constellations have been
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found withnT = 3 andnT = 4 [114].

2.5 MIMO systems in frequency selective channels

So far we have considered flat fading channels. In this section, in addition to

showing how to extend MIMO detectors to frequency selective channels,we also

introduce a new class of linear detectors, namely lattice-reduction-aided (LRA)

detectors.

2.5.1 MIMO Frequency Selective System Model

An apparent disadvantage of single-carrier based MIMO systems in frequency se-

lective channels is the fact that the computational complexity of the receiver(either

a vector-MLSE or a multi-channel equalizer) will in general be very high.The use

of orthogonal frequency division multiplexing (OFDM) alleviates this problem by

turning the frequency-selective MIMO channel into a set of parallel narrowband

MIMO channels [17, 98], which greatly simplifies the equalization process.

For the equivalent narrowband detection process, although the performance of

the ML receiver is optimal, its complexity is very high. A number of other de-

tectors, offer substantially lower complexity, but their performance is significantly

worse. This section shows that a class of lattice-reduction-aided (LRA) receivers

in MIMO-OFDM systems can achieve near maximum likelihood detector perfor-

mance with low complexity. We extend the LRA receiver technique proposed in

[133], applicable for a2×2 system, to a generalnR×nT system, wherenR ≥ nT .

It will be shown that particularly with higher order constellations and when the

channel is correlated, LRA significantly outperforms other suboptimal detectors in

terms of BER.

Consider the equivalent discrete time baseband model for the MIMO-OFDM

system shown in Figure 2.15 havingNc carriers,nT transmit antennas, andnR re-

ceive antennas. Assuming thatxv[t] is the output of the parallel-to-serial converter

at thev-th transmit antenna at timet, the signal received at them-th antenna can

be written as

rm[t] =

nT∑

v=1

L−1∑

l=0

√
ρ

nT
hm,v[l]xv[t − l] + wm[t], (2.33)

whereρ is the received signal to noise ratio (SNR),wm[t] is the noise observed at

them-th receive antenna, distributed asNc(0, 1) andhm,v[l] represents the com-

30



2.5 MIMO systems in frequency selective channels

Η

.

.

.

nT

Nc
point
IFFT

S/P
P/S

B>L-1
CP

S1

1

Nc
point
IFFT

S/P
P/S

B>L-1
CP

SnT

Sn
(1)

.

.

.

SnT
(Nc)

S1
(1)

S1
(Nc)

.

.

.
1

Nc
point
FFT

S/P S1

y1
(1)

y1
(Nc)

B>L-1
CP

.

.

.
nR

Nc
point
FFT

decoding

S/P

yn
(1)

ynR
(Nc)

B>L-1
CP

SnT

.

.

.

.

.

.

.

.

.

X
1

XnT

Figure 2.15: The block diagram of MIMO-OFDM transceiver.

plex channel gain between thev-th transmit antenna and them-th receive antenna

for the l-th path, wherel = 1, . . . , L − 1. We considerhm,v[l] ∼ Nc(0, σ2
h,l) with

∑L−1
l=0 σ2

h,l = 1.

Denotingr[t] = [r1[t], . . . , rnR [t]]T , x[t] = [x1[t], . . . , xnT [t]]T , andw[t] =

[w1[t], w2[t], . . . , wnR [t]]T , we can rewrite (2.33) as

r[t] =
L−1∑

l=0

√
ρ

nT
H lx[t − l] + w[t], (2.34)

where the elements of the(nR × nT ) matrix [H l]m,v = hm,v[l].

The MIMO-OFDM structure is one way to avoid the complexity of time do-

main equalization to recover the transmitted signal in (2.34). MIMO-OFDM con-

verts a frequency selective channel into a set ofNc parallel frequency flat channels

with Nc subcarriers [17, 98]. In MIMO-OFDM systems, the transmitted signal

at thev-th transmit antenna,xv[t], is generated by the IFFT ofNc data symbols

s
(1)
v [i], . . . , s

(Nc)
v [i], wheres

(k)
v [i] is the input data on thev-th antenna on thek-th

subcarrier. A cyclic prefix (CP) is pre-appended at each block of theIFFT output

as shown in Figure 2.15. The receiver at each antenna discards the CPfrom rm[t]

and passes the remainingNc samples to the FFT block. If the length of the CP,

B ≥ L − 1, then the system in (2.34) during thei-th MIMO-OFDM symbol can

be written as

y(k)[i] =

√
ρ

nT
H(k)s(k)[i] + n(k)[i], (2.35)

where the equivalent flat fading matrixH(k) corresponding to thek-th subcarrier
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is denoted as

H(k) = H(ej2πk/Nc) =
1√
Nc

L−1∑

l=0

H le
−j2πlk/Nc , (2.36)

and s(k)[i] consists of the input data symbols of all thenT transmit antennas,

n(k)[i] is the noise at thek-th output of the FFT blocks at each of thenR re-

ceive antennas. Owing to the OFDM operations, ISI is avoided and for notational

convenience, we will drop the time indexi in the remainder of this section, i.e.,

s(k)[i] = [s
(k)
1 , . . . , s

(k)
nT ]T , n(k) = [n

(k)
1 , . . . , n

(k)
nR ]T , andy(k) = [y

(k)
1 , . . . , y

(k)
nR ]T .

The MIMO-OFDM symbol has a durationT equal toNc + B samples of the time

domain signalxv[t].

2.5.2 Correlated Channel Model in Frequency Selective Channels

Consider that there is no line of sight between the transmit and receive antennas.

Also assume that all the signals reflected from one cluster of scattering objects

and arriving at the receiver can be considered as having undergone one path of

the multipath channel as shown in Figure 2.16. If the angular spreadaRx
l of the

arriving rays corresponding to one path/cluster is not large enough orif the distance

between the antennas,d is not sufficient, the signals arriving at different receive

antennas will be correlated. Similar arguments apply to the transmit antennas.

Consider the matrixH l whose entrieshm,v[l] represent the complex channel

gains between thev-th transmit andm-th receive antenna for thel-th path. When

the channels are correlated at either the transmitter or the receiver sides,the el-

ements ofH l cannot be considered as independent and in a similar manner that

previously presented in section 2.2.2 the channel matrix response for thel-th trans-

mission path can be modeled as [17]

H l = R
1/2
r,l Hw,lR

1/2
t,l , (2.37)

whereHw,l is an uncorrelatednR × nT matrix with i.i.d. entries,Rt,l is annT ×
nT transmit covariance matrix for thel-th path corresponding to the correlation

between transmit antennas, andRr,l is annR×nR receive covariance matrix for the

l-th path. Note that when thel-th path is uncorrelated at the transmitter(receiver),

Rt,l = I(Rr,l = I).

32



2.5 MIMO systems in frequency selective channels

f0
Rx

a
0

Rx

a
0

Tx

cluster of
scatterers

d

Tx

Rx

Figure 2.16: Geometry of the scattering scenario withL = 3 paths.

2.5.3 Basic Linear Receivers

Consider the received signal vector on thek-th OFDM carrier in (2.35). For this

model, any of the BLAST detectors described in Section 2.3.1 can be applied.

However, let us describe more simple receivers, namely linear detectors.

In a linear receiver, the received signal vectory(k) in thek-th carrier is linearly

transformed by a matrix equalizerG(k) which basically undoes the effects of the

channel to obtain

r(k) = G(k)y(k) =

√
ρ

nT
G(k)H(k)s(k) + G(k)w(k), (2.38)

which is later quantized to obtain an estimate of the transmitted symbol vector, i.e.,

ŝ(k) = Q(r(k)). The whole process is shown in Figure 2.17. The matrix equalizer

G(k) can be computed according to different criteria. For the zero-forcing (ZF)

criterion, the equalizer is given byG(k) =
√

nT
ρ H(k)†, whereH(k)† denotes the

pseudo-inverse. The ZF criterion suffers from noise enhancement since it focuses

on cancelling the effects of the channel response at the expense of enhancing the

noise, possibly significantly. On the other hand, the minimum mean-square error

(MMSE) linear equalizer,G(k) = σ2
s

√
ρ

nT
HH

(
σ2

sρ
nT

H(k)H(k)H + σ2
nIMR

)−1
,

minimizes the error due to the noise and the interference combined. The nonlin-

ear BLAST receivers described in previous Section 2.3.1 offer better performance
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than linear receivers with a moderate increase in complexity. However, the perfor-

mance of these receivers is far away from the much more complex ML receivers,

especially in correlated channel scenarios.

(k)sˆr(k)y(k)
s(k)

TX H(k) +

n(k)

G(k) Q(r(k))

slicer

Figure 2.17: Traditional linear receiver.

2.5.4 Lattice-Reduction-Aided Receivers

Constellation, Lattices, and Basis Change

Let us first consider a real-valued MIMO-OFDM system withnT =nR=2 antennas,

where the transmitted symbolss
(k)
1 ands

(k)
2 belong to a2N +1-PAM constellation,

i.e. s(k)
i ∈ {−N,−N + 1, . . . , 0, . . . , N − 1, N}. Assume that the channel matrix

for thek-th OFDM carrier isH(k) = [h
(k)
1 , h

(k)
2 ] =

[
2 3

1 2

]
. Then, the received

constellation will consist of a lattice of linear combinations of the columns ofH(k),

i.e., H(k)s(k) = s
(k)
1 [2, 1]T + s

(k)
2 [3, 2]T . As shown in Figure 2.18, due to the

equalizing operation and the direction of the basis vectors, the decision regions can

be seen as parallelograms described by the columns ofH(k) [133]. In this case,

it can be seen that when the angle betweenh
(k)
1 andh

(k)
2 is very narrow (i.e., the

vectors are correlated), a small amount of noise can make a received symbol fall

out of the decision region and cause the decoder to make a wrong decision[133].

The idea proposed in [133] is to change the original basisH(k) to a new basis

representing the same lattice in which its column vectors are less correlated, then

decode the symbols in the new basis, and finally transform the decoded symbols

into the original basis. All of these operations need to performed at the receiver.

For example, as can be seen in Figure 2.19, the new basis,h
′(k)
1 andh

′(k)
2 is closer

to orthogonal as compared toh(k)
1 andh

(k)
2 , and yet still generate the same lattice

with better decision regions. Thus, with the new basis, the decision regions are

more robust against noise and interference. In this section, we propose an extension

of a reduction technique which first appeared in [133] for2×2 systems, to a general

nR × nT system.
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Theorem 1 [133]: If H is a basis of a lattice,H ′ = HP is also a basis of the

same lattice ifP andP−1 have integer (possibly complex) entries.

For the problem in hand, the objective is to find a change of basisP (k) which

transformsH(k) into H ′(k), for k = 0, . . . , Nc − 1 such that the decision regions

for a specific lattice and decoder are more robust against noise and interference.

LRA Receiver

For generalnT complex vectors and QAM input symbols, an input symbol vec-

tor of thek-th carrier represented bys(k) in the original basis with elements inZC,

whereZC is the set of complex integers, can be represented byz(k) = (P (k))−1s(k)

in the new reduced basis. We can assume that the received vectory(k) in (2.35) is

already represented in the new reduced basis since

y(k) =

√
ρ

nT
H ′(k)z(k) + n(k). (2.39)

NowH ′(k) = H(k)P (k), and so for the ZF receiver whereG(k) =
√

nT
ρ (H(k)P (k))†,

(2.38) can be written as

r(k) =

√
ρ

nT
G(k)H(k)P (k)z(k) + G(k)n(k). (2.40)

The estimate ofz(k) is ẑ(k) = Q(r(k)). Since the lattice points consist of elements

in ZC, the quantization consist of a rounding operation whereby the real and imag-

inary parts are rounded separately. Finally,ẑ(k) is transformed to its original basis

by performing the operation̂s(k) = P (k)ẑ(k).

To use the lattice theory and the decoding operation in (2.40), the original

points in the constellation are required to consist of symbols inZC. Note that

the origin [0, . . . , 0]T also belongs to the lattice. Since ordinary QAM constel-

lations consist neither of contiguous integers nor contain the origin, it is neces-

sary to scale and shift the original constellation. In this section, we consider

M -QAM constellations such thatℜ{s(k)
j } ∈ {−

√
M + 1, . . . ,

√
M − 1} and

ℑ{s(k)
j } ∈ {−

√
M + 1, . . . ,

√
M − 1}, thus, to convert the symbols into contigu-

ous integerss′(k)
j , we can shift the original constellation byd = [1+ i, . . . , 1+ i]T

and scale by1/2. Since the transmitter might not know the type of receivers used,

the scaling and shifting operations have to be done at the receiver.

Assuming the shifted and scaled constellations′(k) is transmitted, the received
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signal vector is

y′(k) =

√
ρ

nT
H(k)s′(k) =

√
ρ

nT
H(k) 1

2

[
s(k) + d

]
. (2.41)

In terms of the signal received when the data bits are transmitted using the original

constellation,y(k), (2.41) can be rewritten as:

y′(k) =
1

2
y(k) +

1

2

√
ρ

nT
H(k)d. (2.42)

To summarize, combining (2.40) and (2.42), the operations at the receiverconsist

= pseudo-inverse

(k)sˆr(k)y(k)
z(k)s(k)

TX
1 P(k) P(k)H(k)H(k)'  +

n(k)

shift &
scale

    P(k)H(k) slicer

    P(k)H(k)

P(k)
undo

shift &
scale

H(k)=H(k)  P(k)-1'

LRA receiver operations

Figure 2.20: LRA linear receiver.

of two steps as shown in Figure 2.20: (a) scaling, shifting, and equalizing inthe

new basis

r(k) =

√
nT

ρ

(
H(k)P (k)

)†

︸ ︷︷ ︸
equalize in new basis

1

2︸︷︷︸
scale

[ √
ρ

nT
H(k)s(k) + n

︸ ︷︷ ︸
rx signal-y

√
ρ

nT
(H(k)d)

︸ ︷︷ ︸
shift

]
, (2.43)

and (b) slicing, returning to the original basis, and undoing the scaling andshifting
as

ŝ = 2P (k)Q(r(k)) − d. (2.44)

Note that the slicingQ(·) is a rounding operation since the symbols in the lattice
belong toZC. In general, LRA receivers are expected to have better performance
than traditional linear receivers, especially in realistic communication systems sce-
narios, where the channel and therefore the column vectors are correlated to some
degree. When the columns or rows ofH(k) are correlated, the inversion of channel
matrixH(k) in the ZF equalizer may enhance the noise significantly.
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2.5.5 Basis Reduction Algorithm

Given the columns ofH(k), i.e.,h(k)
1 , . . . ,h

(k)
nT are the basis of the lattice for thek-

th OFDM carrier, let us consider the problem of finding agoodchange of basisP
to transformh

(k)
1 , . . . ,h

(k)
2 into h

′(k)
1 , . . . ,h

′(k)
nT as illustrated in Figure 2.19 for the

case of 2 transmit antennas. This problem is known as the basis reduction problem
and borrows the ideas from Gram-Schmidt orthogonalization.

We first give an overview of the Gauss basis reduction algorithm limited to rank
nT = 2 which is used in [133]. The reduction algorithm uses a method similar to
the Gram-Schmidt orthogonalization. Assume thath

(k)
1 andh

(k)
2 are a basis of

the lattice. Define the Euclidean inner product as〈h(k)
1 , h

(k)
2 〉 = h

(k)H
1 h

(k)
2 and

consider the Euclidean norm. Assuming that‖h(k)
1 ‖ < ‖h(k)

2 ‖, the basis reduction
algorithm does operations in the basis vectors of the form

h
(k)
2 = h

(k)
1 − µh

(k)
2 , (2.45)

which yields a different basis for the same lattice ifµ ∈ ZC. Since the purpose of
the lattice reduction is to make lattice basis vectors as close to orthogonal as pos-
sible, Gram-Schmidt orthogonalization can be used to findµ with the further con-

straintµ ∈ ZC. The ideal Gram-Schmidt orthogonalization, usesµ′ = 〈h
(k)
1 ,h

(k)
2 〉

〈h
(k)
1 ,h

(k)
2 〉

but this operation would change the lattice sinceµ′ is not in ZC. The weakly
reduced Gram-Schmidt orthogonalization, uses an integer rounding of theideal
Gram-Schmidt coefficient asµ = ⌊µ′⌉ where real and imaginary parts of com-
plex numbers are rounded separately. Using a weak reduction, the lattice remains
the same. Onceh(k)

2 has been reduced with respect toh
(k)
1 , if h

(k)
2 < h

(k)
1

we have the possibility of reducingh(k)
1 with respect to the newh(k)

2 . We first
swaph

(k)
1 and h

(k)
2 . This second reduction will occur if suchµ exists, i.e., if

|ℜ{〈h(k)
1 , h

(k)
2 〉}| > 1

2‖h
(k)
1 ‖2 or |ℑ{〈h(k)

1 , h
(k)
2 〉}| > 1

2‖h
(k)
1 ‖2. The algorithm

repeats this process until no more reduction is possible. As an example, forthe
basis given in Figure 2.21 we give the two steps performed in the algorithm.

Initial state Step 1 Step 2

h1

h2
h1

h2

h1

h2

Figure 2.21: Lattice basis reduction using the Gauss reduction algorithm.
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A notion of lattice reduction for a lattice basish(k)
1 , ...,h

(k)
nT of arbitrary rank

nT was proposed by Lenstra, Lenstra and Lovasz (LLL) [87]. It usessimilar ideas
to the Gauss reduction algorithm. For a givenδ, 1

4 < δ < 1, the LLL reduction

algorithm modifies an input basish(k)
1 , ...,h

(k)
nT so the output basis satisfies the

following δ-reduction properties

µu,i ≤
1

2
for 1 ≤ i < u ≤ nT , (2.46)

which guarantees that the next reduced vector cannot be further reduced with re-
spect to the previously reduced vectors, and

δ · ‖ĥ(k)

i−1‖2 > ‖ĥ(k)

i + µ
(k)
i,i−1ĥ

(k)

i−1‖2, (2.47)

where the vectorŝh
(k)

1 , ..., ĥ
(k)

nT
denote the Gram-Schmidt orthogonalization of the

output basis that can be obtained by the following recursion

ĥ
(k)

1 = h
(k)
1 ,

ĥ
(k)

i = h
(k)
i −

i−1∑

j=1

µi,jĥ
(k)

j for i = 2, ..., nT , (2.48)

and the Gram-Schmidt coefficients, are equal to

µi,j =

〈
ĥ

(k)

j , h
(k)
i

〉

〈
ĥ

(k)

j , ĥ
(k)

j

〉 . (2.49)

A possible implementation of the LLL algorithm to obtain the reduced basis is
given in Algorithm 3.

During the algorithm we keep two sets of vectors, namely the lattice reduced

basis vectors{h(k)
1 , ...,h

(k)
u } and the Gram-Schmidt vectors{ĥ(k)

1 , ..., ĥ
(k)

u } (with
the corresponding Gram-Schmidt coefficientsµ

(k)
u,i ) which are continuously up-

dated. Note that only adjacent vectorshu−1 andhu may be exchanged. When
the rank isnT = 2 andδ = 1, Algorithm 3 is identical to the Gauss reduction al-
gorithm used in [133]. Reduced bases with better properties can be obtained when
the constantδ is closer to one although the number of iterations of Algorithm 3
would increase. More efficient implementations of the algorithm can be foundin
[105] and [106].

Other types of reduced bases are the Korkin-Kolotarev (KZ) basis [10, 73, 79],
the Minkowski basis [1, 62], the Seysen basis [80, 109] and hybrids [104] which
have different reduction criteria. These bases have in general slightly better prop-
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Algorithm 3 LLL lattice-reduction algorithm

INPUT: Lattice basis h
(k)
1 = H(k)[:, 1], ...,h

(k)
nT = H(k)[:, nT ] ∈

CnR and 1
4 < δ < 1

FOR k = 0, ..., Nc − 1 DO for each carrier
u = 2
WHILE u ≤ nT DO
FOR i = u − 1, ..., 1 DO

h
(k)
u = h

(k)
u −

⌊
µ

(k)
u,i

⌉
h

(k)
i ; round real and imag separately

END FOR
Compute ĥ

(k)

u as in (2.48)

IF δ‖ĥ(k)

u−1‖2 > ‖ĥ(k)

u + µ
(k)
u,u−1ĥ

(k)

u−1‖2 THEN

h
(k)
u−1 ↔ h

(k)
u (exchange)

u = max(u − 1, 2)
ELSE u = u + 1

END WHILE
END FOR
OUTPUT: Reduced lattice basis H

′(k) = [h
(k)
1 , ...,h

(k)
nT ] and

P (k) defined as H
′(k) = H(k)P (k)

erties although the reduction is more time consuming.
The performance of the LRA receivers will be closer to that of the ML receiver

as the size of the QAM constellation increases. This occurs because LRA treats
finite constellations as infinite and therefore, constellation points on the boundary
of the constellation that originally had less constellation neighbors, end up hav-
ing the same number of neighbors as the internal constellation points. Hence, this
loss in performance will be smaller if the ratio of boundary constellation points
and internal points becomes smaller which occurs in high order QAM constella-
tions (e.g., 64-QAM or 256-QAM). Moreover, it is known that the computational
complexity of the ML decoder in MIMO systems with large constellations or large
number of transmit antennas becomes prohibitive. Therefore, LRA decoders are
a good alternative when large order constellations or large number of transmit an-
tennas are used. Note that the complexity of the LRA receivers has two parts: i)
computing the reduced basis of the lattice, and ii) implement the linear equalizer.
In quasi-static channels, the lattice is fixed during a long period of time, so the
basis reduction is performed just once and then the resulting basis is storedfor
subsequent use. Thus, the complexity of solving i) is not of major concern.
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2.5.6 Simulation Results

The simulations presented in this section were conducted withNc=16 OFDM
sub-carriers, 1000 symbols transmitted per carrier,nT =3 transmit antennas,nR=3
receive antennas,δ = 1, and a multipath channel withL=3 resolvable paths.
The distribution of the multipath complex channel gains ishm,v[l] ∼ Nc(0, σ2

h,l),
for m = 1, . . . , nR and v = 1, . . . , nT with σ2

h,0 = 0.44, σ2
h,1 = 0.34, and

σ2
h,2 = 0.22. Channel noise is complex Gaussian with symmetric density function

Nc(0, 1). An uncoded system is considered and Gray coding is used for all cases
(QPSK and 16-QAM). For the correlated channel case, scattering scenarios similar
to the ones suggested in the COST-259 model [7, 112] is used. The mean angle
of arrivals (AOA) at the transmitters arefTx

0 = 30o, fTx
1 = 45o andfTx

2 = 60o,
and at receiver side arefRx

0 = 50o, fRx
1 = 70o, fRx

2 = 100o. The rms angular
spread at the transmitters areaTx

0 = 20o, aTx
1 = 22o andaTx

2 = 17o, and at the
receivers,aRx

0 = 20o, aRx
1 = 18o andaRx

2 = 23o, respectively. Fifty independent
realizations are simulated for each SNR and the BER results are averaged.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

B
it 

er
ro

r 
ra

te

SNR

Linear ZF
Linear MMSE
Traditional ZF−VBLAST
Traditional MMSE−VBLAST
LRA−ZF
LRA−ZF VBLAST
Maximum Likelihood

Figure 2.22: BER performance of a3 × 3 system with QPSK modulation in an
uncorrelated channel.

Comparing Figures 2.22 to 2.25, it can be seen that the performance of the
LRA receivers approaches the ML receiver as the size of the QAM constellation
is increased. This occurs because the LRA treats finite constellations as infinite
and therefore, data points at the constellation boundary that originally have fewer
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Figure 2.23: BER performance of a3 × 3 system with QPSK modulation in a
correlated channel.
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Figure 2.24: BER performance of a3 × 3 system with 16-QAM modulation in an
uncorrelated channel.
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Figure 2.25: BER performance of a3 × 3 system with 16-QAM modulation in a
correlated channel.

neighbours end up having the same number of neighbours as the internal constel-
lation points [133]. Due to the high computational complexity of the ML receiver,
the LRA receiver is a promising alternative, especially if a large number of transmit
antennas and large constellation are used. Recall that for 3 antennas transmitting
16-QAM symbols, the ML receiver performs 4096 comparisons to decodeeach
symbol vector.

From Figures 2.23 and 2.25, it is observed that only the ML and LRA receivers
are robust against correlated channels whereas the performance oftraditional lin-
ear and V-BLAST receivers is very poor. Since LRA receivers usebasis which
are closer to orthogonal, there is less correlation between the columns ofH ′(k),
k = 0, . . . , Nc − 1, as compared to the originalH(k), therefore it performs much
better than the linear receiver in correlated channel. It can be seen thatthe LRA
is an attractive method to improve the bit error rate performance when channel
correlation is high. For all of the cases considered, it can be seen that the LRA
and ML receivers achieve the same diversity order, where diversity isdefined as
γ = − limρ→∞

log BER(ρ)
log ρ .
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2.6 Further Topics and Conclusions

In this chapter, we have discussed the huge increase in capacity that canbe obtained
in rich scattering environments by using multiple antennas at the transmitter and
the receiver; and we have given an overview of the main classes of space-time tech-
niques recently developed in the literature. In conclusion, the area of space-time
coding and signal processing is new, active and full of challenges. The following
is a list of some other important topics related to MIMO systems and space-time
coding and signal processing:

• Space-time trellis codes (STTC): An STTC is basically a trellis-coded mod-
ulation (TCM) code, which can be defined in terms of a trellis tree. Rather
than transmitting the output code symbols serially from a single transmit-
ter antenna as in the traditional TCM scheme, in STTC all the output code
symbols at each time are transmitted simultaneously from multiple transmit-
ter antennas. The first STTC communication system was proposed in [118].
Some design criteria and performance analysis for STTC in the presence of
channel estimation error are given in [117]. Some improved STTC codes
found by exhaustive computer search are given in [11].

• Differential space-time codes: Previous sections have assumed that the re-
ceiver has knowledge of the channel matrix before starting the detection al-
gorithms. In some situations, this is not possible since no training symbols
are available. In some other situations, the channel changes so rapidly that
channel estimation is difficult or requires training symbols to be sent very
often. That is the reason why it is interesting to consider differential tech-
niques that do not require estimation of the channel response neither at the
receiver nor at the transmitter. Differential STBC based on orthogonalde-
signs are proposed in [67, 113] and those based on unitary group codes were
proposed in [66]. Similarly to the SISO case, differential decoding incursa
performance penalty of about 3dB compared with coherent detection.

• Space-time precoding: The space-time coding schemes presented in this
chapter only require channel knowledge at the receiver. In some cases, chan-
nel status can be fedback to the transmitter or directly estimated by the trans-
mitter such as in a TDD system. In such scenarios, the performance can be
improved if the transmitter uses this channel information. Different precod-
ing schemes have been proposed in [102].

• MIMO antenna selection: Usually, the RF chain (amplifier, digital-to-analog
converters, etc.) in wireless devices is one of the most significant costs. A
promising approach for reducing the cost and complexity while retaining a
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reasonably large fraction of the high potential data rate of a MIMO system is
to employ a reduced number of RF chains at the receiver (or transmitter) and
attempt to optimally allocate each chain to one of a larger number of receive
(transmit) antennas. In this way, only the best set of antennas is used, while
the remaining antennas are not employed, thus reducing the number of RF
chains required. Different approaches to selecting those antennas have been
recently proposed in the literature [51, 52, 59, 103].

• MIMO applications in OFDM and CDMA systems: Code design criteria for
the MIMO OFDM systems are given in [89, 90], and specific code designs
are given in [18]. Moreover, MIMO coding and signal processing techniques
for code-division multiple-access (CDMA) systems are developed in [64,
100].

• Turbo processing for MIMO systems: Iterative or turbo demodulation and
decoding for coded BLAST or coded STC systems have been investigatedin
[30, 55, 88, 90, 107, 120].

• Other space-time coding schemes: Other classes of codes are being devel-
oped for MIMO systems. As an example, linear dispersion (LD) codes [58]
can be used with any configuration of transmit and receive antennas andthey
are designed to optimize the mutual information between the transmitted and
received signals. The LD codes can be decoded using any BLAST detection
algorithm. Moreover, layered space-time coding schemes are proposed in
[44, 116] and LAttice Space-Time codes have been proposed in [43].
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Chapter 3

MIMO Antenna Selection

3.1 Introduction

Multiple-input multiple-output (MIMO) systems can offer significant capacitygains
over traditional single-input single-output (SISO) systems [40, 119]. However,
multiple antennas require multiple RF chains which consist of amplifiers, analog
to digital converters, mixers, etc., that are typically very expensive. An approach
for reducing the cost while maintaining the high potential data rate of a MIMO sys-
tem is to employ a reduced number of RF chains at the receiver (or transmitter) and
attempt to optimally allocate each chain to one of a larger number of receive (trans-
mit) antennas which are usually cheaper elements. In this way, only the best set
of antennas is used, while the remaining antennas are not employed, thus reducing
the number of RF chains required.

Originally, antenna selection was proposed for systems having a single transmit
antenna and multiple antennas at the receiver employed for standard diversity pur-
poses at the receiver [72, 129]. Recently, for multiple transmit and multiple receive
antennas several algorithms have been developed for selecting the optimalantenna
subset given a particular channel realization. In [95] it is proposed toselect the
subset of transmit or receive antennas based on the maximum mutual information
criterion and [93] gives an upper bound on the capacity of a system with antenna
selection. A suboptimal algorithm that does not need to perform an exhaustive
search over all possible subsets is proposed in [46] and [53]. Antenna selection
algorithms that minimize the bit error rate (BER) of linear receivers in spatial mul-
tiplexing systems are presented in [59]. In [51], antenna selection algorithms are
proposed to minimize the symbol error rate when orthogonal space-time blockcod-
ing is used in MIMO systems. Selection algorithms that only assume knowledge
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of the second order statistics of the MIMO channels are also presented in [49, 59].
Theoretical studies in [9] and [53] show that the diversity order achieved through
antenna selection is the same as that of the system using the whole set of antennas
in spatial multiplexing and space-time coding systems, which motivates the use of
antenna selection.

All the algorithms appeared in the literature assume perfect channel knowledge
to find the optimal antenna configuration. Moreover, these algorithms cannot nat-
urally cope with time-varying channels. This chapter presents discrete stochastic
approximation algorithms for selecting the optimal antenna subset based on ad-
vanced discrete stochastic optimization techniques that can be found in the recent
operations research literature [5, 6, 28]. These techniques optimize an objective
function (e.g., maximum mutual information or minimum error rate) over a set of
feasible parameters (e.g., antenna subsets to be used) when the objectivefunction
cannot be evaluated analytically but can only be estimated. The methods are in
the same spirit as traditional adaptive filtering algorithms, for example the least
mean-squares (LMS) algorithm in which at each iteration, the algorithms make
computationally simple updates to move towards a better solution. Consequently
the performance is successively improved until converging to the optimal solution.
But in this case, the parameters to be optimized take discrete values (i.e., antenna
indices to be used). In a similar manner to the continuous parameter case, the dis-
crete adaptive algorithms asymptotically converge to the optimum solution. The
algorithms also have an attractive property, in that it can be proved that they spend
more time at the optimum value than at any other parameter value. In the transient
phase, the algorithms converge geometrically fast toward the vicinity of the opti-
mum point [6]. These techniques have recently been applied to solve several other
problems in wireless communications [8, 74].

When the MIMO channel is time-varying, the optimal antenna subset is no
longer fixed. To cope with this situation we extend our proposed algorithms to
be able to track the time-varying optimal antenna configurations. The first ofthe
proposed adaptive algorithms uses a fixed step size which acts as a forgetting factor
to be able to track the optimal antenna subset. The motivation is the same as in the
adaptive filtering applications with a continuous parameter space, such as LMS,
in non-stationary environments, where the computation is distributed over time
enabling slowly varying dynamics to be tracked. The choice of the step-sizevalue
has important effects in the tracking performance in terms of convergencerate and
stability. However, its value is difficult to select when the dynamics of the channel
are unknown. Hence, we may optimize the tracking performance by superimposing
an adaptive algorithm for the purpose of tuning the step-size parameter. Thus,
we propose a second adaptive algorithm comprising two cross-coupled adaptive
algorithms: (1) a discrete algorithm to adaptively select the best antenna subset
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and (2) a continuous algorithm to adaptively optimize the step size. This second
combination is attractive when the details of the underlying physical model of the
MIMO channel and its variability are unknown. To the best of our knowledge, such
adaptive discrete stochastic approximation algorithms are new and have notbeen
used previously for antenna selection.

In the final part of this chapter we consider new antenna selection criteriafor
different MIMO configurations. The motivation for considering these scenarios is
that they permit the introduction of suboptimal fast (i.e., low complexity) antenna
selection algorithms based on greedy selection as was recently proposed for other
selection criteria in [46, 53]. That is, in the incremental greedy selection algorithms
we begin with the full set of antennas available and then remove one antennaper
step. In each step, the antenna with lowest contribution to the optimization of the
objective function of the system is removed. Similarly, we consider incremental
greedy selection algorithms in which we start without selecting any antenna and
at each step of the algorithm, a new antenna is added until enough antennashave
been selected.

The remainder of this chapter is organized as follows. In Section 3.2, the
MIMO system model with antenna selection is presented. We also formulate the
antenna selection problem as a discrete stochastic optimization problem. In Sec-
tion 3.3, two general discrete stochastic optimization algorithms are presented and
their convergence properties are summarized. In Section 3.4, several antenna se-
lection criteria are presented, including maximum mutual information, minimum
bound on error rate, maximum signal-to-noise ratio, andminimum error rate. The
performance of the corresponding stochastic approximation algorithms is demon-
strated through several numerical examples. In Section 3.5, antenna selection in
time-varying channels is addressed. In Section 3.6, new antenna selectioncrite-
ria are developed for different MIMO system configurations and their fast antenna
selection algorithm counterparts are also presented. Section 3.7 presentsthe con-
clusions.

3.2 System Description

3.2.1 MIMO System with Antenna Selection

Consider a MIMO system as shown in Figure 3.1 withnT transmit andnR receive
RF chains and suppose that there areNT ≥ nT transmit andNR ≥ nR receive
antennas. The channel is represented by an(NR × NT ) matrixH whose element
hij represents the complex gain of the channel between thejth transmit antenna
and theith receive antenna. We assume a flat fading channel remaining constant
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over several bursts. In this chapter we first concentrate on antenna selection im-
plemented only at the receiver and thereforeNT = nT . The subset ofnR ≤ NR

receive antennas to be employed is determined by the selection algorithm operating
at the receiver which selects the optimal subsetω of all possible

(
NR
nR

)
subsets of

nR receive antennas. More generally, antenna selection can also be implemented at
the transmitter with similar selection algorithms although the channel information
needs to be known at the transmitter side. This is the case when there exists a full
feedback channel so the receiver can return channel state information to the trans-
mitter. In the case of limited feedback between the transmitter and the receiver,
the selection algorithm can be implemented at the receiver and only information
about the antenna indices to be used is fedback to the transmitter. Another situ-
ation where the selection algorithm is implemented at the transmitter occurs, for
example, when the system employs time-division duplex (TDD) transmission so
that both the uplink and downlink channels are reciprocal. In the case of antenna
selection at both sides of the transmission, the same selection algorithms can be
used although the amount of possible solutions,

(
NR
nR

)(
NT
nT

)
, increases dramatically.

We note that loading is generally implemented when the transmitter has knowledge
of the channel [102]. Therefore, if antenna selection is implemented at thetrans-
mitter, different optimality criteria will be considered to select the best antenna
subset.
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Figure 3.1: Schematic representation of a MIMO system with antenna selection.

DenoteH[ω] as the(nR×nT ) channel submatrix corresponding to the receive
antenna subsetω, i.e., rows ofH corresponding to the selected antennas. The
corresponding received signal is then

y =

√
ρ

nT
H[ω]s + n (3.1)

wheres = [s1, s2, ..., snT ]T is the(nT×1) transmitted signal vector,y = [y1, y2, ..., ynR ]T

is the(nR × 1) received signal vector,n is the(nR × 1) received noise vector, and
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3.2 System Description

ρ is the total signal-to-noise ratio independent of the number of transmit antennas.
The entries ofn are i.i.d. circularly symmetric complex Gaussian variables with
unit variance, i.e.,ni ∼ Nc(0, 1). It is assumed that the transmitted symbols have

unit power, i.e.,E
{
|si|2

}
= 1.

For the problems that we are looking at in this paper, the receiver is required to
estimate the channel. One way to perform channel estimation at the receiveris to
use a training preamble [91]. Suppose each block of symbols comprises ofT ≥ nT

MIMO training symbolss(1), s(2), ...,s(T ) which are used to probe the channel.
In our numerical examples we useT = 2, T = 4 or T = 6. The received signals
corresponding to these training symbols are

y(i) =

√
ρ

nT
H[ω]s(i) + n(i), i = 1, 2, ..., T. (3.2)

DenoteY = [y(1), y(2), ...,y(T )], S = [s(1), s(2), ..., s(T )] andN = [n(1), n(2), ...,n(T )].
Then (3.2) can be written as

Y =

√
ρ

nT
H[ω]S + N (3.3)

and the maximum likelihood estimate of the channel matrixH[ω] is given by

Ĥ[ω] = arg min
H∈CnR×nT

∥∥∥∥Y −
√

ρ

nT
HS

∥∥∥∥
2

=

√
nT

ρ
Y SH(SSH)−1.

According to [91], the optimal training symbol sequenceS that minimizes the
channel estimation error should satisfy

SSH = T · InT . (3.4)

In an uncorrelated MIMO channel, the channel estimatesĥi,j [ω] computed using
(3.4) with orthogonal training symbols are statistically independent Gaussianvari-
ables with [91]

ĥi,j [ω] ∼ Nc

(
hi,j [ω],

nT

Tρ

)
. (3.5)

3.2.2 Problem Statement

We now formulate the antenna selection problem as a discrete stochastic optimiza-
tion problem. Denote each of the antenna subsets asω = {Ant(1), Ant(2), ..., Ant(nR)}
(e.g., selecting the first, second and sixth antennas is equivalent toω = {1, 2, 6}).
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Denote the set of allP =
(
NR
nR

)
possible antenna subsets asΩ = {ω1, ω2, ..., ωP }.

Then, the receiver selects one of the antenna subsets inΩ to optimize a certain
objective functionΦ(H[ω]) according to some specific criterion, e.g., maximum
mutual information between the transmitter and the receiver, maximum signal-to-
noise ratio or minimum error rate. Thus, the discrete optimization problem be-
comes

ω∗ = arg max
ω∈Ω

Φ(H[ω]), (3.6)

where we useω∗ to denote the global maximizer of the objective function. In
practice, however, the exact value of the channelH[ω] is not available. Instead,
we typically have a noisy estimatêH[ω] of the channel.

Suppose that at timen the receiver obtains an estimate of the channel,Ĥ[n, ω],
and computes a noisy estimate of the objective functionΦ(H[ω]) denoted asφ[n, ω].
Given a sequence of i.i.d. random variables{φ[n, ω], n = 1, 2, ...}, if eachφ[n, ω]

is an unbiased estimate of the objective functionΦ(H [ω]), then (3.6) can be refor-
mulated as the following discrete stochastic optimization problem

ω∗ = arg max
ω∈Ω

Φ(H[ω]) = arg max
ω∈Ω

E {φ[n, ω]} . (3.7)

Note that existing works on antenna selection assume perfect channel knowledge
and therefore treat deterministic combinatorial optimization problems. On the
other hand, we assume that only noisy estimates of the channel are availableand
hence the corresponding antenna selection problem becomes a discrete stochastic
optimization problem. In what follows we first discuss a general discrete stochas-
tic approximation method to solve the discrete stochastic optimization problem in
(3.7) and then we treat different forms of the objective function under different
criteria, e.g., maximum mutual information, minimum error rate, etc.

3.3 Discrete Stochastic Approximation Algorithms

There are several methods that can be used to solve the discrete stochastic opti-
mization problem in (3.7). An inefficient method to solve (3.7) is to computeN

estimates of the objective function for each of the antenna subsetsω ∈ Ω and
compute an empirical average which approximates the exact value of the objective
function. That is, for eachω ∈ Ω compute

φ̂N (ω) =
1

N

N∑

n=1

φ[n, ω] (3.8)
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and then perform and exhaustive search to findω∗ = maxω∈Ω{φ̂N (ω)}. Since for
any fixedω ∈ Ω, {φ[n, ω]} is an i.i.d. sequence of random variables, by the strong
law of large numbers,̂φN (ω) → E {φ[n, ω]} almost surely asN → ∞. Using the
finite number of antenna combinations inΩ implies that asN → ∞

arg max
ω∈Ω

φ̂N (ω) → arg max
ω∈Ω

E {φ[n, ω]} = arg max
ω∈Ω

Φ(H[ω]). (3.9)

Although the method can in principle find the optimal solution, it is highly ineffi-
cient from the antenna selection problem point of view. For each antennasubset in
Ω, N estimates of the objective function would need to be computed and hence it
would need to be estimatedN

(
NR
nR

)
times in total. These computations are mostly

wasted in the sense that only the estimate corresponding to the optimal setω∗ is
eventually useful. Moreover, when the channel is time-varying, this methodcannot
naturally track the time-varying optimum solution.

More efficient methods to solve (3.7) have been proposed in the operations re-
search literature (see [6] for a survey). The ranking and selection methods, and
multiple comparison methods [63] can be used to solve the problem. However,
when the number of feasible solutionsP increases (usuallyP > 20 antenna sub-
sets), the complexity becomes prohibitive. More recently, a number of discrete
stochastic approximation algorithms haven been proposed to solve the problem in
(3.7), including simulated annealing type procedures [4], stochastic ruler[132],
and nested partition methods [110]. In this section, we construct iterative algo-
rithms that resemble a stochastic approximation algorithm in the sense that they
generate a sequence of estimates of the solution where each new estimate is ob-
tained from the previous one by taking a small step in a good direction toward the
global optimizer. In particular we present two different discrete stochastic approx-
imation algorithms based on ideas in the recent operations research literature. The
most important property of the proposed algorithms is their self-learning capabil-
ity – most of the computational effort is spent at the global or local optimizer of
the objective function. As we will show, an attractive property of these methods
is that they can be modified to track the optimum antenna subset in time-varying
scenarios.

3.3.1 Aggressive Discrete Stochastic Approximation Algorithm

We now present an aggressive stochastic approximation algorithm basedon [5].
We use theP =

(
NR
nR

)
unit vectors as labels for theP possible antenna subsets,

i.e., ξ = {e1, e2, ...,eP }, whereei denotes the(P × 1) vector with a one in
the ith position and zeros elsewhere. At each iteration, the algorithm updates the
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(P × 1) probability vectorπ[n] =
[
π[n, 1], ..., π[n, P ]

]T
representing the state

occupation probabilities with elementsπ[n, i] ∈ [0, 1] and
∑

i π[n, i] = 1. Let
ω(n) be the antenna subset chosen at then-th iteration. For notational simplicity,
it is convenient to map the sequence of antenna subsets{ω(n)} to the sequence
{D[n]} ∈ ξ of unit vectors whereD[n] = ei if ω(n) = ωi, i = 1, ..., P .

Algorithm 3.1 Aggressive discrete stochastic approximation algorithm

2 Initialization

n ⇐ 0

select initial antenna subset ω(0) ∈ Ω

set π[0, ω(0)] = 1

set π[0, ω] = 0 for all ω 6= ω(0)

for n = 0, 1, ... do

2 Sampling and evaluation

given ω(n) at time n, obtain φ[n, ω(n)]

choose another ω̃(n) ∈ Ω\ω(n) uniformly

obtain an independent observation φ[n, ω̃(n)]

2 Acceptance

if φ[n, ω̃(n)] > φ[n, ω(n)] then

set ω(n+1) = ω̃(n)

else

ω(n+1) = ω(n)

end if

2 Adaptive filter for updating state occupation

probabilities

π[n + 1] = π[n] + µ[n + 1](D[n + 1] − π[n])

with the decreasing step size µ[n] = 1/n

2 Computing the maximum

if π[n + 1, ω(n+1)] > π[n + 1, ω̂(n)] then

ω̂(n+1) = ω(n+1)

else

set ω̂(n+1) = ω̂(n)

end if

end for
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We assume that in a realistic communications scenario, each iteration of the
above algorithm operates on a block of symbols comprising ofT > 0 training sym-
bols (see description above (3.2). TheseT training symbols are used to obtain the
channel estimateŝH[n, ω(n)] and hence the noisy estimate of the costφ[n, ω(n)].
In our numerical examples, we useT = 2, T = 4 or T = 6. At the end of each
iteration, antenna subsetω̂(n) will be selected for the next iteration.

In theSampling and Evaluation step in Algorithm 3.1, the candidate
antenna subset̃ω(n) is chosen uniformly fromΩ\ω(n). There are several varia-
tions for selecting a candidate antenna subsetω̃(n). One possibility is to select
a new antenna subsetω̃(n) by replacing only one antenna inω(n). Define the
distanced(ω̃(n), ω(n)) as the number of different antennas between the two an-
tenna subsets̃ω(n) and ω(n). Hence, we can select̃ω(n) ∈ Ω\ω(n) such that
d(ω̃(n), ω(n)) = 1. More generally we can select a new subsetω̃(n) with arbi-
trary distanced(ω̃(n), ω(n)) = D, where1 ≤ D ≤ min(nR, NR − nR). Note that
any variation for selecting a candidate need to be taken into account to prove global
convergence.

To obtain the independent observations in theSampling and Evaluation

step in Algorithm 3.1 we proceed as follows. At timen, we collect training symbols
to estimate the channel and computeφ[n, ω]. Now, collect other training symbols
from another antenna subset and computeφ[n, ω̃]. Therefore,φ[n, ω] andφ[n, ω̃]

are independent observations.
Remark: Heuristic variations ofSampling and Evaluation step with cor-
related observations. The above procedure of using independent samples to eval-
uate the objective function allows us to rigorously prove convergence and effi-
ciency of the algorithm. Here we briefly discuss three heuristic variations ofthe
Sampling and Evaluation step that use correlated observations of the ob-
jective function. In numerical simulations we observed that these variationsalso
yield excellent results – however, due to the statistically correlated observations of
the objective function, the proof of convergence is intractable. The first possibil-
ity is to reuse same channel observation multiple times (i.e., use the same channel
estimate to compute several observations of the objective function under different
antenna configurations). Another heuristic variation is to incorporate the greedy
antenna selection solutions (note that this is another form of correlation) orre-
duce the dimension of the possible transition states (i.e., possible solutions) in the
Markov chain. A third possibility is to devise hybrid solutions based on a com-
bination of Algorithm 3.1 and batch processing (e.g., exhaustive search based on
noisy channel estimates or greedy selections).

The sequence{ω(n)} generated by Algorithm 3.1 is a Markov chain on the
state spaceΩ which is not expected to converge and may visit each element inΩ

infinitely often. On the other hand, under certain conditions the sequence{ω̂(n)}
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converges almost surely to the global maximizerω∗. Therefore,̂ω(n) can be viewed
as an estimate at timen of the optimal antenna subsetω∗.

In theAdaptive filter for updating state occupation

probabilities step in Algorithm 3.1,π[n] =
[
π[n, 1], π[n, 2], ..., π[n, P ]

]

denotes the empirical state occupation probability at timen of the Markov chain
{ω(n)}. If we denoteW (n)[ω] for eachω ∈ Ω as a counter of the number of times
the Markov chain has visited antenna subsetω(n) by timen, we can observe that
π[n] = 1

n

[
W (n)[ω1],...,W

(n)[ωP ]
]T

. Hence, the algorithm chooses the antenna
subset which has been visited most often by the Markov chain{ω(n)} so far.

Global Convergence of Algorithm 3.1

A sufficient condition for Algorithm 3.1 to converge to the global maximizer of
the objective functionΦ(H[ω]) is as follows [5]. Forω̃ 6= ω∗, ω 6= ω∗, and
independent observationsφ[n, ω∗], φ[n, ω̃], φ[n, ω]

Pr {φ[n, ω∗] > φ[n, ω]} > Pr {φ[n, ω] > φ[n, ω∗]} , (3.10)

Pr {φ[n, ω∗] > φ[n, ω̃]} > Pr {φ[n, ω] > φ[n, ω̃]} . (3.11)

It is shown in [5] that if the conditions (3.10) and (3.11) are satisfied, the sequence
{ω(n)} is an homogeneous irreducible and aperiodic Markov chain with state space
Ω. Moreover, the sequence{ω̂(n)} converges almost surely toω∗ in the sense
that the Markov chain{ω(n)} spends more time inω∗ than any other state. The
transition kernel for the Markov chain{ω(n)} is given by a transition probability
matrixK whose elements are given by

ki,j = Pr
{

ω(n+1) = ωj | ω(n) = ωi

}
=

1

|Ω| − 1
Pr {φ[n, ωj ] > φ[n, ωi]}

(3.12)
for all i, j ∈ {1, ..., P}, i 6= j, and

ki,i = 1 −
∑

j∈{1,...,P},j 6=i

ki,j =
1

|Ω| − 1

∑

j∈{1,...,P},j 6=i

Pr {φ[n, ωj ] ≤ φ[n, ωi]}

(3.13)
for all i ∈ {1, ..., P} (assuming that the observationsφ[n, ω] are independent for
all n andω).

The two conditions in (3.10) and (3.11) basically state the conditions that the
Markov transition matrix defined in (3.12) and (3.13) need to satisfy. Condition
(3.10) states thatkj,i > ki,j for ωi = ω∗ andωj 6= ω∗, i.e., it is more probable for
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the Markov chain to move into a state corresponding toω∗ from a state that does
not correspond toω∗ than in the other direction. And condition (3.11) states that
kj,i > kj,ℓ for ωi = ω∗ andωℓ 6= ω∗, ωj 6= ω∗, i.e., once the Markov chain is in
a state that does not correspond toω∗, it is more probable to move into a state that
corresponds toω∗ than into any other state.

The major difficulty of Algorithm 3.1 is to choose estimators that can be proved
to satisfy properties (3.10) and (3.11). Next, we propose a conservative algorithm
that converges to the global optimizer of the objective function under less restrictive
conditions.

3.3.2 Conservative Discrete Stochastic Approximation Algorithm

Now, we present a conservative discrete stochastic approximation algorithm based
on ideas in [28] with less restrictive conditions for global convergence.

Algorithm 3.2 Conservative discrete stochastic approximation algorithm

2 Initialization

n ⇐ 0

select initial antenna subset ω(0) ∈ Ω

Initialize P-dimensional vectors h[0], l[0] and k̄[0] to zero

for n = 0, 1, ... do

2 Sampling, evaluation and update

choose another ω̃(n) ∈ Ω\ω(n) uniformly

obtain an independent observation φ[n, ω̃(n)] and update:

l[n + 1, ω̃(n)] = l[n, ω̃(n)] + φ[n, ω̃(n)] (Accumulated cost)

k̄[n + 1, φ[n, ω̃(n)]] = k̄[n, φ[n, ω̃(n)]] + 1 (Occupation time)

h[n, φ[n, ω̃(n)]] = l[n+1, φ[n, ω̃(n)]]/k̄[n+1, φ[n, ω̃(n)]] (Average cost

vector)

2 Acceptance

if h[n, ω̃(n)] > h[n, ω(n)] then

set ω(n+1) = ω̃(n)

else

ω(n+1) = ω(n)

end if

2 Update estimate of optimum subset
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ω̂(n+1) = ω(n+1)

end for

As in theAdaptive filter step of Algorithm 3.1, theSampling, evaluation

and update step in Algorithm 3.2 can be rewritten as an adaptive algorithm
with a decreasing step size as: update the occupation time diagonal matrixK[·] as
K[n + 1] = K[n] + µ[n + 1](diag(D1[n], ...,DP ) − K[n]) and

h[n+1] = h[n]+µ[n+1]K−1[n+1]
(
φ[n, ω̃(n)]D[n] − diag(D1[n], ...,DP )h[n]

)

(3.14)
where as in Algorithm 3.1,µ[n] = 1/n, D[n] = ei if ω̃(n) = ωi andDi[n] repre-
sents theith component ofD[n]. The(P ×P )-dimensional matrixK[n] in (3.14)
is initialized toK[0] = IP . Theconservativename refers to the convergence of
the Markov chain{ω(n)} in Algorithm 3.2 since the sequence{ω(n)} in Algorithm
3.1 is not expected to converge – in Algorithm 3.1 only{ω̂(n)} converges. Note
that in Algorithm 3.2, we only require one estimate of the objective function per
iteration and in general, the complexity is similar to the one of Algorithm 3.1.

Global convergence of Algorithm 3.2

As proved in [28], a sufficient condition for Algorithm 3.2 to converge to the global
optimum is to use unbiased observations of the objective function.

3.4 Adaptive Antenna Selections Under Different Criteria

In this section we use the optimization algorithms to optimize four different objec-
tive functionsΦ(H[ω]). These are (i) MIMO mutual information, (ii) bounds on
error rate, (iii) SNR, and (iv) error rate. Simulation results are providedin each
case to demonstrate the performance of the corresponding stochastic approxima-
tion algorithm.

3.4.1 Maximum MIMO Mutual Information

Assuming that the channel matrixH[ω] is known at the receiver, but not at the
transmitter, the mutual information between the transmitter and receiver is given
by [40, 119]

I[ω] = log det

(
InT +

ρ

nT
HH [ω]H[ω]

)
bit/s/Hz. (3.15)
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One criterion for selecting the antennas is to maximize the above mutual informa-
tion, i.e., choosing the objective functionΦ(H[ω]) = I[ω].

Aggressive Algorithm to optimize the mutual information

We now present an implementation of Algorithm 3.1 to find the maximum of the
mutual information in (3.15) using

φ[n, ω] = log det

(
InT +

ρ

nT
Ĥ[n, ω]HĤ[n, ω]

)
. (3.16)

Notes on convergence
To prove the convergence to the global optimum when we use (3.16) in Algorithm
3.1, we need to verify that conditions (3.10) and (3.11) are satisfied. We propose
the following result that will help us to verify these conditions.

Proposition 1 : The random variable in (3.16) can be accurately approximated by
the Gaussian distribution

φ[n, ω] ∼ N
(
µIω , σ2

Iω

)
, (3.17)

where

µIω = E ˆH

{
log det

(
InT +

ρ

nT
Ĥ[n, ω]HĤ[n, ω]

)}

=
etr(Λ[ω])

ln(2)(Γ(t − s + 1)s det(V )

s∑

k=1

det(Ψ(k)), (3.18)

with det(Ψ(k)), k = 1, ..., s are(s × s) matrices with entries

{Ψ(k)}i,j =

{ ∫ ∞
0 yt−i ln(1 + αy)e−y

0F1(t − s + 1, yλj [ω])dy, j = k

Γ(t − i + 1)1F1(t − i + 1, t − s + 1, λj [ω]), j 6= k

(3.19)
where t = max(nT , nR) and s = min(nT , nR), α = ρ

nT
· nT

ρT = 1
T , 0 <

λ1[ω] < λ2[ω] < ... < λs[ω] < ∞ are the non-zero ordered eigenvalues of
nT
TρHHH, Λ[ω] = diag(λ1[ω], ..., λs[ω]), V is an(s×s) matrix with determinant
det(V ) = Π1≤i<j≤s(λi[ω] − λj [ω]), 0F1(·, ·) is the generalized hypergeometric
function defined in [[54], Eqn. (9.14.1)] as0F1(a, z) =

∑∞
k=0

zk

(a)kk! , Γ(·) is the
gamma function [[54], Eqn. (8.31.1)],1F1(·, ·, ·) is the confluent hypergeometric
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function [[54], Eqn. (9.210.1)] defined as

1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k!
, (3.20)

and(a)k = a(a+1)...(a+k−1) is the Pochhammer symbol. The second moment
of the estimator is

E{Î2
ω} =

etr(Λ[ω])

ln2(2)(Γ(t − s + 1)s det(V )

s∑

k=1

s∑

l=1

det(Ψ(k, l)), (3.21)

wheredet(Ψ(k, l)), k, l = 1, ..., s are(s × s) matrices with entries

{Ψ(k)}i,j =





∫ ∞
0 yt−i ln2(1 + αy)e−y

0F1(t − s + 1, yλj [ω])dy, j = k = l∫ ∞
0 yt−i ln(1 + αy)e−y

0F1(t − s + 1, yλj [ω])dy, j = k, orj = l; k 6= l

Γ(t − i + 1)1F1(t − i + 1, t − s + 1, λj [ω]), j 6= k; j 6= l
(3.22)

and the variance in (3.17) can be computed as

σ2
Iω

= E{Î2
ω} − µ2

Iω
. (3.23)

Proof: The channel estimate in (3.16) with orthogonal training symbols in (3.4)

contains independent elementsĥij[ω] = Nc

(
hij [ω], nT

Tρ

)
. Therefore, the channel

estimate can be written aŝH[n, ω] = H[ω]+∆H[n, ω] which contains a constant
termH[ω] and a random complex Gaussian matrix∆H[n, ω] of zero mean. Then,
the estimate of the mutual information function can be written as

φ[n, ω] = log det

(
InT +

ρ

nT
(H[ω] + ∆H[n, ω])H (H[ω] + ∆H[n, ω])

)
,

(3.24)
which is equivalent to the mutual information of a Rician flat fading MIMO channel
with a non-zero mean matrixH[ω]. The expressions of the mean and variance of
the capacity of a non-iid Rician are derived in [71] which correspond to (3.18) and
(3.23) respectively. ¥

In particular, under the maximum mutual information criterion, we note that
the estimator in (3.16) has a positive bias, i.e.,µIω > I[ω] in (3.15). This fact can
be also understood with the results in [71] and the parallelism of the estimate of the
mutual information computed with noisy channel estimates and capacity results of
the Rician channel. Moreover, it has been observed that although the estimator is
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biased,

if I[ωi] > I[ωk], then µIωi
> µIωk

,∀i, k ∈ {1, ..., P}, (3.25)

which again can be intuitively deduced with the parallelism with a Rician channel.
To prove the convergence to the global optimum using (3.16) in Algorithm 3.1,

we still need to verify that conditions (3.10) and (3.11) are satisfied. Consider three
different antenna subsetsωi = ω∗ andωl, ωj ∈ {Ω\ω∗}. From (3.16) and (3.17),
we have independent random variablesφ[n, ωi] ∼ N (µIωi

, σ2
Iωi

), φ[n, ωj ] ∼ N (µIωj
, σ2

Iωj
)

andφ[n, ωl] ∼ N (µIωl
, σ2

Iωl
). Condition (3.10) can be written as

Pr (φ[n, ωi] − φ[n, ωj ] > 0) > Pr (φ[n, ωj ] − φ[n, ωi] > 0) , (3.26)

and since samples ofφ are independent and Gaussian distributed, (3.26) is equiva-
lent to

Pr
(
N

(
µIωi

− µIωj
, σ2

Iωi
+ σ2

Iωj

)
> 0

)
> Pr

(
N

(
µIωj

− µIωi
, σ2

Iωj
+ σ2

Iωi

)
> 0

)
.

(3.27)
From (3.25) we havemax{µIωi

, µIωj
, µIωl

} = µIωi
which implies(µIωi

−µIωj
) >

(µIωj
− µIωi

). Therefore (3.26) holds since both terms have the same variance.
Consider now condition (3.11). We can express it as

Pr
(
N

(
µIωi

− µIωj
, σ2

Iωi
+ σ2

Iωj

)
> 0

)
> Pr

(
N

(
µIωl

− µIωj
, σ2

Iωl
+ σ2

Iωj

)
> 0

)
,

which can be rewritten as

Pr (φ[n, ωi] − φ[n, ωj ] > 0) > Pr (φ[n, ωl] − φ[n, ωj ] > 0) , (3.28)

that is equivalent to

µIωi
− µIωj√

σ2
Iωi

+ σ2
Iωj

>
µIωl

− µIωj√
σ2
Iωl

+ σ2
Iωj

. (3.29)

The inequality in (3.29) has been observed to hold after extensive simulations using
the expressions of the mean and the variance given in (3.18) and (3.23) respectively.
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Conservative algorithm to optimize the mutual information

We now present an implementation of the conservative algorithm and prove that it
converges to the global maximum of the mutual information in (3.15). Since the
logarithm is a monotonically increasing function, the antenna subsetω∗ maximiz-
ing log det(·) is identical to that maximizingdet(·).

In theSampling, evaluation and update step of Algorithm 3.2 choose

φ[n, ω] = det

(
InT +

ρ

nT
Ĥ

H
1 [n, ω]Ĥ2[n, ω]

)
, (3.30)

where the channel estimateŝH1[n, ω] andĤ2[n, ω] are obtained from independent
training blocks. We consider the case in whicĥH1[n, ω] and Ĥ2[n, ω] satisfy
(3.5).

Theorem 2 Withφ[n, ω] computed according to (3.30), the sequence{ω̂(n)} gen-
erated by Algorithm 3.2 converges to the antenna subsetω∗ corresponding to the
global maximizer of the MIMO mutual information in (3.15).
Proof: To prove global convergence, we only need to show thatφ[n, ω] of (3.30)
is unbiased, which is proved in Appendix A.

To reduce the training symbols needed to estimate the channel in Algorithm
3.2, in practical systems we can use a single sample of the channelĤ1[n, ω] and
choose

φ[n, ω] = det

(
InT +

ρ

nT
Ĥ1[n, ω]HĤ1[n, ω]

)
. (3.31)

Although this sample is biased, numerical results can show that Algorithm 3.2 still
converges to the global optimum.

Simulation Results

We consider the performance of Algorithm 3.1 which selects the antenna subset
maximizing the MIMO mutual information using (3.31) as an estimate of the ob-
jective function. We considernT = 2, NR = 8 andnR = 4 antennas. We use
the ML channel estimate in (3.4) withT = 4 orthogonal training symbols. We set
ρ = 10dB. The(NR × nT ) channelH is randomly generated and fixed during the
whole simulation. The initial antenna subset was randomly selected. From a practi-
cal point of view, there are several variations for selectingω(0). For instance, based
on a noisy channel estimate, select the antenna subset whose matrixĤ[0, ω(0)] has
maximum Frobenius norm. Figure 3.2 shows one run of the algorithm. In the same
figure we show the mutual information of the best antenna subset and the worst
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antenna subset, as well as the median mutual information among the
(
8
4

)
= 70 an-

tenna configurations, found by exhaustive search. Next, in Figure 3.3we consider
700 iterations per execution and we average the mutual information of the antenna
subset selected at all iterations over 1000 channel realizations. In the same figure
we also show the performance of Algorithm 3.2. It is seen that in the transient
phase, Algorithm 3.2 has slightly better convergence behavior than Algorithm 3.1
although in the long term, Algorithm 3.1 performs better. From both figures, it is
seen that the algorithms adaptively move to the best antenna subset. We observe
that although the algorithms take some time to converge to the optimal antenna
subset, they move very fast to an antenna subset inducing high MIMO mutual in-
formation.
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iteration number,  n
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t/s
/H

z)

Mutual Information value of chosen antenna set vs iteration number

: mutual info of chosen antenna set
: mutual info with best antenna set
: mutual info worst antenna set
: mean mutual info

Figure 3.2: Single run of Algorithm 3.1: mutual information value of the chosen
antenna subset versus iteration numbern.

From a practical point of view, instead of initializing the algorithm by choosing
a random antenna subset, there are several variations for selectingω(0) to avoid the
initial transient phase (i.e.,hot startinitialization). For instance, based on a noisy
channel estimate, select the antenna subset whose matrixĤ[0, ω(0)] has maximum
Frobenius norm (i.e., select the antennas that receive maximum power). Consider
a system withNR = 5, nT = nR = 2, T = 4, and SNR= 6dB. Figure 3.4
shows the average mutual information over 100 initial channel realizations versus
the iteration number with thehot startadaptive algorithm based on the maximum
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Figure 3.3: The average of the mutual information values of chosen antenna subsets
by Algorithm 3.1 and Algorithm 3.2 (over 3000 runs) versus iteration numbern.

Frobenius norm initial selection. It is seen that from the very first iterationthe
adaptive algorithm is close to the optimal solution. In the same figure we show the
mutual information of the antenna subset selected based on the maximum mutual
information criterion found by exhaustive search using noisy channel estimates.

3.4.2 Minimum Bounds on Error Rate

Consider the system in Figure 3.1 where the transmitted datas is multiplexed into
thenT transmit antennas. The input-output relationship is expressed in (3.1) where
in this case, the transmitted symbolssi belong to a finite constellationA of size
|A|. The receive antennas see the superposition of all transmitted signals. The task
of the receiver is to recover the transmitted datas. The ML detection rule is given
by

ŝ = arg min
s∈AnT

∥∥∥∥y −
√

ρ

nT
H[ω]s

∥∥∥∥
2

. (3.32)

At high signal-to-noise ratio, we can upper bound the probability of errorof the ML
detector using the union bound [59] which is a function of the squared minimum
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Figure 3.4: The average of the mutual information values of chosen antenna subsets
versus iteration number with ahot startadaptive algorithm.

distanced2
min,r of the received constellation given by [60]

d2
min,r[ω] = min

si,sj∈A
nT

si 6=sj

‖H[ω] (si − sj)‖2. (3.33)

Therefore, minimizing the union bound on error probability is equivalent to maxi-

mizingd2
min,r. In Algorithm 3.1, we useφ[n, ω] = min

si,sj∈A
nT

si 6=sj

∥∥∥Ĥ[n, ω] (si − sj)
∥∥∥

2
.

In Algorithm 3.2, we propose the following theorem.

Theorem 3 With

φ[n, ω] = min
si,sj∈A

nT

si 6=sj

[
Ĥ1[n, ω] (si − sj)

]H[
Ĥ2[n, ω] (si − sj)

]
(3.34)

the sequence{ω̂(n)} generated by Algorithm 3.2 converges to the global maximizer
ω∗ of (3.33).
Proof: Applying similar arguments to the proof of Proposition 1 it follows that
the estimate of the objective function in (3.34) satisfies the requirements of global
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convergence specified by Algorithm 3.2.
To reduce the number of required training symbols in the implementation of

Algorithm 3.2, we can use a biased estimator ofd2
min,r[ω] using only one estimate

of the channel as in Algorithm 3.1.
Note that the computation ofd2

min,r[ω] is performed over|A|nT (|A|nT − 1)

possibilities for each antenna subset which can be prohibitive for large|A| or nT .
Let λmin[ω] be the smallest singular value ofH[ω] and let the minimum squared
distance of the transmit constellation bed2

min,t = min
si,sj∈A

nT
‖(si − sj)‖2. Then, it

is shown in [60] thatd2
min,r[ω] ≥ λ2

min[ω]d2
min,t . Therefore, a selection criterion

can be simplified to select the antenna subsetω ∈ Ω whose associated channel
matrixH[ω] has the largest minimum singular value. In our problem, based on an
estimate of the channel at timen we letφ[n, ω] = λ̂min[n, ω].

Simulation Results

We consider the performance of Algorithm 3.1 withNR = 10, nR = 2 (45 differ-
ent antenna subsets) andnT = 2 with ML channel estimate andT = 2 orthogonal
training symbols. The channelH is assumed to be fixed during the whole run of
the algorithm and we setρ = 10dB. We compare three antenna configuration: (a)
best antenna set: antenna set withmaxωi(λmin[ωi]); (b) worst antenna set: antenna
set withminωi(λmin[ωi]); and (c) the antenna set chosen by the algorithm at it-
erationn, i.e., ω̂(n). Antenna sets (a) and (b) are found by an exhaustive search
assuming that the channel is perfectly known. We performed 90 iterations of the
algorithm. Figure 3.5 shows a single run of the algorithm. Figure 3.6 shows the
average of 100 runs of the algorithm over the same fixed channelH. It is observed
from the two figures that the algorithm converges and as in the maximum of the
mutual information case, it is seen that although it takes some time to converge, it
moves quite fast to an antenna subset whose channel has a highλmin.

It is important to point out that Algorithm 3.1 using the above cost functions
converges to the antenna subset which maximizesdmin,r or λmin. However, these
criteria do not necessarily minimize the bit error probability since they are based on
bounds. Actually, we can show situations in which both cases converge to different
antenna subsets and none of them correspond to the antenna subset minimizing the
bit error probability. The main reason for this is that the bound is tight only for
high signal-to-noise ratio. To observe this phenomenon we consider a system with
NR = 10, nR = 2, nT = 2, andρ = 10dB. We average the BER of 30 different
channels realizationsH and with each channel realization and each antenna subset
within the same channel we send 14000 QPSK symbols to compute the BER. Per-
forming an exhaustive search (assuming perfect knowledge of the channel), we find
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Figure 3.5: Single run of Algorithm 3.1: minimum singular value of the antenna
subset selected versus iteration numbern.
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Figure 3.6: The average (over 100 runs) of the minimum singular value of the
channel of the chosen antenna subsets versus iteration numbern.
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the antenna subsets under each criterion. We observe that with theImax criterion,
the antenna subset selected obtains a BER of 0.00054, with theλmin criterion the
BER is 0.00049, with thedmin,r criterion the BER is 0.00039, and the minimum
BER of all antenna subsets is 0.00035.

3.4.3 Maximum SNR

Linear receivers for the system in (3.1) are simpler receivers in which the received
vectory is linearly transformed to obtain

z = Gy =

√
ρ

nT
GH[ω]s + Gn. (3.35)

For linear receivers, the symbol error probability is influenced by the post process-
ing signal-to-noise ratio. For the minimum mean-square error (MMSE) receiver,

after applying the equalizer matrixG =
√

ρ
nT

(
ρ

nT
HH [ω]H[ω] + InT

)−1
HH [ω]

the signal-to-noise ratio for each of thenT transmitted data streams can be ex-
pressed as [59]

SNR(MMSE)
i [ω] =

1
(

ρ
nT

HH [ω]H[ω] + InT

)−1

ii

− 1 for i = 1, ..., nT .

(3.36)
Correspondingly, in Algorithm 3.1 we set

φ[n, ω] = max
i∈[1,nT ]

( ρ

nT
Ĥ

H
[n, ω]Ĥ[n, ω] + InT

)−1

ii
. (3.37)

For the zero-forcing (ZF) receiver,G =
√

nT
ρ H†[ω], where† denotes the

pseudo-inverse. For each of thenT transmitted data streams, the signal-to-noise
ratio after applying the equalizer matrixG can be expressed as [59]

SNR(ZF )
i [ω] =

ρ

nT

(
HH [ω]H[ω]

)−1

ii

for i = 1, ..., nT (3.38)

and correspondingly, in Algorithm 3.1 we use

φ[n, ω] = max
i∈[1,nT ]

(
Ĥ

H
[n, ω]Ĥ[n, ω]

)−1

ii
. (3.39)

Another case of interest is when the orthogonal space-time block codes are
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employed. Using the coding and decoding algorithms in [3, 114], the receiver
signal-to-noise ratio of the data stream is given by [51]

SNR[ω] =
ρ

nT
trace

(
HH [ω]H[ω]

)
=

ρ

nT
‖H[ω]‖2

F (3.40)

where‖·‖2
F indicates the Frobenius norm. Therefore, in Algorithm 3.1 we may use

φ[n, ω] =
∥∥∥Ĥ[n, ω]

∥∥∥
2

F
. With Algorithm 3.2, we propose the following theorem to

obtain an unbiased estimate of the objective function.

Theorem 4 With

φ[n, ω] = trace
[
Ĥ

H
1 [n, ω]Ĥ

H
2 [n, ω]

]
(3.41)

the sequence{ω̂(n)} generated by Algorithm 3.2 converges to the global maximizer
of (3.40).
Proof: Applying similar arguments to the proof of Theorem 1 it follows that the
estimate of the objective function in (3.41) satisfies the requirements of global
convergence specified by Algorithm 3.2.

3.4.4 Minimum Error Rate

As shown in Section 4.2 for the ML receiver, the antenna subset chosenby the
different criteria based on bounds do not necessarily choose the antenna subset
minimizing the bit error rate (BER). In this section, we propose an antenna selec-
tion algorithm that directly minimizes the symbol or bit error rate of the system
under any type of receivers.

In the proposed method, a noisy estimate of thesimulatederror rate is used
as the cost function in the stochastic approximation algorithm instead of a noisy
estimate of a bound. The method proceeds as follows. Assume for example that
the ML decoding algorithm in (3.32) is used. At timen, estimate the channel
Ĥ[n, ω] with antenna subsetω. At the receiver, generatem fakerandom symbol
vectorsSf = [sf (1), ..., sf (m)] with sf,k(i) ∈ A and perform a simulation of the
form

Y f =

√
ρ

nT
Ĥ[n, ω]Sf + N (3.42)

where the(nR × m) matrix N contains i.i.d.Nc(0, 1) samples. Perform the ML
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detection on (3.42) to obtain

Ŝf = arg min
S∈AnT ×m

∥∥∥∥Y f −
√

ρ

nT
Ĥ[n, ω]S

∥∥∥∥
2

(3.43)

and estimate the bit error ratêBER[n, ω] by comparingŜf andSf . In this way,
at timen, an estimate of the realBER[ω] has been obtained. Note that the noise
in the estimate of the BER is due to the error in the estimate of the channel and to
the limitation in the number of fake symbols used in the simulations. The number
of fake symbol vectors required to obtain a good estimate of the BER depends
on the signal-to-noise ratioρ of the channel. For low signal-to-noise ratio, only
short fake sequences are needed. The estimated BER will become more accurate
as we increase the numberm of the fake symbols although the complexity of the
algorithm will grow accordingly. Therefore, in Algorithm 3.1 we useφ[n, ω] =

−B̂ER[n, ω] as an observation of the cost function.
Note that the fake symbolssf arenot actually sent through the channel. They

are merely generated at the receiver to estimate the BER. It is important to point
that this method uses anestimateof the BER and a closed-form BER expres-
sion is not needed, which makes it appealing for other receivers for which even
a tight bound is difficult to find. Among these receivers, we may cite the ordered
nulling and cancellation BLAST receivers [48]. Obviously, the same methodcan
be used in antenna selection for MIMO systems employing various space-time cod-
ing schemes. Moreover, it is straightforward to modify the algorithm to minimize
the symbol error rate or frame error rate as well.

The main disadvantage of this approach is that in the high SNR regime, the
BER can be very low and therefore, a large amount of fake symbols need tobe
used if we want to obtain a good estimate of the BER. On the other hand, it has
been observed by simulations that the antenna subset having the minimum BER at
a SNR valueρ1, corresponds to the antenna subset having the minimum BER for
a range of SNR values aroundρ1 as long as there is not a large difference in the
SNR. Therefore, we can reduce the SNR of the simulation to find the best antenna
subset when the SNR is high. In this way, a smaller number of fake symbols will
be needed to obtain a good estimate of the error rate and the complexity can be
considerably reduced.

Simulation Results

To show the performance of this method in Algorithm 3.1 we consider first an
ML receiver. We use QPSK symbols and we considerNR = 6, nR = 2 (i.e.,
15 different antenna configurations) andnT = 2. The (NR × nT ) channelH
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is randomly generated and fixed during the whole simulation. We setρ = 9dB
and we useT = 6 orthogonal training symbols to estimate the channel. Before
starting the algorithm, long simulations are performed assuming perfect channel
knowledge over all antenna configurations to find the BER associated with each
antenna subset (including the worst and best antenna subset). We runn = 60

iterations of the algorithm withm = 500 fake symbols per iteration. Figure 3.7
shows the BER of the antenna selected by the algorithm comparing it with the
median, the best and the worst BER. It is seen that the algorithm converges to
the optimal antenna subset. Moreover, it is observed that antenna selection at the
receiver can improve the BER by more than two orders of magnitude with respect
to the median BER even for such small values of the signal-to-noise ratio in the
channel.
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Figure 3.7: Single run of Algorithm 3.1: BER of the of the chosen antenna subset
versus iteration numbern employing an ML receiver.

Now, we consider the performance of this method in a system employing the
ordered nulling and cancellation BLAST receiver. We consider the MMSEcrite-
rion for the nulling operation [48]. We use the same channel realization andsystem
parameters as in the ML case. Before starting the algorithm, long simulations are
performed assuming perfect channel knowledge over all antenna configurations to
find the BER associated with each antenna subset. We use400 fake symbols per
iteration. Figure 3.8 shows the BER of the antenna selected by the algorithm and
we compare it with the median, the best and the worst BER. As in the ML case,
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Figure 3.8: Single run of Algorithm 3.1: BER of the of the chosen antenna subset
versus iteration numbern in a system employing the ordered nulling (MMSE) and
cancellation BLAST receiver.
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Figure 3.9: The average of 2000 runs of the algorithm: Exact BER of the chosen
antenna subset versus iteration numbern in a system employing the ordered nulling
(MMSE) and cancellation BLAST receiver.
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it is seen that the algorithm converges to the optimal antenna subset. Moreover, it
is observed that antenna selection at the receiver improves the BER by more than
two orders of magnitude with respect to the median BER.

We now consider the average of 2000 runs of the algorithm over a new chan-
nel realization employing the ordered nulling and cancellation BLAST receiver.
We setρ = 9dB and we useT = 6 orthogonal training symbols to estimate the
channel. Before starting the algorithm, long simulations are performed assuming
perfect channel knowledge over all antenna configurations to find theexact BER
associated with each antenna subset. We consider four different implementations
of the algorithm depending on the length of the fake sequencem and theρ used
in the simulations: (a) the simulation to estimate the BER at every iteration of the
algorithm is performed with the exactρ of the channel andm = 500 fake symbols;
(b) to reduce the complexity, the simulation is performed with the exact SNR of the
channelρ = 9dB but with onlym = 20 fake symbols; (c) the SNR is reduced to
ρ = 5dB andm = 500 fake symbols are employed; and (d) the SNR is reduced to
ρ = 5dB and onlym = 20 fake symbols are employed. In Figure 3.9, the average
of the exact BER selected by the algorithm at each iteration is plotted. In the same
figure we show the BER of the best antenna subset and worst antenna subset, as
well as the median BER among the 15 antenna configurations, found by exhaustive
search. It is seen that the algorithm moves towards the optimal antenna configu-
ration in the four cases considered. Comparing the performance of cases (a) and
(b), we observe that (a) has a better convergence behavior because by using longer
fake sequences, the estimate of the BER is less noisy. Comparing the performance
of cases (a) and (d) we find that the behavior is very close although in (d) we have
reduced the complexity by more than one order of magnitude. Comparing the per-
formance of (b) and (d), we observe that although (b) uses the realρ of the channel
to estimate the BER, the behavior is worse. This result is due to the fact that atvery
low values of the exact BER (i.e., high SNR) we cannot obtain a good estimate of
the BER with onlym = 20 symbols. Moreover, we observe that case (c) has the
best performance since withm = 500 symbols we can have a better estimate of the
BER when the SNR is 5dB. However, although not plotted in the figure, if the num-
berm of fake symbols became larger, the performance of (a) would become better
than the one of (c). In summary, we can reduce the complexity without incurring
in a convergence penalty by reducing the SNR of the simulations (assuming that
the SNR difference is not large) and using a shorter sequence of fakesymbolsm.
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3.5 Adaptive Algorithms for Antenna Selection in Time-

varying Channels

In the previous section, we described discrete stochastic approximation algorithms
for antenna selection in static MIMO channels. Now we consider nonstationary
environments for which the optimum antenna subset takes on a time-varying form,
ω∗[n] ∈ Ω, since the MIMO channel is time-varying. Consequently, the MIMO
antenna selection algorithms should be able to track the best antenna subsetif the
variation of the channel isslow for tracking to be feasible. The adaptive discrete
stochastic approximation algorithms proposed in this section are directly applicable
to any of the objective functions discussed in Section 4.

3.5.1 Fixed Step-size Discrete Stochastic Approximation Algorithm

In the static channel environment discussed in the previous section, in order for the
method to converge, it was necessary for the method to become progressively more
and more conservative as the number of iterations grew. Consequently, adecreas-
ing step size,µ[n] = 1/n, was used, in order to avoid moving away from a promis-
ing point unless there was a strong evidence that the move will result in an improve-
ment. In the time-varying case, we require a step size that permits moving away
from a state as the optimal antenna subset changes [74]. Therefore, totrack the
optimal antenna subset, we replace theAdaptive filter for updating

state occupation probabilities step in Algorithm 3.1 by

π[n + 1] = π[n] + µ(D[n + 1] − π[n]) (3.44)

where0 < µ ≤ 1. A fixed step sizeµ in (3.44) introduces an exponential forgetting
factor of the past occupation probabilities and allows to track slowly time-varying
optimal antenna subsetω∗[n]. The same arguments can be used to extend the
application of Algorithm 3.2 to time-varying channels by using a fixed step sizeµ

in (3.14).
For π[n] being a probability vector (i.e., the elements add 1 and are non-

negative) the step size must satisfy0 < µ ≤ 1. Note that1T (D[n+1]+π[n]) = 0

implying that1T π[n + 1] = 1T π[n] = 1. Expressing (3.44) as(1 − µ)π[n] +

µD[n+1] we observe that the elements ofπ[n+1] are non-negative, which proves
thatπ is a probability vector.

It has been observed that time-varying channels modify the optimal antenna
subset over the time although most of the antennas in the optimal antenna subset
remain the same. Hence, in time-varying channels, we can modify theSampling
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and Evaluation step in Algorithm 3.1 to select a candidate solutionω̃(n) uni-
formly fromΘ\ω(n) whereΘ is defined as the set of antenna subsetsω̃(n) ∈ Ω such
that the distanced(ω̃(n), ω(n)) = D, where we chooseD < min(nR, NR − nR).

Simulation Results

We demonstrate the tracking performance of this version of the algorithm under the
maximum mutual information criterion in time-varying channels. We use (3.31)
as an estimate of the objective function. We assume that each channel gainhi,j

between a transmit and receive antenna remains constant overτ frame intervals
(we assume that each frame interval corresponds to one iteration of the algorithm)
and follows a first order AR dynamics overτ written as

hi,j(t) = αhi,j(t − 1) + βυi,j(t) i = 1, ..., NR and j = 1, ..., NT (3.45)

whereα andβ are the fixed parameters of the model related throughβ = (1 −
α2)1/2 and υi,j ∼ Nc(0, 1). The parameterα can be related to the maximum
Doppler frequencyfd asα = J0(2πfdτTf ) whereJ0(·) is the zeroth order Bessel
function of the first kind andTf is the duration of one frame. In the simulations we
setα = 0.9, τ = 500 and the constant step sizeµ = 0.002. We considerNR = 12,
nR = 6 andnT = 2. We setρ = 10dB and we use the ML channel estimate with
T = 6 orthogonal training symbols. It has also been observed that in most cases
d(ω∗[n], ω∗[n − τ ]) ≤ 2 and therefore we setD = 2. The tracking performance
of the algorithm is shown in Figure 3.10. The maximum, minimum and median
values of the mutual information as a function of time are also shown. It is seen
that the algorithm closely tracks the best antenna subset.

3.5.2 Adaptive Step-size Discrete Stochastic Approximation Algorithm

In the previous version of the algorithm, the choice of the fixed step sizeµ has
high influence in the performance of the algorithm. The faster the channel changes
or the further away of the current subset estimate of the optimal antenna subset,
the largerµ should be. On the other hand, the larger the effects of the observation
noise or the closer we are from the optimal antenna subset, the smallerµ should
be [76]. However, in practice, one does not know the dynamics of the channel in
advance.

In this section we present a method to adaptively adjust the step sizeµ[n] as the
algorithm evolves. In this way, at each iterationn, our stochastic approximation
algorithm has two estimation problems to contend with. The first is the estimation
of ω∗[n] and the second is the estimation ofµ[n]. Since theµ[n] is a continuous
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variable, we can use an adaptive algorithm similar to the gradient descent algorithm
[14]. This underlying adaptive algorithm to adjustµ[n] would use estimates of the
derivative of the mean square error with respect to the step sizeµ. These ideas are
based on [14, 77] and have been further exploited in [74, 75].

Within this new framework, the estate occupation probability vector depends
onµ. Denote the mean-square derivative(∂/∂µ)πµ[n] by Jµ[n], i.e.,

lim
∆→0

E

{∣∣∣∣
πµ+∆[n] − πµ[n]

∆
− Jµ[n]

∣∣∣∣
2
}

= 0. (3.46)

Define the error,
eµ[n] = D[n + 1] − πµ[n] (3.47)

and differentiate the square of the error with respectµ as

∂

∂µ

(
eµ[n]eµ[n]T

)
= −2 (D[n + 1] − πµ[n])T

Jµ[n]. (3.48)

Next, differentiatingπ[n + 1] in (3.44) with respect toµ, yields

Jµ[n + 1] = Jµ[n] − µJµ[n] + (D[n + 1] − πµ[n]) . (3.49)

The proposed scheme aims to minimize the expectation of (3.47) by scalingµ[n]

depending on the error in (3.47). The following adaptive step-size discrete stochas-
tic approximation algorithm is adopted as a modification of Algorithm 3.1.

Algorithm 3.3 Adaptive step-size discrete stochastic approximation algorithm

2 Initialization, Sampling, and Acceptance: the same as Algorithm

3.1

2 Substitute the update of the state occupation probabilities

by

e[n] = D[n + 1] − π[n],

π[n + 1] = π[n + 1] + µ[n]e[n],

µ[n + 1] =
{
µ[n] + ηeT [n]J [n]

}µ+

µ
−

,

J [n + 1] = (1 − µ[n])J [n] + e[n], J [0] = 0. (3.50)

2 Compute the maximum: the same as Algorithm 3.1
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In the algorithmη denotes the learning rate. Asη decreases, the rate of adap-
tation decreases. If the learning rateη = 0, then the algorithm reduces to the
fixed step-size algorithm.{X}µ+

µ−
denotes the projection ofX onto the interval

[µ−, µ+] with 0 < µ− ≤ µ+. For fast speed of tracking and good transient behav-
ior, one seeksµ+ as large as possible but not greater than the instability value. We
note that the sequenceµ[n] will not go to zero unless the optimal antenna subset
remains constant.

We point out that Algorithm 3.3 is composed of three parts: (1) A random
search of a next candidateω(n) overΩ; (2) a continuous adaptive LMS algorithm
which updates the step sizeµ[n]; and (3) a discrete adaptive algorithm that updates
the state probability vectorπ[n], where the last two adaptive algorithms are cross-
coupled. Assuming that there is a unique local minimumµ∗ of E{‖eµ[n]‖2}, it can
be proved thatµ[n] converges weakly toµ∗, where we consider weak convergence
as a generalization of convergence in distribution [74].

An interesting feature of the algorithm is that it does not assume anything about
the dynamics of the problem. It self adapts to track the dynamics of the channel
and consequently, the best antenna subsetω∗[n].

Simulations Results

To demonstrate the performance of this version of the algorithm, we considerthe
same system parameters as in Section 5.1. The bounds for the step size are chosen
as µ− = 0 and µ+ = 0.003 and the learning rate is set toν = 0.0005. We
restrict the candidate solution to antenna subsets withD = 2. Figure 3.11 shows
the performance of the algorithm. The maximum, minimum and median values of
the mutual information as a function of time are also shown for comparison. It is
seen that the adaptive step-size algorithm has a better tracking performance than
the constant step-size algorithm.

3.6 Fast Antenna Selection Algorithms

3.6.1 Transmit antenna selection in linear receivers: geometrical ap-

proach

Next we consider transmit antenna subset selection in spatial multiplexing systems
and perfect CSI at the receiver. In particular, we propose selectionalgorithms
aiming to minimize the error rate when linear detectors are used at the receiver.
In [50], selection criteria have been proposed which attempt to minimize the error
rate when linear receivers are used. In that work, the signal-to-noiseratio prior to
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Figure 3.10: The mutual information values of the chosen antenna subsets versus
iteration numbern (fixed step-size).
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Figure 3.11: The mutual information values of the chosen antenna subsets versus
iteration numbern (adaptive step-size).
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the slicing operation is considered as the objective function to be optimized. Inthis
section, we propose a selection metric based upon the geometrical interpretation
of the decoding process in a linear receiver. This interpretation also permits us
to develop a suboptimal algorithm that yields a considerable complexity reduction
with only a small loss in performance.
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Figure 3.12: MIMO system with antenna selection at the transmitter.

Consider the system shown in Figure 3.12 withnT transmit andnR receive
RF chains. We assume that the receiver is equipped with equal number of anten-
nas and RF chains whereas the transmitter is equipped withNT antenna elements.
Thus, the selection algorithm consists of selecting the bestnT transmit antennas
out of the

(
NT
nT

)
different combinations according to certain optimization criterion.

The wireless channel is assumed to be quasi-static and flat fading and canbe rep-
resented by a(nR × NT ) matrix H whose elementhij represents the complex
gain of the channel between thej-th transmit antenna and thei-th receive antenna.
Denote each of the transmit antenna subsets asωi = {Ant1, ..., AntnT }. Define
the set of allP =

(
NT
nT

)
antenna subsets asΩ = {ω1, ..., ωP } and denoteH[ω] as

the (nR × nT ) submatrix corresponding to the columns ofH selected byω. We
assume that the channel state information is available at the receiver but not at the
transmitter. Thus, the selection algorithms are implemented at the receiver and the
antennas indices to be used are fedback to the transmitter assuming that thereexists
a low rate link between the receiver and the transmitter.

In spatial multiplexing systems, different data streams are transmitted from dif-
ferent antennas. Assume thats = [s1, ..., snT ]T is the transmitted symbol vector
with E{s∗i si} = 1. Then, the received signal when the transmit antenna subset

selected isω can be expressed asy =
√

ρ
nT

H[ω]s+n, wherey = [y1, ..., ynR ] is

the received signal vector,n is the received noise vector distributed asNc(0
¯
, InR)

andρ is the total signal-to-noise ratio independent of the number of transmit an-
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tennas. In linear receivers, a spatial linear equalizerG[ω] is applied to recover the
transmitted symbol vector. The equalizer can be optimized according to the ZF
criterion,G[ω] =

√
nT
ρ H[ω]†, where† denotes the pseudo-inverse, or the MMSE

criterion,G[ω] =
√

ρ
nT

H[ω]H( ρ
nT

H[ω]H[ω]H + InR)−1. Since at high signal-

to-noise ratio with antenna selection the MMSE solution tends to the ZF solution,
we will focus on the ZF solution. As has been shown in [133] and Chapter 2,
the decision regions in linear receivers consist ofnT -dimensional complex paral-
lelepipeds formed by the column vectors ofH[ω]. Therefore, from a geometrical
perspective, we propose a simple transmit antenna selection criterion consisting of
selecting the columns ofH such that the decision region minimizes the error rate.
At a high signal-to-noise ratio, the error rate performance will be limited by the
minimum error vector that makes a symbol fall out of the decision region. De-
noteh1[ω], ...,hnT [ω] as thenT columns ofH selected byω. Then, considering
that the symbol is located in the center of thenT -dimensional parallelepiped, the
minimum length of a vector to make an error is

d[ω] = min
1≤i≤nT

1

2
‖π⊥(hi[ω])‖2, (3.51)

whereπ⊥(hi[ω]) denotes the projection ofhi[ω] onspan({h1[ω], ...,hnT [ω]}\hi[ω])⊥

and (·)⊥ denotes the orthogonal complement. Then, the selection criterion be-
comes

ω∗ = arg max
ω∈Ω

{
min

1≤i≤nT

1

2
‖π⊥(hi[ω])‖2

}
. (3.52)

a) Low Complexity Algorithms: The selection process in (3.52) could be highly
complex when the number of antenna combinations is large. One solution to re-
duce the complexity consists of employing sub-optimal incremental or decremen-
tal greedy algorithms similar to that proposed in [53] for the capacity case. In the
decremental approach, we start considering the wholeNT columns and at every
step, we remove the column that has the minimum projection onto the orthogonal
complement of the span of the remainingNT −1 columns. The process is repeated
with the remaining columns until onlynT columns are left. The inconvenience
of this approach is that the system requires not onlynR ≥ nT but nR ≥ NT

which is not always true. In the incremental approach, we start by selecting one
column that has the maximum 2-norm. Then, at every step of the algorithm, we
add the column with the largest projection onto the orthogonal complement of the
subspace spanned by the columns already selected. This approach greatly reduces
the complexity in the situation wherenT is small in comparison toNT . A very
low complexity implementation of incremental selection is given in Algorithm 4.
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In the algorithm,µp,j denotes the Gram-Schmidt coefficientµp,j = ĥ
H

p hj andΘi

represents the subset of antennas selected up to thei-th step.

Algorithm 4 Reduced complexity incremental selection
INPUT: all column vectors h1, ...,hNT

in H

k1 = arg maxi≤NT
{hH

i hi};
ĥ1 = hk1/‖hki‖; Θ1 = {k1};
FOR i = 2 : nT

FOR EVERY j ∈ {{1, ..., NT }\Θi−1}
bj = hj −

∑i−1
p=1 µp,jĥp;

END FOR
ki = arg maxj{bH

j bj};
ĥi = bki/‖bki‖; Θi = {Θi−1} ∪ {ki};

END FOR
OUTPUT: selected antenna indices: ΘnT
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Figure 3.13: Selection criteria comparison.

Simulations Results

In Figure 3.13 we show the performance of the antenna selection algorithms ina
system withnR = 4 receive antennas andNT = 8 antennas where onlynT = 4
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are actually used. We average the results over several channel realizations. In
the same figure we also show the error rate of a system employing a selection
criterion that maximizes the minimum eigenmode [50] and also the error rate of a
system without antenna selection. It is seen that the geometrical approachobtains
the best performance although its complexity is very high (although similar to the
complexity of the eigenmode criterion). On the other hand, the much less complex
incremental algorithm only shows a small loss of performance.

3.6.2 Antenna selection in the downlink of linearly precoded MISO

systems

We consider the downlink of multiuser multiple-input single-output (MISO) wire-
less systems, where the base station is equipped with multiple antennas and each
mobile user is constrained to a single antenna. In particular, we consider linear
precoded systems such that the single antenna receivers do not have toestimate the
channel, but only scale and quantize the received data. In this scenario, we propose
low complexity antenna selection algorithms. The highly complex optimal antenna
selection algorithm is first derived, and then, a low complexity greedy optimization
algorithm is proposed. It will be shown that the proposed algorithm obtainsnearly
optimal performance.

System Model

We consider a multiuser MISO wireless system consisting of a single base sta-
tion andK mobile units scattered over the service area. We assume that the base
station is equipped with multiple antennas and each receiver is constrained to a
single antenna. Precoding schemes for broadcast channels effectively transfer the
signal processing for interference suppression from the mobile receiver to the base
station transmitter. This approach is feasible if the base station can estimate the
downlink channels of all users (e.g., in systems employing time division duplexing
(TDD) where the uplink and downlink channels are reciprocal). Different practical
techniques (linear [70] and non-linear [130]) have been proposed toapproach the
downlink capacity. We consider the case in which the transmit signal is precom-
pensated such that the single antenna receivers do not have to estimate thechannel,
but only quantize the received data. Linear precoding is the simplest method to
perform precoding. In this case, the receiver simply quantizes the received sig-
nal to the original symbol constellation, which translates to a reduction in power
consumption and decrease in the cost of the terminals.

In the downlink of multiuser MISO systems, different data streams are trans-
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Figure 3.14: Downlink multiuser MISO system with antenna selection.

mitted for each of the users. Consider first a system withK users andnT anten-
nas (nT ≥ K). Assume thatb = [b1, ..., bK ]T is the transmitted symbol vector
with E{|bi|2} = 1, i = 1, ..., K. The base station computes the precoding matrix
M ∈ CnT×K with the knowledge of the CSI of every user with the constraint of
the total power budget available at the transmitterPT , wherePT is independent
of the number of transmit antennas. Then, thenT × 1 precoded signal ready to
be transmitted is given byx = Mb. By stacking the received signal from all the
mobile units in a single vectory = [y1, ..., yK ]T we can write

y = HMb + n, (3.53)

whereH ∈ CK×nT corresponds to the flat fading channel whose elementhij

represents the complex gain of the channel between thej-th transmit antenna and
thei-th mobile unit, andni is the noise at thei-th receiver distributed asN (0, σ2

n,i).
The spatial linear precoderM optimized according to the MMSE criterion

is given byM (u) = H†, where(·)† denotes the pseudo-inverse [70]. Notice
that the precoding matrixM (u) = H† places no explicit constraint on average
transmit power and a power normalization factor is required. Assuming that the
total available power at the transmitter isPT , the scaling factor is given byβ2 =

PT /tr(H†H†H) and the precoding matrix becomesM = βM (u) = βH†. Then
thek-th receiver makes a decision based onyk = βbk + nk. With the precoding
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3.6 Fast Antenna Selection Algorithms

matrixM , the received SNR is equal across the users and is given by

SNRk =
β2

σ2
n

=
PT

tr(H†H†H)σ2
n

. (3.54)

Antenna Selection

AlthoughnT = K is sufficient to implement linear precoding, it has been shown
in [97] that there is an optimum ratio of antennas-to-users (nT /K > 1) such that
linear precoding can achieve around 80% of the sum capacity of the downlink
channel computed at the same ratio. At other ratios the difference betweenthe
capacity with linear precoding and the downlink capacity can become much more
pronounced. In particular, whenK = nT , the sum rate capacity of the linearly pre-
coded system does not increase linearly withnT (or K), while the capacity of the
downlink channel does. Similarly, whennT = K, linear precoding exhibits a poor
BER performance. The optimal ratio implies that the number of transmit antennas
nT needs to be not equal but larger than the number of mobile unitsK. However,
when multiple usersK want to communicate concurrently with the base station,
one major concern to implementnT > K antenna systems is the high cost due to
the expense of the RF chains required for each antenna. A technique to reduce the
cost of the multiple antenna system while maintaining part of the capacity is the use
of antenna selection [92] (see Fig. 3.14). In this section, we choose to select thenT

antennas (i.e.,nT columns inH) that maximize the signal to noise ratio across the
users in (3.54). Although a combinatorial exhaustive search of the

(
NT
nT

)
antenna

subsets can find the optimal solution, the selection would become highly complex
since for every new antenna subset, anT × nT matrix pseudo-inverse needs to be
computed. In this section, motivated by the greedy algorithms in [53] we propose
sub-optimal low complexity antenna selection algorithms that only show a mini-
mum loss of performance. In particular, we consider a solution using decremental
selection.

This solution begins by considering that all available antennas can be used
in the transmission, and at every step, an antenna is de-activated such that SNRk

decreases as low as possible. The process is repeated with the remaining antennas
until only nT antennas are left. Recall that removing one antenna is equivalent to
removing one column inH while the rest of the columns remain unchanged.

Consider first the full matrixH ∈ CK×NT , and lethi andH i denote theith
column inH, and the submatrix ofH after removing theith column, respectively.
Therefore, in the decremental algorithm we remove thei-th column inH such that
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3.6 Fast Antenna Selection Algorithms

the submatrix leftH i minimizes the denominator in (3.54), i.e.,

i∗ = arg min
i=1,...,NT

tr
((

H iH
H
i

)−1
)

. (3.55)

Notice that(3.55) requires the inversion ofNT matrices of sizeK × K. Here we
make use of the following equality

H iH
H
i = HHH − hih

H
i , (3.56)

and (3.55) becomes

i∗ = arg min
i=1,...,NT

tr
((

HHH − hH
i hi

)−1
)

. (3.57)

DenoteA = HHH . Using the matrix inversion lemma we can write

(
A − hH

i hi

)−1
= A−1 + A−1hi

(
1 − hH

i A−1hi

)
hH

i A−1. (3.58)

Then, applying tr(U + V ) = tr(U) + tr(V ) we can express (3.57) as

i∗ = min
i

{
tr

(
A−1hi

(
1 − hH

i A−1hi

)
hH

i A−1
)}

. (3.59)

Notice that now, for theNT possible antennas that can be removed, only one matrix
inverse has to be computed,(HHH)−1. Next assume that after removing one
antenna, the number of antennas is still excessive. Then, a second antenna needs
to be removed from the remainingNT − 1 columns inH i∗ , and the inverse of
(H i∗H

H
i∗ )

−1 is required. However, this inverse has already been computed using
the matrix inversion lemma when we removed thei∗-th column in (3.58) (i.e.,
we do not need to explicitly compute a new matrix inverse at each step of the
algorithm). Hence, we iteratively remove one column until onlynT antennas are
left. The algorithm is shown in Algorithm 5 below. It is straightforward to prove
that with NT = nT + 1, the algorithm is optimal. Note that the algorithm also
provides us with the unconstrained precoding matrixM (u) = H[ω]†. Also note
that the operations in the “update inverse” step are computed in the previousstep.

Simulation Results

In the simulations we compare the BER obtained by the different antenna selection
criteria with a system without antenna selection, i.e.,NT = nT and a system that
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Algorithm 5 Decremental antenna subset selection algorithm
INPUT: H; NT ≥ nT ≥ K;
ω = {1, ..., K} % start with all antennas selected ;
A−1 = (HHH)−1 %this is the only inverse computed;
FOR i = 1 : NT − nT DO

find i∗ = arg mini∈ω tr(A−1hi(1 − hH
i A−1hi)h

H
i A−1);

A−1 = A−1 + A−1hi∗(1 − hH
i∗A

−1hi∗)h
H
i∗A

−1; %update inverse

H = H\hi∗; %remove the column

ω = ω \ i∗; %remove that antenna index from the

selected subset

END FOR
OUTPUT: ω, H[ω] = H and M (u) = HH

ω A−1.

employs theNT available transmit antennas. The BER is approximated by BER =
Q(

√
(SNRk)), which is constant across the users because of the precoding opera-

tion. Fig. 3.15 illustrates the BER whenNT = 6, nT = 4, K = 4 andσ2
n = 1,

where the BER is averaged over 1000 different channel realizations.It is seen that
antenna selection in MISO systems can bring an important performance improve-
ment over systems without antenna selection. Note that the maximus Frobenius
norm antenna selection criterion (i.e., select the antennas that see the bestpropa-
gation channel in terms of power) is not a good approach in multiuser MISO sys-
tems. On the other hand, the suboptimal decremental selection algorithm achieves
approximately the same performance as the optimal antenna selection (the curves
overlap). It is also seen that antenna selection achieves the same diversity as the
full system, where diversity is defined asγ = − limPT→∞

log BER(PT)
log PT

and the
power loss is around 1.5dB. Therefore, antenna selection can be seenas a good
alternative to boost the performance of this systems. Fig. 3.16 shows similar re-
sults forNT = 12, nT = 6 andK = 6; and Fig. 3.17 forNT = 6, nT = 5 and
K = 5. Even with only one extra antenna element, the performance improvement
is considerably.

3.7 Conclusions

We have developed MIMO antenna selection algorithms based on various perfor-
mance criteria in situations where only noisy estimates of the channels are avail-
able. The proposed techniques are based on the discrete stochastic approximation
algorithms found in the recent operations research literature, which generate a se-
quence of antenna subsets where each new subset is obtained from theprevious
one by taking a small step in a good direction towards the global optimizer. One
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Figure 3.15: bit error rate for different transmit antenna selection algorithms
(NT = 6, nT = 4, K = 4).
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Figure 3.16: bit error rate for different transmit antenna selection algorithms
(NT = 12, nT = 6, K = 6).
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Figure 3.17: bit error rate for different transmit antenna selection algorithms
(NT = 6, nT = 5, K = 5).

salient feature of the proposed approach is that no closed-form expression for the
objective function is needed and only an estimate of it is sufficient. Therefore, the
algorithm is able to choose the antenna subset that minimize the bit, symbol or
frame error rate, under any MIMO techniques (e.g., BLAST, space-time coding)
and any receiver detection methods.

We have also developed antenna selection algorithms for time-varying scenar-
ios where the optimal antenna subset is slowly varying. By employing the con-
stant or adaptive step-size discrete stochastic approximation algorithms, thetime-
varying optimal antenna configuration can be closely tracked. We have provided
extensive simulation results to demonstrate the performance of these new MIMO
antenna selection algorithms under various selection criteria.

Finally, we have presented very low complexity greedy antenna selection algo-
rithms that can achieve nearly optimum performance in various MIMO configura-
tions.
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Chapter 4

Design of minimum error rate

LAttice Space-Time (LAST)

codes

4.1 Introduction

Wireless communications using multiple transmit and receive antennas can in-
crease the multiplexing gain (i.e., throughput) and diversity gain (i.e., robustness)
in fading channels [136]. It has been shown in [136] that for any given number of
antennas there is a fundamental tradeoff between these two gains. That work es-
tablishes a framework to compare existing space-time systems against the optimal
multiplexing-diversity tradeoff curve. Pioneering works on space-time architec-
tures have focused on maximizing either the diversity gain [114, 115, 118]or the
multiplexing gain [42]. More recent contributions have proposed space-time archi-
tectures that achieve simultaneously good diversity and multiplexing performance
[58, 116] and other space-time architectures have been shown to achieve the op-
timal diversity-multiplexing tradeoff curve for some specific number of antennas
and code length [13, 27, 32, 43, 108, 134]. In particular, in [43] the authors propose
lattice space-time (LAST) codes that achieve the optimum diversity-multiplexing
tradeoff in delay-limited MIMO channels with the use of low complexity lattice
decoders in combination with a minimum mean square error generalized deci-
sion feedback equalizer (MMSE-GDFE) front-end. Unfortunately, thediversity-
multiplexing tradeoff framework does not quantify the coding gain or errorrate at
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4.1 Introduction

the signal-to-noise (SNR) ratio of interest (notice that the tradeoff givesasymptotic
results). That is, for two LAST code designs with the same tradeoff, different error
rate performance can be obtained at the SNR of interest.

Minimum-error rate high dimensional lattice codes have been extensively stud-
ied for AWGN single-input single-output (SISO) channels when maximum likeli-
hood (ML) decoding or lattice decoding are used [22]. In general, these lattice
codes have been obtained using algebraic number theoretic tools and assuming the
optimal ML (or lattice) decoder. However, these lattice codes are not necessar-
ily optimal in the sense of minimum error rate for MIMO fading channels or for
other receiver structures. In this chapter, we propose to design spherical LAST
codes under a minimum error-rate criterion by employing a stochastic approxima-
tion technique based on the well known Robbins-Monro algorithm [101] together
with unbiased gradient estimation. Stochastic optimization techniques focus on
problems where the objective function, in this case the error rate, is sufficiently
complex so that it is not possible to obtain a closed-form analytical solution. In our
problem, we minimize the error rate function over a set of possible vector parame-
ters (i.e., possible generators of the LAST codebook) satisfying some constraints,
in this case the average power at the transmitter. An iterative algorithm is used(a
step-by-step procedure) for moving from an initial guess to a final valuethat is ex-
pected to be closer to the true optimum. This is in contrast to classical deterministic
search and optimization, where it is assumed that one has perfect information about
the objective function and derivatives and that this information is used to determine
the search direction in a deterministic manner at every step of the algorithm. Our
designs can be tailored to optimize the spherical LAST codes given a particular
SNR, channel statistics, and receiver scheme. We show that the design procedure
is universal in the sense that it permits the design of LAST codes for a widerange
of channel statistics, receiver structures or even for cooperative relying environ-
ments. Loosely speaking, the problem of finding a good LAST code for MIMO
transmission can be seen as finding an-dimensional constellation belonging to a
n-dimensional lattice such that the error rate is minimized given a specific receiver
structure and channel statistics, subject to a maximum transmission power con-
straint. Numerical results show that our codes generally outperform latticecodes
that are designed for AWGN channels with optimal ML decoding when they are
employed in MIMO fading channels.

The rest of the chapter is organized as follows. Section 4.2 introduces the
system model for LAST codes, codebook construction, and various LAST detec-
tors. In Section 4.3 we discuss the LAST code design procedure and the proposed
stochastic optimization algorithm. In Section 4.4 some simulation results are pro-
vided. Section 4.5 extends the LAST design to a space-time cooperative scenario,
while Section 4.6 concludes the chapter.
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4.2 System Model and LAST Codes

4.2 System Model and LAST Codes

In this section we review the MIMO communication system used in LAST code
transmission [43]. Consider thenT -transmitnR-receive multiple-input multiple-
output (MIMO) channel with no channel state information (CSI) at the transmitter
and perfect CSI at the receiver. The wireless channel is assumed to be quasistatic
and flat fading and can be represented by anR × nT matrix Hc whose element
hc

ij represents the complex gain of the channel between thejth transmit antenna
and theith receive antenna and is assumed to remain fixed fort = 1, ..., T . The
received signal can be expressed as

yc
t =

√
ρ

nT
Hcxc

t + wc
t , (4.1)

where{xc
t ∈ CnT : t = 1, ..., T} is the transmitted signal,{yc

t ∈ CnR : t =

1, ..., T} is the received signal,{wc
t ∈ CnR : t = 1, ..., T} denotes the channel

Gaussian noise, and with the power constraintE{ 1
T

∑T
t=1 |xc

t |2} ≤ nT , the pa-
rameterρ is the average SNR per receive antenna independent of the number of
transmit antennas. The entries ofwt are independent and identically distributed
(i.i.d) circularly symmetric complex Gaussian variables with unit variance, i.e.,
wt,i ∼ Nc(0, 1). The equivalent real channel model corresponding toT symbol
intervals can be written as

y = Hx + w, (4.2)

wherex = [xT
1 , ...,xT

T ]T ∈ C2nT T is a codeword belonging to a codebookC with

xT
t = [ℜ{xc

t}T ,ℑ{xc
t}T ]T , (4.3)

w = [wT
1 , ...,wT

T ]T ∈ C2nRT with

wT
t = [ℜ{wc

t}T ,ℑ{wc
t}T ]T (4.4)

and

H =

√
ρ

nT
I ⊗

[
ℜ{Hc} −ℑ{Hc}
ℑ{Hc} ℜ{Hc}

]
. (4.5)

The goal of this chapter is the design of the codebookC j R2nT T with the con-
straint that the codewordsx ∈ C belong to a lattice and satisfy the average power
constraint

1

|C|
∑

x∈C

|x|2 ≤ TnT . (4.6)
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Note that the rate of the code isR = 1
T log2 |C| bit/s/Hz. Next we review some

lattice properties.
Basic Lattice Definitions : An n-dimensional latticeΛ is defined by a set ofn
basis (column) vectorsg1, ..., gn in Rn [22]. The lattice is composed of all integral
combinations of the basis vectors, i.e.,

Λ = {x = Gz : z ∈ Zn} (4.7)

whereZ = {0,±1,±2, ...}, and then × n generator matrixG is given byG =

[g1, g2, · · · , gn]. Note that the zero vector is always a lattice point andG is not
unique for a givenΛ. In the Euclidean space, the closest lattice point quantizer
Q(·) associated withΛ is defined by

Q(r) = x ∈ Λ, if ‖r − x‖ ≤ ‖r − x′‖, ∀x′ ∈ Λ. (4.8)

The Voronoi cell ofΛ is the set of points inRn closest to the zero codeword, i.e.,

V0 = {r ∈ Rn : Q(r) = 0} (4.9)

The Voronoi cell associated with eachx ∈ Λ is a shift ofV0 by x. The volume of

the Voronoi cell is given byV (Λ) =
√

det(GT G).
LAST codebook construction :Consider the dimension of the lattice generated
by G to ben = 2nT T . A finite set of points in then-dimensional lattice can be
used as codewords of a codebookC. Given a bit rateR bit/s/Hz, the codebook will
contain|C| = 2T ·R lattice points. In particular, the codewords consist of all lattice
points inside a shaping regionS. In spherical LAST codes, the shaping region
is a sphere, having in general the lowest possible energy. To find the code with
smallest total average power, we consider the codebook obtained using asphere
centered at−u ∈ Rn and the codeword coordinates are given by the Euclidean
difference between the center of the sphere and the lattice points. That is,the code
is specified by the generator matrixG, the translation vectoru, and the radius of
the sphere, i.e.,

C = (Λ + u) ∩ S (4.10)

where the cardinality of the codebook (i.e., the rate) is a function of the radius of the
sphere. If we form the intersection of the sphere of volumeV (S) with the lattice
of Voronoi volumeV (Λ) we could expect to obtain a code with aboutV (S)/V (Λ)

codewords. In fact, the valueV (S)/V (Λ) is correct on average although it is clear
that there are some codes that have more and some that have less. It is easily proven
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[86] that at least one value ofu ∈ Rn exists, such that|(Λ+u)∩S| ≥ V (S)/V (Λ).
Among all the possible choices foru, we are interested in the one that leads to a
code of the smallest average energy1

|C|

∑
x∈C |x|2. Using the centroid, an itera-

tive algorithm is shown in [23] to find the translation vectoru which generates a
codebook with minimum energy. Hence, given a translation vector, the codewords

Figure 4.1: A 2-dimensional lattice (two basis vectorsg1 andg2), translation vec-
tor, and spherical shaping region.

are obtained by taking|C| lattice points in the shifted latticeΛ + u that are closer
to u as shown in Figure 4.1 for the hypothetical 2-dimensional case1. A method to
enumerate all the lattice points in a sphere is given in Appendix B. To speed upthe
enumeration of all the lattice points inside the sphere centered atu, the radius of
the sphere or the lattice generator should be scaled such thatV (S)/V (Λ) ≃ |C| 2.
Once the codewords have been found, a second scaling factorβ should be applied
to guarantee the energy constraint at the transmitterTnT , i.e.,

β =

(
MT |C|∑
x∈C |x|2

)1/2

(4.11)

and the translation vector and the generator are scaled asβG andβu, respectively.

4.2.1 LAST detectors

Given the input-output relation in (4.2) the task of a LAST detector is to recover
the transmitted codewordx (or its corresponding integer coordinatesz) from the

1In this chapter we use eitherx or its integer coordinatesz to refer to each codeword, since for
any codewordx there is a univocal relationx = Gz + u.

2The volume of an-dimensional sphere (hypersphere) of radiusρ andn even is computed as

Vn = V
(1)

n ρn whereV
(1)

n is the volume of a sphere of radius 1 and is given byV
(1)

n =
πn/2

(n/2)!
.
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received signaly. Next we overview some LAST detectors, which are also outlined
in Fig. 4.2.

All vectors have dimension 2n
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Figure 4.2: Spherical LAST codes and different detectors.

Maximum likelihood decoding: The maximum likelihood detector (ML) is the
optimal receiver in terms of error rate. The ML detection rule is given by

ẑ = arg min
Gz+u∈C

‖y − Hu − HGz‖ . (4.12)

The minimization is performed over all possible codewords in the codebookC.
Note that the decoding regions are not identical due to the boundary of thecode-
book and in fact some are not bounded. This breaks the symmetry of the lattice
structure in the decoding process, making the decoding process too complex.
MMSE-GDFE lattice decoder:In lattice decoding, the receiver is not aware of
the boundary of the codebook (e.g., the spherical shaping regionS employed in
spherical LAST codes) and assumes that any point in the infinite lattice may be
transmitted, corresponding to infinite power and transmission rate. For a given
lattice, the lattice decoder will search for the lattice point that is nearest to the
received vector, whether or not this point lies inS. This decoder is known as the
naive closest point in the lattice

ẑ = arg min
z∈Z2TnT

‖y − Hu − HGz‖ . (4.13)

Note that this receiver should be distinguished from the nearest-codeword decoder,
which decodes to the nearest lattice point insideS. The attractive symmetry and
periodic properties commonly associated with lattices allows low complexity algo-
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rithms to solve the closest point in the lattice problem expressed in (4.13) (see[2]
for an overview).

More recently, based on initial results presented in [35] it has been shown in
[43] that a MMSE-GDFE front-end can further improve the performanceof the lat-
tice decoding algorithms in MIMO systems. Given uncorrelated inputs and noise,
with mean zero and covarianceI, the feedforward (FF) and feedback (FB) MMSE-
GDFE matrices are denoted byF andB respectively. In particular,B is obtained
from the Cholesky factorizationBT B = I2TnT

+ HT H and is upper triangular
with positive diagonal elements andF T = HB−1. In this case, the MMSE-GDFE
closest point lattice decoder returns

ẑ = arg min
z∈Z

2TnT

‖Fy − Bu − BGz‖ , (4.14)

which essentially finds the point in the lattice generated byBG that is closer to
the pointFy − Bu.
MMSE-GDFE lattice-reduction-aided linear receiver:A combination of the MMSE-
GDFE front-end and the lattice-reduction-aided (LRA) linear receiver described in
Section 2.5.4 can be used to simplify the detector. The LRA receiver makes a
change of basis such that the decision regions of the detectors are improved and
more robust to noise. The change of basis is obtained via lattice reduction. Con-
sider the MMSE-GDFE matricesF andB. Applying the MMSE-GDFE front-end
and removing the translation vector gives

y′ = Fy − FHu = BGz + Fw − [B − FH]Gz︸ ︷︷ ︸
n

= BGz + n. (4.15)

Consider the lattice with generator matrixBG. If BG is a basis of the lattice,
BGP also is a basis of the same lattice ifP andP−1 have integer entries. The
aim of the LRA receiver is to find a change of basisP that transforms the generator
into BGP to optimize the decision regions of the detector [133]. This problem is
known as the lattice reduction problem. The goal of lattice basis reduction is, given
an arbitrary lattice basis, to obtain a basis of the shortest possible vectors;that is,
vectors as close as possible to being mutually orthogonal. The simplest way to
reduce the basis is the LLL reduction algorithm [87]. Other types of reduced bases
are the Korkin-Zolotarev (KZ) basis [10, 73], the Minkowski basis [1], the Seysen
basis [109], and hybrids [104], which have different reduction criteria. These bases
have, in general, slightly better properties, although the reduction is more time
consuming. The idea behind LRA linear receivers is to assume that the signal was
transmitted in the reduced basis, i.e.,y′ = BGP (P−1z) + n, to equalize in the
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new basis, which is more robust against noise enhancement, and then return the
decoded symbol to the original basis. That is,

ẑ = PQ
(
(BGP )−1y′

)
(4.16)

where the quantizerQ(·) rounds to the nearest integer.
Other receivers:Other receivers can be used to decode LAST codes for example
standard linear receivers (based either on MMSE of ZF) or nulling and cancellation
in combination with lattice reduction and the MMSE-GDFE front-end.

4.3 Spherical LAST codes optimization

In this section we describe a systematic procedure for designing the minimum error
rate spherical LAST codes.

4.3.1 Lattice design in AWGN SISO channels and ML decoding

In ann-dimensional Euclidean space and for AWGN channels the lattice code de-
sign asks for the best arrangement of points in the space such that for agiven
number of codewords, transmit power constraint, and noise statistics, the proba-
bility of error of the maximum likelihood decoder is minimized. In this situation,
there are a number of desirable properties that a code should satisfy: a)the number
of code vectors should be large; b) the average energy (or alternatively the peak
energy) should be small, that is, the regions of space defining the code should be as
nearly spherical as possible; c) the minimum distance between codewords should
be large; mapping and demapping should be easily implemented; d) given an arbi-
trary point in the space, it should be easy to find the closest codeword. The lattice
design problem has been extensively studied in the literature and good latticecodes
have been found for different dimensions [22, 33, 86]. However, wireless MIMO
communications do not signal over AWGN channels but over fading channels, with
some known statistics. Moreover, the receiver is not necessarily the complex ML
decoder. It turns out that good lattice codes for AWGN SISO channels and ML
decoder are not necessarily good for MIMO fading channels. In the following sec-
tions we propose a procedure to design error efficient lattices that are tailored for
the specific receiver structure and MIMO channel statistics (i.e., when these are
known a priori).
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4.3.2 Preliminaries concerning stochastic optimization and problem

formulation

Note that the analytical expression for the error rate performance in anyof the
detectors presented previously is intractable. Simulation-based optimization turns
out to be powerful for this scenario [111]. In particular, we considersimulation-
based algorithms where only noisy information about the objective function and
gradient can be obtained via the simulation.

Our goal is to compute the optimal lattice generator matrixG so as to minimize
the average block error rate probability denoted asΥ(G) (i.e., objective function)
with the following power constraint

min
G∈Θ

Υ(G), with Θ = {G :
∑

Gz+u∈C

|Gz + u|2 ≤ MT} (4.17)

whereΘ represents the set of lattice generators that satisfy the energy constraint at
the transmitter. The constraint is achieved through the scaling factorβ in (4.11).
Notice that we use eitherx orGz+u to refer to the codewords. Denoteγ(y, z, H, G)

as the empirical (i.e., noisy) block error rate for a given generator matrixG, trans-
mitted coordinatesz, received signaly, and channel matrixH, i.e.,γ(y, z, H, G) =

1, if ẑ = z (i.e., the decoded vector is equivalent to the transmitted vector) and 0
otherwise. Then the average block error rate is obtained byΥ(G) = E{γ(y, z, H, G)}.

Since in general there is no closed form expression for the average block error
rateΥ(G) we propose to use a stochastic gradient algorithm to optimize it. The
aim of gradient estimation is to compute an unbiased estimate of the true gradi-
ent. Let ĝ(G) denote an estimate of∇GΥ(G). We consider the case in which
E{ĝ(G)} = ∇GΥ(G). The constrained Robbins-Monro (R-M) simulation-based
algorithm [101] is of the form

Gk+1 = ΠΘ(Gk − akĝ(Gk)) (4.18)

whereGk is the solution after thekth iteration,̂g(Gk) is an estimate of∇GΥ(G)|G=Gk
,

{ak} is a decreasing step size sequence of positive real numbers such that
∑∞

k=1 ak =

∞ and
∑∞

k=1 a2
k < ∞, and the functionΠΘ projects each matrixGk into the near-

est point inΘ. For the R-M algorithm to converge, the gradient estimate should
be unbiased. The step-size sequence{ak} is usually chosen as the harmonic series
ak = c/k, wherec is a positive scalar. The R-M algorithm will converge with
probability one to a local stationary point ofΥ(G) [78].
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4.3 Spherical LAST codes optimization

4.3.3 Lattice Design via Stochastic Approximation based on Gradient

Estimation

Consider again the LAST system model

y = H(Gz + u) + w. (4.19)

The average block error rate is obtained byΥ(G) = E{γ(y, z, H, G)}, where
γ(y, z, H, G) is the empirical block error-rate givenH, G, andz. We can write,

Υ(G) = E(γ(y, z, H, G))

=

∫ ∫ ∫
γ(y, z, H, G)p(y, z, H|G)dydzdH, (4.20)

wherep(y, z, H|G) is the joint probability density function (pdf) of(y, z, H) for
a givenG. Note that the empirical block error rateγ(·) cannot usually be given in
closed form and it also depends on the structure of the receiver. Therefore, (4.20)
cannot be evaluated analytically. The design goal is to solve the minimization
problemminΥG∈Θ(G), where the constraintΘ guarantees the average power of
the codewords. Note that

Υ(G) = EzEHEy|z,H,G{γ(y, z, H, G)}, (4.21)

where

Ey|z,H,G{γ(y, x, H, G)} =

∫
γ(y, x, H, G)p(y|z, H, G)dy. (4.22)

For a given channel realizationH, codewordz, and lattice generatorH, y in
(4.19) is Gaussian with meanHGz + Hu and covariance matrix12I2MT , specif-
ically

p(y|z, H, G) = π−TM exp
[
−(y−HGz−Hu∗)T (y−HGz−Hu∗)

]
. (4.23)

On the other hand,∇GΥ(G) cannot be computed analytically, and therefore the
constrained R-M iterative optimization algorithm in (4.18) is not straightforward
to apply. Fortunately, the parametersΥ(G) and∇GΥ(G) can be estimated. The
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4.3 Spherical LAST codes optimization

gradient ofΥ(G) with respect toG for a givenG is given as

∇GΥ(G) = EzEH

[
∇GEy|z,H,G{γ(y, z, H, G)}

]

= EzEH

∫
∇G

{
γ(y, z, H, G)p(y|z, H, G)

}
dy

= EzEH

∫ { (
∇Gγ(y, z, H, G)

)

︸ ︷︷ ︸
0

p(y|z, H, G)

+ γ(y, z, H, G)
(
∇Gp(y|z, H, G)

)}
dy

= EzEH

∫
γ(y, z, H, G)∇Gp(y|z, H, G)dy (4.24)

where in (4.24), due to the discrete nature ofz ∈ Zn and the definition ofγ(·), we
have applied that with probability one we have [127]

[∇Gγ(y, z, H, G)] = 0. (4.25)

Property (4.25) follows using that forz ∈ Zn and sufficiently smallδ we have
γ(y, z, H, G + δG) = γ(y, z, H, G), see [127]. Then, we can rewrite (4.24) as

∇GΥ(G) = EzEH

∫
γ(y, z, H, G)

∇Gp(y|z, H, G)

p(y|z, H, G)︸ ︷︷ ︸
∇ log p(y|z,H ,G)

p(y|z, H, G)dy

= EzEHEy|z,H,G

[
γ(y, z, H, G)∇G log p(y|z, H, G)

]
. (4.26)

We need to compute∇G log p(y|z, H, G), wheny = H(Gz + u) + w and
p(y|z, H, G) is given in (4.23). Notice that computing∇G log p(y|z, H, G) is
equivalent to computing the gradient off(·) with respect toG, where we define
f(·) as the exponent of (4.23) given by

f(G) = −(y − HGz − Hu∗)T (y − HGz − Hu∗)

= −yT y + 2yT HGz + 2yT Hu∗ − 2u∗T HT HGz

−u∗T HT Hu∗ − zT GT HT HGz︸ ︷︷ ︸
v(G)

. (4.27)
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4.3 Spherical LAST codes optimization

The(n, l)th entry of the gradient ofv(G) defined in (4.27) can be computed as

[
∂v(G)

∂G

]

n,l

= lim
δ→0

v(G + δeneT
l ) − v(G)

δ

= lim
δ→0

2zT ele
T
nHT HGzδ + zT ele

T
n δHT HeneT

l δz

δ

= 2zT ele
T
nHT HGz (4.28)

whereen is the2MT vector with a one in then-th position and zeros elsewhere.
Therefore,

[
∂f(G)

∂G

]

n,l

= 2yT HeneT
l z−2uT HT HeneT

l z−2zT ele
T
nHT HGz. (4.29)

4.3.4 The algorithm

Assume that at thekth iteration the current lattice generator isGk. Perform the
following steps during the next iteration to generateGk+1.
Step 1- Composition method to generate mixture sample:

1. DrawL coordinate vectorsz1, ...,zL uniformly from the set of possible co-
ordinates that generate the codebook.

2. SimulateL observationsy1, ...,yL where eachyi is generated according to
the system modelyi = H i(Gkzi + uk) + wi, i = 1, ..., L.

3. Using the given decoding algorithm, decodezi based on the observationsyi

and the channel valueH i, i = 1, ..., L. Compute the empirical block error
rateγ(yi, zi, H i, Gk).

Step 2- Score function method for gradient estimation: Use (4.26), generate

ĝ(Gk) =
1

L

L∑

i=1

γ(yi, zi, H i, Gk)
[
∇G log p(yi|zi, H i, G)|G=Gk

]
, (4.30)

where the gradient is given in (4.29)
Step 3- Update new lattice generator matrixGk+1: Generate

Gk+1 = ΠΘ(Gk − akĝ(Gk)), (4.31)

whereak = c/k for some positive constantc. For a given lattice generator matrix
Gk, the projection functionΠΘ is defined as a scaling factorβ and translation
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4.4 Simulation results

vector (uk+1) so the power constraint in (4.17) is satisfied with equality. Note that
the gradient estimator is unbiased for any integerL, but the variance decreases for
larger values ofL.

Implementation aspects of the algorithm

There are some practical issues about the algorithm which are worth mentioning.

1. At each iteration of the algorithm the projectionΠΘ(·) proceeds as follows:
(1) Enumerate the|C| lattice points closer to−u (e.g., using the procedure
given in Appendix B); (2) scale the generator matrixG usingβ in (4.11)
to satisfy (4.17). In our implementation we have assumedu = 0 and the
translation vector has been updated after the last iteration.

2. The speed of convergence of the algorithm is highly dependent uponthe
choice of the step-sizeak = c/k. The value ofc needs to be large enough
so the step-size does not decrease too fast before moving to the vicinity of
the optimal generator matrix. On the other hand, it should be small to make
the solutions stable as soon as possible. Agoodvale of c can be obtained
heuristically comparing the initial Frobenius norm ofG and the Frobenius
norm of the estimated gradient.

3. It can be proved that the gradient estimator is unbiased and its variancede-
cays with the number of samplesL in Step 1 of the algorithm. Hence, a larger
number of samplesL can provide a better estimator of the gradient although
it will slow the simulation. Instead of increasing the number of samplesL,
a different possibility is to use the same step-size value over multiple itera-
tions, i.e.,ak = c/⌈(k/p)⌉, wherep is the number of iterations for which the
step-size remains constant.

4.4 Simulation results

In this section, we provide multiple examples to show the performance of the new
LAST codes obtained by the design procedure described in the previoussection.
We will see that the codes optimized for a particular SNR work acceptably over a
wide range of SNR values of interest.

LAST code design with MMSE-GDFE lattice decoder:Consider firstnT = nR =

T = 2 andR = 4 bit/s/Hz (i.e., a codebook with 256 codewords, and dimension

n = 8). In the first iteration of the algorithm we use a random initial guessG0
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4.4 Simulation results

properly scaled to satisfyΘ. The code is designed forρ = 16dB. We assume

MMSE-GDFE lattice decoding. The code optimized for this scenario is given by 3

G =




0.6115 0.7220 0.1828 0.0047 0.4083 0.2432 0.3809 0.5912

0.2330 0.0415 −0.6020 0.2606 0.3728 −0.8860 −0.4119 0.2633

0.5702 −0.2313 −0.4036 0.4560 0.2410 0.1998 0.4884 −0.7502

0.5638 −0.4284 0.2143 0.5062 −0.2804 0.4311 −0.6880 0.3297

−0.4046 0.1748 −0.0495 0.0595 0.8929 0.5190 −0.5679 −0.2452

0.1475 0.8923 0.0621 0.1454 −0.5027 −0.0977 −0.4464 −0.5875

−0.2845 −0.0036 0.8151 0.7903 0.2233 −0.4233 0.2114 −0.0767

0.5586 −0.2500 0.6112 −0.6839 0.3271 −0.3490 −0.2370 −0.3855




.

(4.32)

The block error rate convergence of the algorithm is shown in Fig. 4.3 averaged
over 88 random initial lattice generators. The number of samples in the algorithm
was set toL = 17000. It is seen that during the first iterations the algorithm rapidly
moves towards a lattice generator with low block error rate. Next, for comparison
purposes we report the block error rate performance using the LAST codebook
obtained with the8-dimensional generator matrix given in El Gamal et. al [43]
that we denote as GCD, and also for the LAST codebook obtained from theGosset
latticeE8 given in [23], which is known to be good for most purposes in AWGN
SISO channels. In Fig. 4.4 it is seen that in excess of a SNR of 12dB our optimized
code obtains better performance than the other LAST codes.

Now considernT = nR = 2 andT = 3. We select the rate asR = 4 bit/s/Hz
(i.e., a codebook with 4096 codewords, and dimensionn = 12). Fig. 4.5 illustrates
the block error rate performance. For comparison purposes we report the results
of a LAST code obtained using construction A4 [22, 43] and we also show the
outage error probability. It is seen that the new LAST code have slightly better
performance than the code obtained via construction A.
LAST code design with MMSE-GDFE lattice-reduction-aided linear receiver:
We consider the MMSE-GDFE lattice-reduction-aided linear receiver withnT =

T = 2 andnR = 3 . Fig. 4.6 shows the performance results of different LAST
codes with MMSE-GDFE LRA linear receivers. It is seen that the new code
slightly outperforms the other implemented codes.
LAST code design with MMSE-GDFE lattice decoder in spatially correlated

3Notice that multiple generator matricesG can obtain the same codebook or same error rate
results, e.g., unitary transformations onG, or equivalent lattices through lattice reduction, mirroring,
etc.

4The author would like to thank M.O. Damen for providing the lattice generatorof Construction
A.
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Figure 4.3: Convergence of the algorithm: average of the block error rateat differ-
ent iteration indices.

8 10 12 14 16 18 20 22

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

bl
oc

k 
er

ro
r 

ra
te

: Spherical with closest point: MMSE GDFE: GCD
: Spherical with closest point: MMSE GDFE: Gosset
: Spherical with closest point: MMSE GDFE: Opt

Figure 4.4: Block error rates of LAST codes withnT = nR = T = 2, rateR =
4bit/s/Hz with MMSE-GDFE lattice decoder.
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Figure 4.5: Block error rates of LAST codes withnT = nR = 2, T = 3, rateR =
4bit/s/Hz and MMSE-GDFE lattice decoder.
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Figure 4.6: Block error rates of LAST codes withT = nT = 2, nR = 3, rateR =
4bit/s/Hz and MMSE-GDFE LRA linear decoder (designed for SNR= 18dB).
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4.4 Simulation results

channel: We consider a2 × 2 MIMO channel with equal spatial correlation at
both the transmitter and the receiver. We consider a urban scenario with medium
correlated spatial channel represented by the covariance matrix

Rr = Rt =

[
1 0.88 − 0.3i

0.88 + 0.3i 1

]
(4.33)

andHc
t = R

1/2
r Hc

w,tR
T/2
t , with Hc

w,t being a2 × 2 uncorrelated matrix with
i.i.d. Nc(0, 1) entries. Note that the new codes are optimized specifically for this
correlation scenario (this is achieved using the correlated MIMO channelin Step
1.2 of the algorithm). The convergence of the algorithm is shown in Fig 4.7. The
block error rate performance is shown in Fig. 4.8. It is seen that the new code
outperform the lattice codes obtained with either of the other generator matrices
considered.
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Figure 4.7: Convergence of the algorithm: average of the block error rateat differ-
ent iteration indices with correlated channels.
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Figure 4.8: Block error rates of LAST codes withnT = nR = T = 2, rateR =
4bit/s/Hz with MMSE-GDFE lattice decoder and spatial correlation (code designed
for SNR=20dB) .

4.5 LAST codes with cooperative relays

Next we consider LAST codes with cooperative relaying [81] where idlenodes
assist the active node in the communication of the LAST codewordsx = Gz + u.
For the purpose of demonstrating the flexibility of our method and its application in
this scenario we only consider a simple cooperative strategy. In particular, we only
consider the design of the LAST code for a predetermined cooperative strategy and
power allocation, and we claim that for this particular fixed cooperative strategy,
the LAST codes obtained are block error optimal.

We consider a 2-hop relay network using amplify and forward relay nodes.
This relaying technique allows a lower power consumption at the relaying nodes
because there is no need to consume power for decoding [56]. All terminals are
equipped with single antenna transmitters and receivers. Without loss of generality
we only consider the amplify and forward relaying protocol in which the source ter-
minal S communicates simultaneously with one relayR and destination terminal
D over the first time slot. In the second time slot,R andS simultaneously commu-
nicate withD [96]. We consider perfect synchronization and perfect channel state
information at the receivers. The channel betweenS andR is also known by the
destinationD. Two consecutive time slots are shown in Fig. 4.9. For simplicity
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4.5 LAST codes with cooperative relays

we assign equivalent power toS andR. We remark that a joint optimization of the
assigned powers and code design can be formulated, complicating the derivation
of the gradient required in the algorithm described in Section 4.3.4.

S D

R

hSD

hSR

S D

R

hSD

hRD

PHASE I PHASE II

Figure 4.9: Cooperative scenario.

ConsiderT intervals in the original MIMO case withnT co-located antennas,
which translates inTc = TnT time intervals in the cooperative case. For example,
to mimic the performance of anT = T = 2 LAST code, cooperative relaying
requiresTc = 4 symbol intervals. Notice that due to the symmetry and periodicity
of the lattice in then-dimensional space and the spherical carving regionS, it can
be observed that the LAST codeword coordinates are uniformly distributed around
the sphereS (spherical uniform random vector). The power of each coordinate
can be determined from this marginal density. The components of a spherically
uniform vector are clearly identically distributed and the variance on one compo-
nent isr2/(n + 2), wherer is the radius of then-dimensional sphere [82, p.665].
Using a discrete uniform distribution instead of a continuous uniform distribution
and considering the total available power, the marginal density of each codeword
component satisfiesE{|xi|2} ∼= 1/2, i = 1, ..., n.

We considercheaprelays, which in a particular time slot can only operate as
receivers or transmitters. Among theTc channel uses, we assignTc/2 channel
uses to the relay to operate as a transmitter andTc/2 channel uses to operate as a
receiver. During the first time slot the complex signals received at the destination
and the relay are given by

yc
D,1 =

√
ρhc

SD(x1 + jx2) + nc
D,1

yc
R,1 =

√
ρhc

SR(x1 + jx2) + nc
R,1, (4.34)

where the random variableshc
SD andhc

SR are the unit-power complex gains be-
tween source and destination, and source and relay, respectively. Weconsider that
the noise at the destination and the relay is distributed as{nc

D,t, n
c
R,t} ∼ Nc(0, 1).

The received signal at the relay is normalized to have unit average power, i.e.,√
E{|yc

R,1|2} =
√

ρ + 1. The relay forwards it to the destination during the sec-
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ond time slot – notice that in the second time slot, the source also transmits. The
received signal atD during the second interval is given by

yc
D,2 =

√
ρhc

SD(x3 + jx4) +
√

ρhc
RD

yc
R,1√
ρ + 1

+ nc
D,2

=
√

ρhc
SD(x3 + jx4) +

√
ρρ√

ρ + 1
hc

RDhc
SR(x1 + jx2) +

√
ρ

ρ + 1
hRDnc

R,1 + nc
D,2

︸ ︷︷ ︸
ñc

D,2

where it follows that̃nc
D,2 ∼ Nc(0, 1 + ρ|hRD|2

ρ+1 ). To keep the variance of the noise
equal in the first and second time slot we normalize the received signal during the

second slot byω =
√

1 + ρ|hRD|2

ρ+1 ). The equivalent Real input-output relation
during the first two time slots (phase I and II) can be written as

y(1) = Hx(1) + n(1) (4.35)

wherey(1) = [ℜ{yc
D,1},ℑ{yc

D,1},ℜ{ 1
ωyc

D,2},ℑ{ 1
ωyc

D,2}]T , x(1) = [x1, x2, x3, x4]
T ,

and

H =




√
ρℜ{hc

SD} −√
ρℑ{hc

SD} 0 0
√

ρℑ{hc
SD} √

ρℜ{hc
SD} 0 0

1
ω

√
ρ2

ρSR+1ℜ{hc
SRhc

RD} − 1
ω

√
ρ2

ρ+1ℑ{hc
SRhc

RD}
√

ρ

ω
ℜ{hc

SD} −
√

ρ

ω
ℑ{hc

SD}
1
ω

√
ρ2

ρSR+1ℑ{hc
SRhc

RD} 1
ω

√
ρ2

ρ+1ℜ{hc
SRhc

RD}
√

ρ

ω
ℑ{hc

SD}
√

ρ

ω
ℜ{hc

SD}




.

(4.36)

To mimic a LAST code of lengthT (i.e., Tc = 2T ), we write the same model
for x(i), i = 2, ..., T (i.e., time intervals3, ..., 2Tc) and we can finally write the
equivalent MIMO system

y = Hx + n (4.37)

wherex = [x(1)T , ...,x(T )T ]T = [x1, ..., xn]T = Gz+u, y = [y(1)T , ...,y(T )T ]T ,
H = IT ⊗ H is the equivalentn × n MIMO channel, andn conditioned on the
channelH is circularly symmetric complex Gaussian noise withE{n|H} = 0
andE{nnH |H} = 1

2I. Note that multiplexing gain is absent, since time is ex-
panded to create a virtual MIMO channel thereby negating any multiplexing gain.
Here the purpose is to obtain diversity gain.

With this system model, we still have

p(y|z, H, G) = π−TM exp
[
−(y−HGz−Hu∗)T (y−HGz−Hu∗)

]
(4.38)
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and thus the algorithm described in Section 4.4.3 to design the generatorG of
LAST codes is applicable.

4.5.1 Simulation results

We consider rateR =4bit/s/Hz and the length of the codeT = 2, i.e., Tc = 4

time intervals are required to transmit each LAST codeword. The LAST codeis
designed forρ = 22dB. Fig. 4.10 illustrates the block error rate for the new LAST
codes and we also present the performance of the LAST codes obtainedwith the
GCD lattice and the Gosset lattice. It is seen that our LAST code gives the best
performance.
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Figure 4.10: Cooperative results (T = 2, R = 4bit/s/Hz).

4.6 Conclusions

In this chapter we have proposed a systematic method for designing minimum
block error rate spherical lattice space-time codes taking into account the detector
architecture and the channel statistics. The design method has been shownto be
universal in the sense that can be applied to optimize the LAST codes for a wide
range of receivers schemes, channel statistics, or even cooperative relying.
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Chapter 5

MIMO Precoding

5.1 Introduction

Multiuser detection techniques are considered powerful for interference suppres-
sion in CDMA systems, especially in uplinks, where the base-station receiver has
the knowledge of all users’ spreading sequences and channel states, and so has the
opportunity to perform sophisticated signal processing [123]. In the downlinks,
however, the mobile receiver typically only has the knowledge of its own spreading
sequence and channel state. Although adaptive linear multiuser detection (either
training-based or blind) can be employed for such scenario, the performance can
be limited due to the limited power available at the detector for signal processing.
On the other hand, precoding schemes for downlink CDMA effectively transfer
the signal processing for interference suppression from the mobile receiver to the
base-station transmitter. This approach is feasible if the base-station can estimate
the downlink channels of all users (e.g., in time-division duplex (TDD) systems, the
base station can exploit channel reciprocity if the time difference between uplink
and downlink transmission is shorter than the channel coherence time, or alterna-
tively the use of channel prediction techniques [31]). In [37] a precoding method
has been proposed which is essentially an implementation of the RAKE receiver
at the transmitter. Hence this approach does not attempt to mitigate the multiple-
access interference (MAI). Recently, different linear precoding techniques have
been proposed to combat MAI and inter-chip interference but without consider-
ing inter-symbol interference (ISI) [126]. If ISI is present then the complexity of
these techniques becomes prohibitive since the dimension of the matrix filter is
proportional to the data frame length multiplied by the number of users (i.e., block
processing) [126]. More recently, bit-wise linear precoding methods have been
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proposed to reduce the precoding complexity in the presence of ISI [45].
Downlink CDMA is a special case of a broadcast channels. There has been

significant recent interest in characterizing the capacity of broadcastchannels. In
particular, it has been shown that when the interference is non-causallyknown
to the transmitter and unknown to the receiver, the capacity is the same as if the
interference were not present – a result known as “dirty paper coding”. These
results were originally proved for Gaussian channels [24], and have been general-
ized to other types of causal interference [19, 21, 34]. Several practical suboptimal
implementations of dirty paper coding have been proposed, e.g., for digital sub-
scriber line (DSL) systems [47] and for multi-antenna systems [130]. These im-
plementations use successive interference cancellation combined with Tomlinson-
Harashima (TH) precoding [57, 121].

In this chapter, we first obtain the capacity regions of a downlink CDMA sys-
tem employing either multiuser detection (i.e., receiver processing) or precoding
(transmitter processing). It is seen that these two approaches provide similar capac-
ity regions, suggesting that precoding can potentially achieve similar performance
to that offered by multiuser detection. This motivates the development of practical
precoding solutions for downlink TDD-CDMA systems.

Then we consider linear precoders with very simple receivers, i.e., only afixed
matched-filter to theownspreading sequence is required and therefore CSI is not
required. We propose several bit-wise and chip-wise linear precoders and cor-
responding power control algorithms to meet certain performance criteria at the
receiver. We also consider the performance comparisons between linear precoding
and linear MUD. The comparison metric is the total required power at the trans-
mitter to achieve a minimum QoS requirement at each of the receivers. Our re-
sults show that linear precoding offers similar performance to linear MUD in most
cases; but in some specific cases, linear precoding is more effective. Moreover, the
proposed linear precoding techniques with only a matched-filter (to the spreading
sequence) at the receiver can outperform the linear precoder with a RAKE receiver
(i.e., with CSI at the receiver) proposed in [126]. These results motivatethe use of
linear precoding techniques in the downlink of TDD-CDMA systems. Among the
advantages of using precoding we have:

• Receiver terminals are simply a fixed matched-filter corresponding to the
own spreading sequence. This translates into a power consumption reduc-
tion and a decrease in price of the terminals since they do not have to perform
sophisticated signal processing for channel estimation and interferencemit-
igation. Note that variations in channel conditions and the number of active
users in the network do not affect the receiver operations.

• A reduced amount of control data is required in the precoding solution. The
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reason is that in MUD, every user requires to know the own channel response
plus the spreading sequences and the CSI of all other active users in the
network. Moreover, mobile units do not need to be informed when users are
added to (or removed from) the network.

• Power control is easy to implement with precoding since the transmitter has
information about the quality of each link and it does not require extra feed-
back information. Note that MUD requires a feedback link to find the power
loading value assigned to each user.

• User scheduling based on the knowledge of CSI can be implemented jointly
with linear precoding to increase the system throughput.

In the final part of the chapter we consider nonlinear precoding techniques
based on TH-precoding, which offer superior performance compared to linear
precoding. We extend the precoding method in [39] to systems with ISI. We
also propose a new chip-wise precoding scheme that combines spreadingand TH-
precoding operations. The main difference between our solution and the TH solu-
tion in [39, 130] is that our non-linear precoder does not require CSI at the mobile
receiver and yet the performance is similar (note that in the TH precoding solution
in [39, 130] each user implements a RAKE receiver and therefore CSI is required).
Furthermore, efficient algorithms for multiuser power loading and cancelation or-
dering are developed. Implementation of the proposed TH-precoding schemes in
time-varying channels based on channel prediction is also addressed.

The remainder of this chapter is organized as follows. In Section 5.2, we ob-
tain and compare the capacity regions of multiuser detection and precoding in the
downlink of CDMA systems. In Section 5.3 we briefly summarize two well-known
linear MUD methods and we propose several forms of linear precoding techniques.
We also present simulation comparisons between linear MUD and linear precod-
ing. In Section 5.4, we develop new TH-precoding schemes for downlink TDD-
CDMA systems over multipath channels. Power loading and cancellation ordering
are also addressed. Simulation results under both perfectly known channels and
predicted channels are also presented. In Section 5.5 we discuss low-complexity
user scheduling algorithms based on our precoding schemes. Finally, Section 5.6
concludes the chapter.
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5.2 Downlink Capacity Regions of Multiuser Detection and

Precoding

In time-division duplexing (TDD) systems, the uplink channel and the downlink
channel for each individual user is the same. Hence the base station canuse the
uplink channel information to perform preprocessing for the downlink and thereby
transfer sophisticated signal processing from the receiver end to the transmitter
end, i.e., to replace multiuser detection (receiver processing) by precoding (trans-
mitter processing). In this section, we present and compare the capacity results of
precoding and multiuser detection in the downlink of a CDMA system. These two
approaches for downlink CDMA are illustrated schematically in Fig. 5.1. Note that
this is a special case of the MIMO broadcast channel for which recentprogressive
developments [19, 16, 124, 125, 135] have lead to the final solution to the capacity
region for the general broadcast channel [128]. Consider a synchronous CDMA
system withK users signalling over a real-valued AWGN channel. Letfk andsk

be the channel gain and the spreading signature of thek-th user, respectively. De-
noteS = [s1, · · · , sK ]. ThenR = ST S is theK ×K cross-correlation matrix of
the spreading waveforms of all users.
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Figure 5.1: Schematic illustration of MUD and Precoding in downlink CDMA
systems.
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5.2 Downlink Capacity Regions of Multiuser Detection and Precoding

5.2.1 Multiuser Detection

Assume that the users are ordered according to their path gains so thatf1 ≥ f2 ≥
· · · ≥ fK . The received signal at thek-th mobile receiver is given byrk =

fk
∑K

ℓ=1 xℓsℓ +nk, wherenk ∼ N (0, I). Note that in this case symbols from dif-
ferent usersx1, · · · , xK are independently encoded. Denotex = [x1, · · · , xK ]T .
A sufficient statistic forx is the output of a bank of matched-filters [123],

yk
△
=

[
sT

1 rk, sT
2 rk, · · · , sT

Krk

]
= fkRx + vk, (5.1)

with E{vkv
T
k } = R. Thek-th user then makes a decision on its own dataxk based

onyk. Denoteρk as thek-th column ofR and

Qk
△
= R + f2

k

k−1∑

ℓ=1

Pℓρℓρ
T
ℓ , (5.2)

wherePk
△
= E{x2

k}. DenotePT
△
=

∑K
k=1 Pk as the total transmit power. We have

the following result regarding an outer bound on the rate region.

Proposition 2 Consider the channel model (5.1) and suppose that each user’s data

is encoded independently. Then the multiuser rate tuple(R1, . . . , RK) must satisfy

Rk ≤ 1

2
log

(
1 + Pkf

2
k ρT

k Q−1
k ρk

)
, k = 1, · · · , K, (5.3)

for somePk, k = 1, . . . , K, satisfyingPk ≥ 0 and
∑K

k=1 Pk = PT .

Proof: Definey′
k = yk/fk. Then we can rewrite the following equivalent model

to (5.1):

y′
1 = Rx + v′

1, and y′
k = y′

k−1 + v′
k, k = 2, . . . , K, (5.4)

where thev′
1, · · · , v′

K are independent, zero-mean Gaussian vectors, andE{v′
kv

′
k
T } =(

f−2
k − f−2

k−1

)
R. The model (5.4) is the same as the aligned degraded broadcast

channel (ADBC) model in [128]. The difference is that here eachxk is encoded
independently. This corresponds to the model in [128] withBi zero except for the
i-th diagonal element andS a diagonal matrix. It can be checked that the proof
still applies with these restrictions, and we therefore get a rate given by Eq.(2)-(3)
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in [128], which here becomes

Rk ≤ 1

2
log




det
(∑k

ℓ=1 Pℓρℓρ
T
ℓ +

∑k
ℓ=1 E{v′

ℓv
′
ℓ
T }

)

det
(∑k−1

ℓ=1 Pℓρℓρ
T
ℓ +

∑k
ℓ=1 E{v′

ℓv
′
ℓ
T }

)




=
1

2
log

(
det

(
Qk + f2

kPkρkρ
T
k

)

det Qk

)
. (5.5)

Let F k be a Cholesky factor ofQk, i.e.,F kF
T
k = Qk. Then

det
(
Qk + Pkf

2
kρkρ

T
k

)
= det

[
F k

(
I +

(√
PkfkF

−1
k ρk

)(√
PkfkF

−1
k ρk

)T
)

F T
k

]

=
(
1 + Pkf

2
kρT

k Q−1
k ρk

)
detQk, (5.6)

where in (5.6) we used the following identitydet(AB) = det(BA) = det(A) det(B),
anddet

(
I + aaT

)
= aT a + 1 wherea is a vector. Substituting (5.6) into (5.5)

we obtain (5.3).
The rate in Proposition 2 is achievable with a multiuser detector that performs

serial interference cancellation on weak users and linear MMSE interference sup-
pression on strong users. In particular, userk can decode the data intended for
usersk + 1, . . . , K as userk receives the same signal but with higher SNR. Sup-
pose that userk has decoded usersk + 1, . . . , K. It then subtracts the signals of
these users fromyk in (5.1) to obtain

ỹk = yk − fk

K∑

ℓ=k+1

ρℓxℓ

= fk

k∑

ℓ=1

ρℓxℓ + vk

= fkρkxk + fk

k−1∑

ℓ=1

ρℓxℓ + vk. (5.7)

It now applies a linear MMSE filter oñyk. Note that the covariance matrix of the
noise and interference is given byQk in (5.2). The linear MMSE filter output is
given by

x̂k =T
k ỹk, with k = fkQ

−1
k ρk. (5.8)
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This gives a rate

Rk =
1

2
log

(
1 +

(
ρT

k Q−1
k ρk

)2
Pkf

2
k

ρT
k Q−1

k ρk

)

=
1

2
log

(
1 + Pkf

2
kρT

k Q−1
k ρk

)
. (5.9)

WhenK = 2, denoteρ
△
= ρ1,2 = ρ2,1. The above rate region can be easily

evaluated as

R1 =
1

2
log(1 + P1f

2
1 ), (5.10)

R2 =
1

2
log

(
1 +

1 + P1f
2
2 (1 − ρ2)

1 + P1f2
2

P2f
2
2

)

=
1

2
log

(
1 +

(
1 − ρ2 P1f

2
2

1 + P1f2
2

)
P2f

2
2

)
. (5.11)

5.2.2 Precoding

In systems employing precoding, each downlink user simply applies a filter matched
to its ownspreading sequence. The output of this matched-filter is given byyk =

fkρ
T
k x + vk, wherex is the precoded vector. Stacking the output of the matched-

filters of all users in a single vector, we then obtain the downlink precoding signal
model: y = ARx + v, whereA = diag(f1, ..., fK) andE{vvT } = I. This is
similar to a multiple-antenna broadcast channel [19]. However, note that here the
power of the transmitted signal isE

{
xT Rx

}
. Therefore the power constraint is

E
{
xT Rx

}
≤ PT , which is different than [19]. This is easily fixed: letF be the

Cholesky factor ofR, i.e.,FF T = R. Defineu = F T x. Thenu should satisfy
the power constraintE

{
uT u

}
≤ PT , and we can write the received signal as

y = ARF−T u + v = AFu + v. (5.12)

This is the same as the model in [19] for a broadcast channel withK antennas at

the base station and one antenna at each terminal, withH
△
= AF . In [19] Costa’s

“dirty-paper coding” was suggested, and very recently in [128] it wasshown that
this scheme actually gives the capacity region. Hence the results in [19] apply to
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the current problem and the following rate is achievable [124]

Rk =
1

2
log

det
(
I + hT

k

(∑K
ℓ=k Σℓ

)
hk

)

det
(
I + hT

k

(∑K
ℓ=k+1 Σℓ

)
hk

) , (5.13)

whereΣ1, . . . ,ΣK are positive semidefinite matrices satisfyingtr
(∑K

k=1 Σk

)
≤

PT and hT
k is the k-th row of H. The capacity region, as proven in [128], is

the convex union over all matricesΣ1, . . . ,ΣK and all orderings of the users.
Unfortunately, except for the two-user case solved in [19] no closed-form solution
for the capacity region has been found. For the case ofK = 2, we can obtain
explicit expressions for the capacity region. In [19] it was proven thatthe capacity
region is given by

R1 ≤ log

(
1 +

αc1PT

1 + q(1 − α)c1PT

)
, (5.14)

R2 ≤ log
(
1 + p(1 − α)c1PT

)
, 0 ≤ q ≤ 1, 0 ≤ α ≤ 1. (5.15)

wherec1
△
= hT

1 h1, c2
△
= |det(H)|2/c1, c3

△
= |hT

1 h2|2/c2
1, and

p =

(√
c3q +

√
c2

c1
(1 − q)

)2

. (5.16)

We can obtain a more explicit expression as follows. First set equality in (5.14)
and solve forq, to obtain

q =
2R1 − 1 − αc1PT

(1 − α)c1PT (1 − 2R1)
. (5.17)

Then substitute (5.17) into (5.16) and in (5.15) with equality, and solve forα from
dR2
dα = 0, to obtain the unique solution

α =
−c2

1PT + 2R1c2
1c3PT − 22R1c2 − c1c3 + 23R1c2 + 2R1c1c3

(c1c3 + 2R1c2)2R1c1PT
. (5.18)
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Substituting (5.18) into (5.14) and (5.15) we obtain

R1 ≤ log (1 + c1PT ) , (5.19)

R2 ≤ log

(
1 +

c2
1c3PT + c1c3 + 2R1(c1c2PT + c2 − c1c3 − c22

R1)

c12R1

)
.(5.20)

Now substituting (5.19) with equality into (5.20), and using the definitions ofci

andH
△
= AF , after some straightforward but tedious simplifications, we obtain

R1 ≤ 1

2
log

(
1 + P1f

2
1

)
, (5.21)

R2 ≤ 1

2
log

(
1 +

(
1 − ρ2 P1f

2
1

1 + P1f2
1

)
P2f

2
2

)
. (5.22)

If we swap the order of the users we get another region, and the total region is the
convex closure of these two regions.

5.2.3 Comparisons

We next provide some numerical results comparing the downlink CDMA capacity
regions for multiuser detection (MUD) and precoding withK = 2. First we notice
that the two capacity expressions (5.10)-(5.11) and (5.21)-(5.22) arevery similar.
Figure 5.2 shows typical rate regions, one for high SNR and one for low SNR.
There are two curves for the precoding case because of the dependency on user
ordering (the capacity region is the convex union) and one curve for theMUD
case. It is seen that the regions are quite similar. The maximum sum rate is slightly
larger for MUD; whereas the maximum equal rate (i.e.,R1 = R2) is slightly larger
for precoding. This turns out to be general, as the following numerical results show.
Figure 5.3 shows the sum rate as a function off2/f1 andρ ∈ [0, 1] with f1 fixed. It
is seen that the sum rate for MUD is consistently better, but only slightly. Similar
observation can be made for maximum equal rate in Fig. 5.4. In summary it is seen
that precoding can potentially provide similar capacity as MUD, which motivates
the development of practical transmitter precoding techniques as an alternative to
MUD to reduce the complexity of the mobile receiver. In the following sections,we
propose suboptimal approaches to “dirty-paper coding” based on linear precoding
and the Tomlinson-Harashima (TH) precoding technique in multipath channels.

118



5.2 Downlink Capacity Regions of Multiuser Detection and Precoding

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

R
1

R
2

SNR=20dB, f
2
=0.5, ρ=0.9

MUD
Precoding

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
1

R
2

SNR=10dB, f
2
=0.5, ρ=0.9

MUD
Precoding

Figure 5.2: Comparisons of rate regions for MUD and precoders withK = 2.
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5.3 Linear Precoding versus Linear Multiuser Detection

5.3.1 Linear MUD Methods
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Figure 5.5: Downlink MUD.

We consider aK-user discrete-time synchronous multipath CDMA system.
Definebk[i] from a constellationA as the symbol of thek-th user transmitted dur-
ing the i-th symbol interval withE{|b[i]|2} = 1 and b[i] = [b1[i], ..., bK [i]]T .
DenoteN as the spreading factor andsk = [sk,1, ..., sk,N ]T as the normalized
spreading waveform of thek-th user. Then, the signal transmitted from the base
station during thei-th symbol interval can be written asp[i] = SAb[i], whereS =
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[s1, s2, ..., sK ] is the matrix of spreading waveforms; andA = diag(A1, ..., AK)

contains the user signal amplitudes. The vectorp[i] is passed through a parallel-
to-serial converter and transmitted over the multipath channel. The path delays are
assumed to be an integral number of chip periods. Denote the multipath channel
seen by thek-th user asfk = [fk,1, fk,2, ..., fk,L]T , whereL is the number of re-
solvable paths andfk,l is the complex fading gain corresponding to thel-th path
of thek-th user. We assume thatL < N . At the k-th user’s receiver, theN × 1

received signal duringN consecutive chip intervals corresponding tob[i] is given
by

rk[i] = DkS︸ ︷︷ ︸
Hk

Ab[i]+nk[i] with Dk =




fk,1 0 · · · · · · 0
...

. .. .. .
...

fk,L
. .. fk,1

. . .

0
. .. . . . 0

0 · · · fk,L · · · fk,1




N×N

,

(5.23)
whererk[i] = [rk,1[i], ..., rk,N [i]]T is the received signal,nk[i] ∼ Nc

(
0, σ2IN

)

is the complex white Gaussian noise vector at thek-th receiver, andHk = DkS.
Notice that we have assumed that ISI can be ignored either by being truncated or
by inserting a guard interval. At thek-th receiver, a linear detector to recuperate
the signalbk[i] can be represented by anN -dimensional vectorwk ∈ CN , which
is correlated with the received signalrk[i] in (5.23) to obtainzk[i] = wH

k rk[i],

and thek-th mobile unit makes a decision̂bk[i] = Q(zk[i]), whereQ rounds to the
closest point in the constellation.

Linear Decorrelating Detector:The decorrelating detector completely eliminates
the multiuser interference (MUI) and interchip interference (ICI), at theexpense of
enhancing the noise. The linear decorrelating detector for userk is given by [123]

wk = H
†H
k ek = Hk(H

H
k Hk)

−1ek, (5.24)

whereek denotes aK-dimensional vector with all entries zeros, except for thek-th
entry, which is 1. The output of this detector is given by

zk[i] = wH
k rk[i] = Akbk[i] + wH

k nk[i] =⇒ SINRk =
A2

k

σ2‖wk‖2
, (5.25)

where SINRk is the signal-to-interference-plus-noise ratio for thek-th user. Sup-
pose that the QoS requirement for userk is such that SINRk ≥ γk, whereγk is the
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minimum acceptable SINR value for userk. Hence we haveA2
k = σ2γk‖wk‖2.

And the total required transmit power is given by

PT =
K∑

k=1

A2
k =

K∑

k=1

σ2γk eH
k (SHDH

k DkS)−Hek. (5.26)

Linear MMSE Detector:The linear MMSE detector for userk is given by [123]

wk = arg min
wk∈CN

E
{
|bk[i] − wH

k rk[i]|2
}

= Ak(HkA
2HH

k + σ2IN )−1Hkek.

(5.27)
The SINR for this detector is given by

SINRk =
A2

k‖wH
k Hkek‖2

∑
j 6=k A2

j‖wH
k Hkej‖2 + σ2‖wk‖2

. (5.28)

We seek to minimize the total powerPT such that SINRk ≥ γk. The iterative
power control algorithm for linear MMSE MUD proposed in [122] can be extended
to the downlink scenario. At the (n+1)-th iteration, the MMSE filterwk(n+1) is
constructed using the current power matrixA(n). Then, the power matrixA(n+1)

is updated using the new filter coefficientswk(n + 1).

Algorithm 6 Power control algorithm for linear MMSE MUD in the downlink

INPUT: Hk, γk, σ
2.

FOR n = 0, 1, 2, ... DO
FOR k = 1, 2, ..., K DO

wk(n + 1) = (HkA
2(n)HH

k + σ2I)−1Ak(n)Hkek

A2
k(n + 1) = γk

∑K
j=1,j 6=k A2

j (n)‖wH
k (n + 1)Hkej‖2 + σ2(wH

k (n + 1)wk(n + 1))

‖wH
k (n + 1)Hkek‖2

END FOR;
END FOR;
OUTPUT: assigned powers Ak and linear MMSE filters
wk, k = 1, ..., K.

5.3.2 Linear Precoding Schemes

In this section we consider different approaches to implement linear precoding
assuming that the transmitter has perfect CSI.
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Bit-wise Linear Precoding
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Figure 5.6: Downlink linear precoding.

We assume that each mobile unit employs only a filter matched to itsown
spreading sequence, and it does not need to know other users’ spreading sequences
or to estimate the channel. Denote the symbol by symbol bit-wise precoding
operation asx[i] = M bAb[i], wherex[i] is the precoded symbol vector and
M b ∈ CK×K is the bit-wise linear precoding matrix. Then, after spreading the
precoded data, the signal transmitted from the base station during thei-th symbol
interval can be written asp[i] = Sx[i] = SM bAb[i]. The vectorp[i] is passed
through a parallel-to-serial converter and transmitted through the channel. The
signal received by thek-th user is then given by

rk[i] = DkSM bAb[i] + nk[i], (5.29)

125



5.3 Linear Precoding versus Linear Multiuser Detection

whereDk is given in (5.23). Then the corresponding matched filtersk is applied
to rk[i]. Stacking the outputs of theK matched-filters we obtain




sH
1 r1[i]

sH
2 r2[i]

...
sH

KrK [i]




︸ ︷︷ ︸
y[i]

=




sH
1 D1S

sH
1 D2S

...
sH

KDKS




︸ ︷︷ ︸
Hb

M bAb[i] +




sH
1 n1[i]

sH
2 n2[i]

...
sH

KnK [i]




︸ ︷︷ ︸
v[i]

. (5.30)

Thek-th receiver makes a decisionb̂k[i] = Q(yk[i]). Therefore the precoder design
problem involves designing the precoding matrixM b such thaty[i] is as close to
b[i] as possible.

Bit-wise Linear MMSE Precoder:Assuming that the spreading sequences are nor-
malized, the linear MMSE precoder chooses the precoding matrixM b to minimize

E{‖b−y‖2}, and is given by [126]M b = βH−1
b , with β =

√
PT

tr
(
SH−1

b A2H−H
b SH

) .

Note that such a linear MMSE precoder also zero-forces the interference. If the
constraint is the minimum SINR at each receiverγk, we obtain the unconstrained

precoding solutionM b = H−1
b . Thus we have SINRk =

A2
k

σ2 ; and the power as-
signed to thek-th user becomesA2

k = σ2γk. Then the total power required at the
transmitter becomesPT = E{‖SM bAb[i]‖2} = tr(SM bA

2MH
b SH).

Bit-wise Wiener Precoder:The bit-wise Wiener precoder is proposed in [69, 70]
as the matrixM b and constantβ that minimizeE

{
‖b[i] − β−1y[i]‖2

}
, subject to

E{‖M bAb[i]‖2} = PT . Given the total transmit powerPT , the Wiener precoder
is given by

M b = βJ−1HH
b , (5.31)

with

β =

√
PT

tr
(
J−2HH

b A2Hb

) and J = HH
b Hb +

Kσ2

PT
IN . (5.32)

Optimal Transmit Spreading Sequences:Besides optimizing the precoding matrix
M b for a given channel realization, we can also optimize the transmit spreading
sequences. Denotes1, ..., sK as the fixed spreading sequences used at the mobile
units (i.e., the matched -filters) ands̃1, ..., s̃K as the optimized spreading sequences
used at the transmitter. DenotẽS = [s̃1, ..., s̃K ]. Similarly to (5.30), the received
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signal can be written as
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2 r2[i]

...
sH

KrK [i]




︸ ︷︷ ︸
y[i]
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KDK
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S̃M bAb[i] +
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2 n2[i]
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sH
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. (5.33)

Following [99], it can be easily shown that the linear MMSE precoding matrix is
given byM b = (HcS̃)−1 (for details see Appendix C), andA2

k = σ2γk, k =

1, . . . , K. Next we show that for any given propagation channelD1, ...,DK , orig-
inal spreading sequencesS, and minimum SINR requirements, we can explicitly
find the optimal spreading matrix̃S

∗ ∈ CN×K such that the total transmit power
PT is minimized. Assume that theK × N matrixHc has rankK, whereN ≥ K.
Define the SVDHc = U cΣcV

H
c , whereU c is aK × K unitary matrix,V H

c is
anN × N unitary matrix andΣc is aK × N diagonal matrix with[Σc]i,i = λc,i

being the positive square root of thei-th eigenvalue ofHcH
H
c .

Proposition 3 Given the channelsD1, . . . ,DK , the receiver matched-filterss1, . . . , sK ,

and the target SINRγ1, . . . , γK of all users, by optimizing the transmit spreading

matrix S̃ used in the bit-wise linear MMSE precoder, the minimum achievable

transmit power is given by

P ∗
T = min

˜S∈CN×K

tr(S̃M bA
2MH

b S̃
H

) =
K∑

k=1

A2
kλ

−2
c,k, (5.34)

whereA2
k = σ2γk, k = 1, ..., K are the assigned powers. One solution to the

optimization problem in (5.34) (i.e., the optimal transmit spreading matrix) is given
by theN × K matrix S̃

∗
= HH

c .
Proof: Note thatM b = (HcS̃)−1 and therefore the transmitted vector is given
by p[i] = S̃M bAb[i] = S̃(HcS̃)−1Ab[i]. Denote the SVDs ofHc and S̃ by
H̃c = U cΣcV

H
c andS̃ = U s̃Σs̃V

H
s̃ , respectively. Then the total transmit power
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is

PT = E{pH [i]p[i]} = tr(S̃(HcS̃)−1A2(HcS̃)−HS̃
H

)

= tr(U s̃Σs̃V
H
s̃ (U c ΣcV

H
c U s̃Σs̃︸ ︷︷ ︸
T

V H
s )−1A2(U cΣcV

H
c U s̃Σs̃V

H
s̃ )−HV s̃Σ

H
s̃ UH

s̃ )

= tr(Σs̃V
H
s̃ V s̃T

−1UH
c A2U cT

−HV H
s̃ V s̃Σ

H
s̃ )

= tr(Σs̃T
−1A2T−HΣH

s̃ ) = tr(A2Σ2
s̃T

−1T−H), (5.35)

whereT = ΣcV
H
c U s̃Σs̃ is aK × K matrix;Σ2

s̃ = ΣH
s̃ Σs̃ is aK × K diagonal

matrix; and we used the fact thatU s̃, U c, V c andV s̃ are unitary.
ConsiderT expressed in terms of the matrices obtained with the thin SVD [65],

T = Σ
(t)
c CΣ

(t)
s̃ , whereΣ(t)

c andΣ
(t)
s̃ are theK-th leading submatrix ofΣc and

Σs̃, respectively; andC = V
(t)H
c U

(t)
s is aK × K matrix (whereV (t)

c andU
(t)
s

denote the matrices consisting of the firstK columns ofU s̃ andV c, respectively).
Denoting{vc,1, ...,vc,K} and{us̃,1, ...,us̃,K} as the firstK columns ofV c and
U s̃, respectively, we have[C]ij = 〈vc,i, us̃,j〉, i, j = 1, ..., K. Next we show that
the eigenvalues ofC denoted asφi, i = 1, .., K, always satisfy|φi| ≤ 1.

Denote{e1, ...,eK} as the orthogonal basis of theK-dimensional space. Then
thel-th component of theC transform of thej-th basis is given by[e′

j ]l = [Cej ]l =

[C]l,j = 〈vc,l, us̃,j〉, where 〈·, ·〉 denotes the inner product. Hence‖e′
j‖2 =

∑K
l=1 |〈vc,l, us̃,j〉|2. Notice that sinceV c andU s̃ ∈ SU(N ) (i.e., special unitary

group), thenV H
c U s̃ also belongs to the SU(N); and therefore theL2 norm of each

column vector of theN×N matrixV H
c U s̃ equals to one, i.e.,

∑N
l=1 |〈vc,l, us̃,j〉|2 =

1, j = 1, ..., N. SinceN ≥ K, we have‖e′
j‖2 =

∑K
l=1 |〈vc,l, us̃,j〉|2 ≤ 1, j =

1, ..., K. This is, theL2 norm of the transformation byC of every basis vector is
always less or equal to 1. Every vector in theK-dimensional space can be written
as a linear combination of the basis and therefore, theC transform applied to any
vector reduces the norm. In particular, it reduces the norm of the eigenvectors of
C. Therefore, we conclude that the eigenvalues ofC satisfy|φi| ≤ 1,∀i.

SubstitutingT−1 = [Σ
(t)
s̃ ]−1C−1[Σ

(t)
c ]−1 and the eigenvalue decomposition

of C = WΦW−1 (whereΦ = diag(φ1, . . . , φK)) in (5.35) we obtain

PT = tr(A2Σ2
s̃T

−1T−H) = tr(A2C−1C−HΣ−2
c ) = tr(A2Φ−1Φ−HΣ−2

c )

=
K∑

i=1

A2
i λ

−2
c,i |φi|−2 ≥

K∑

i=1

A2
i λ

−2
c,i . (5.36)

Denote the thin SVD of̃S = U
(t)
s̃ Σ

(t)
s̃ V

(t)
s̃ . Finally, with S̃

∗
= HH

c , the thin

SVD decomposition becomes̃S
∗

= (U
(t)
c Σ

(t)
c V

(t)H
c )H = V

(t)
c Σ

(t)H
c U

(t)H
c , i.e.,
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U
(t)
s̃ = V

(t)
c . ThereforeC = V

(t)H
c U

(t)
s̃ = IK , andC has unit eigenvalues.

Hence we have equality in (5.36) and̃S
∗

= HH
c is an optimal spreading matrix

for linear MMSE precoding. ¥

Remark: There are many other forms of the optimal spreading matrixS̃
∗

such
thatC = V

(t)H
c U

(t)
s̃ has unit eigenvalues. Specifically, we need to construct an

N × N matrix U s̃ that rotates the firstK columns vectors ofV c in the sameK-
dimensional subspace and keep invariant theN−K-dimensional subspace spanned
by theN − K remaining vectors. Consider first the real case. The constraints on
the K first columns ofU s̃ are: (a)

∑K
l=1 |〈vc,l, us̃,j〉|2 = 1, j = 1, ..., K. [K

equations.] (b)〈us̃,i, vc,m〉 = 0, i = 1, ..., K; m = K + 1, ..., N. [K · (N − K)

equations.] (c)〈us̃,i, u,̃j〉 = δij , i, j = 1, ..., K. [(K − 1) + (K − 2) + ... +

(K −K + 1) + (K −K) = K2 − 1
2K(K + 1) equations.] To constructU s̃, there

areNK variables in theK first columns ofU s̃. After subtracting the number of
constraints, we have(K2 −K)/2 degrees of freedom, which is nothing more than
the dimension of the O(K) (i.e., orthogonal group) as expected. In the complex
case, there are2NK variables in the firstK columns ofU s̃ and it can be shown
that the solution generalizes to(K2 − 1) degrees of freedom that is the number of
free parameters of the SU(K). To summarize, to construct the optimal spreading
matrix with SVD decompositioñS = U s̃Σs̃V

H
s̃ , we only have to find the unitary

matrixU s̃ satisfying the above constraints on itsK first column vectors (i.e., range
of S̃). Moreover, there are(K2 − 1) degrees of freedom to select it.

Chip-wise Linear Precoding

CSI +
spreading

sequences
S = [s1,…,sK]

Mc

x = M cAb
P/SDownlink bit streams

b = [b1,…,bK]
T

A =
diag[A1,…,AK]

loading

Mc

Figure 5.7: Downlink chipwise linear precoding.

In chip-wise precoding, we do not explicitly use any spreading matrix at the
transmitter. This is, the precoder takesK symbols and outputs the spread vector of
lengthN . Hence the spreading and precoding operations are effectively combined.
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The received signal at thekth receiver is given by

rk[i] = DkAM cb[i] + nk[i], (5.37)

whereM c ∈ CN×K is the chip-wise precoding matrix. At each receiverk, the
matched-filtersk is applied tork[i]. By stacking the outputs of allK matched-
filters we obtain
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. (5.38)

Differently from the bit-wise system model, here the channel matrixHc is not a
square matrix but has dimensionK × N with N ≥ K.

Chip-wise MMSE Precoding:Using an argument similar to [99] and given in
Appendix C, the linear MMSE chip-wise precoder is given by

M c = H†
c = HH

c (HcH
H
c )−1. (5.39)

It is easily seen that the SINR for each user is given by

SINRk =
A2

k

σ2
, k = 1, ..., K. (5.40)

As before, if we assume that the required SINR for userk is γk, the required power
assigned to thek-th user becomesA2

k = σ2γk. Due to the precoding matrix, the
required total transmit power becomes

PT = tr(H†
cA

2H†H
c ) = tr(A2(HcH

H
c )−1). (5.41)

Remark:Note that under a fixed transmit power budgetPT , the linear MMSE pre-

coder is given byM c = βH†
c with β =

√
PT /tr(A2(HcH

H
c )−1) and SINRk =

(βAk)2

σ2 .

Proposition 4 The above chip-wise linear MMSE precoding method is equivalent
to the bit-wise linear MMSE precoding method with the optimal spreading matrix
at the transmitter̃S

∗
.

130



5.3 Linear Precoding versus Linear Multiuser Detection

Proof: Using the SVD ofHc = U cΣcV
H
c , the total transmit power required in

the linear MMSE chip-wise precoder is given by

PT = tr(H†
cA

2H†H
c ) = tr(V cΣ

−1
c UH

c A2U sΣ
−1
c V H

c )

= tr
(
A2Σ−2

c

)
=

K∑

i=1

A2
i λ

−2
c,i . (5.42)

Hence the transmit power with the chip-wise linear MMSE precoder is equal tothe
minimum transmit power in the bit-wise solution given in (5.34). ¥

Remark:The above result shows that it is not necessary to optimize the spreading
operation at the transmitter. That is, by applying the simple chip-wise precoding
operation we can obtain the optimal performance.

Chip-wise Wiener Precoding:The Wiener precoder given in (5.31) can be used
in our chip-wise scheme by subsitutingHb by Hc, resulting in the precoding
matrix M c ∈ CN×K . Next we propose a power loading algorithm that can be
applied to both the bit-wise and chip-wise Wiener precoders. Consider the signal
model (5.38). DefineG = HcM c. Then we can writeyk[i] = AkGkkbk[i] +∑K

i=1,i6=k AiGkibi[i] + vk[i], k = 1, ..., K. In the Wiener precoderM c is not the
pseudo-inverse ofHc and thereforeG is not a diagonal matrix. Hence, for a fixed
loading matrixA, the received SINR is given by

SINRk =
A2

k‖Gkk‖2

σ2 +
∑K

i=1,i6=k A2
i ‖Gki‖2

. (5.43)

To achieve the target SINRγk for each userk, we need to find the optimal powers
A2

k, k = 1, ..., K. Now, different from the linear MMSE precoding, the power
allocation problem is coupled with the problem of finding the optimal precoding
matrix. Following the ideas of [122] we propose the following iterative algorithm
to solve the joint problem. In the algorithm we first fix the power loading values
A(n) to find the precoding matrix and then, based on the precoding matrix, the
power loading values are updated. Simulations show that the algorithm converges
in about two or three iterations.

5.3.3 Simulation Results

Chip-wise precoding vs. bit-wise precoding:We first compare the bit-wise linear
MMSE precoding (without optimizing the spreading sequences at the transmitter)
with the chip-wise linear MMSE precoding. We assume that the target SINR per
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Algorithm 7 Power control algorithm for Wiener precoder

INPUT: Hc, σ
2 and γk, k = 1, ..., K;

FOR n = 1, 2, ... DO
D(n + 1) = HH

c Hc + Kσ2

PT (n)IN

β(n + 1) =

√
PT (n)

tr(J−2
(n+1)HH

c A2
(n)Hc)

M c(n + 1) = β(n + 1)J−1(n + 1)HH
c ;

G(n + 1) = HcM c(n + 1);
FOR k = 1 : K DO

A2
k(n + 1) = γk

∑K
i=1,i6=k A2

i (n)‖Gki(n+1)‖2+σ2

‖Gkk(n+1)‖2
;

END;
PT (n + 1) = E{‖M c(n + 1)A(n + 1)b‖2} = tr(M c(n + 1)A2(n +

1)MH
c (n + 1));

END FOR;
OUTPUT: precoding matrix M c(n + 1), and assigned
powers A(n + 1)

user is constant for all users,γk = 10dB, k = 1, . . . , K. We consider random
codes and Gold codes with spreading gainN = 31 and the total number of users
K = 15. We assume that each mobile user experiences an independent multipath
channelfk = [fk,1, ..., fk,L]T with L = 3 resolvable paths, and the transmitter has
perfect CSI of all users. The path gains are generated according tofk,i ∼ Nc(0, 1

L).
The results are averaged over 1000 different channel realizations.The cumulative
distribution function (CDF) of the required power at the transmitter to achievethe
minimum SINR at the receivers is shown in Fig. 5.8. It is seen that under this severe
multipath, the suboptimal bit-wise solution incurs a large performance degradation.

Chip-wise precoding with matched-filter vs. bit-wise precoding with RAKE re-
ceiver: The bit-wise linear MMSE precoding with a RAKE receiver was proposed
in [126]. The difference with the linear MMSE precoder considered in theSection
3.1 is that the receiver must also estimate the channel and apply a RAKE receiver,
consequently, increasing the number of pilot symbols and the complexity of the
receiver. We discuss this method only for comparison since we seek precoding
solutions with simple receivers with no receiver CSI. The RAKE receivercan be
implemented with a matched filter using the effective spreading sequence (i.e., the
k-th effective spreading sequence iss̄k = fk ⋆sk) instead of the original spreading
sequence. With our notation, thek-th effective spreading sequence is given by the
convolutions̄k = DkSek = Dksk, where we have limited the convolution toN
chip samples. Then, with the RAKE receiver the system model can be written as
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Figure 5.8: Chip-wise precoding vs. bit-wise precoding: CDF of the required
powerPT at the transmitter to achieveγk = 10dB, ∀k. Spreading gainN = 31,
K = 15 users.
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Figure 5.9: Chip-wise precoding with matched-filter vs. bit-wise precoding with
RAKE receiver: CDF of the required powerPT at the transmitter to achieveγk =
13dB,∀k. Spreading gainN = 31, K = 22 users.
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the transmitter to achieveγk = 13dB,∀k. Spreading gainN = 31, K = 15 users.
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.(5.44)

It is easily seen that the linear MMSE precoding solution still yieldsM b = H−1
b ,

whereHb is defined in (5.44). The signal to noise ratio for userk is

SINRk =
A2

k

σ2‖Dksk‖2
, k = 1, . . . , K, (5.45)

and the required power to achieve an SINR valueγk becomesA2
k = σ2γks

H
k DH

k F ksk.
Therefore, the total transmitted power is given by

PT = E{‖SH−1
b Ab[i]‖2} = tr(SH−1

b A2H−H
b SH). (5.46)
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Notice that the Wiener precoding solution can also be applied to the system in
(5.44).

Next we compare the chip-wise linear MMSE precoder given in Section 5.3.2
(which is equivalent to the optimal bit-wise linear MMSE precoder) with the above
bit-wise precoder with a RAKE receiver. The results are shown in Fig. 5.9. With
Gold sequences the RAKE receiver brings less than 0.5dB gain on average com-
pared with the simple chip-wise precoder with matched-filter receiver. Note that
the performance of a communication system is dominated by the outage events.
Given an outage probabilitypout, we define the corresponding outage powerPout

aspout = Pr{PT ≥ Pout}. It is seen that although on average the RAKE re-
ceiver is slightly better, it is more prone to outage. For instance, consider inthe
plot the 5% outage probability for which the chip-wise precoder requires around
34.5 dB whereas the RAKE receiver requires around 35.5dB. When considering
the 1% outage probability, this effect is more pronounced and the RAKE receiver
requires 5 dB more than the chip-wise precoder to achieve the same performance.
This effect will be more clear in the BER simulation results [cf. Fig. 12 and Fig.
13]. Interestingly, the performance of the precoder with RAKE receiver decays
considerably when random sequences are used. Therefore, the chip-wise precoder
is not only simpler (and it makes the receiver simpler since no CSI is requiredat the
receiver) but it also has excellent performance. From the above simulation results
we can conclude that: (a) The original bit-wise precoder with the matched filter at
the receiver is far from optimal in multipath channels; (b) The bit-wise precoder
with RAKE receiver makes the mobile units more complex and does not bring
much improvements with Gold sequences and it can be very detrimental with ran-
dom spreading sequences; (c) Therefore the proposed chip-wise precoding method
offers both low complexity and high performance.

Linear precoding vs. linear MUD – total transmit power:Next we compare linear
MUD with linear precoding assuming the same simulations parameters. We com-
pare the CDF of the required total powerPT at the transmitter to achieve a target
SINR γk = 13dB, ∀k, in each of the four following schemes: (a) linear decorre-
lating MUD [cf. Eq.(5.26)]; (b) linear MMSE MUD [cf. Alg. 6]; (c) chip-wise
linear MMSE precoder, [cf. Eq.(5.41)]; and (d) chip-wise Wiener precoder [cf.
Alg. 7]. Simulations are performed for spreading gainN = 31, with Gold and ran-
dom spreading sequences. Fig. 5.10 shows the results withK = 15 users and Fig.
5.11 shows the results withK = 27 users. It is seen that with Gold codes, MUD
is slightly better (although only 0.5dB of difference with linear precoding when
15 users are considered), whereas with random codes linear precoding largely out-
performs MUD. Notice that the Wiener precoder is slightly better than the MMSE
precoder. It is also seen that the total power required in the precoding solutions
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Figure 5.11: Linear precoding vs. linear MUD: CDF of the required power PT at
the transmitter to achieveγk = 10dB,∀k. Spreading gainN = 31, K = 27 users.

is almost independent of the chosen spreading sequences and therefore, an outage
event is less likely to occur. Although the linear MMSE MUD solution seems to be
quite effective with Gold codes, we recall that it is unlikely to be implemented in
the downlinks of most wireless systems due to the amount of required feedback in-
formation to implement perfect power control and other issues discussed inSection
1. Also notice that the linear decorrelator offers very poor performance in heavily
loaded systems, which does not occur to the linear MMSE linear precoder.

Linear precoding vs. linear MUD – BER performance:Fig. 5.12 and Fig. 5.13
show the BER performance of the various linear MUD and linear precodingmeth-
ods. The results are averaged over 100 channel realization and QPSKmodulation
is employed. Recall that the linear MMSE precoder is equivalent to the transmitter
counterpart of the decorrelator. For the decorrelating MUD we consider perfect
power loading to achieve the same SNR across the users. It is seen that thelinear
MMSE precoder with RAKE only performs slightly better with Gold sequences
in the very low SNR region. In all the other cases, the chip-wise linear MMSE
precoder obtains much better results. On the other hand, the chip-wise MMSE
precoder obtains much better results than the decorrelating MUD, especiallyin
heavily loaded systems. These results are due to the outage events of the decor-
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Figure 5.12: Linear precoding vs. linear MUD: BER performance with random
spreading sequences. Spreading gainN = 31, K = 15 andK = 27 users.
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Figure 5.13: Linear precoding vs. linear MUD: BER performance with Gold
spreading sequences. Spreading gainN = 31, K = 15 andK = 27 users.
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relating MUD observed in Fig. 5.10 and Fig. 5.11. Again, it is seen that the
BER performance of the chip-wise precoding solution is almost independent of the
chosen spreading sequence.

5.4 TH Precoding in Downlink CDMA

In this section we consider nonlinear precoding solutions based on TH precoding
that outperform linear precoding.

5.4.1 Downlink CDMA System Model with ISI

We consider aK-user discrete-time downlink CDMA system signaling over mul-
tipath channels. Denotebk[i] ∈ A as the information symbol of thek-th user
transmitted during thei-th symbol interval, whereA is a finite constellation set;
andb[i] = [b1[i], ..., bK [i]]T . Denote the symbol by symbol precoding operation
asx[i] = Ψ(b[i], ..., b[i − ν + 1]), wherex[i] is theK × 1 precoded symbol vec-
tor based onν information symbol vectors. DenoteN as the spreading factor and
sk = [sk,1, ..., sk,N ]T as the spreading waveform of thek-th user. Then the signal
transmitted from the base station during thei-th symbol interval can be written
asp[i] = Sx[i], whereS = [s1, s2, ..., sK ] . The vectorp[i] is passed through
a parallel-to-serial converter and transmitted over the wireless channel. The path
delays are assumed to be integral multiples of the chip interval. Denote the multi-
path channel seen by thek-th user asfk = [fk,1, fk,2, ..., fk,L]T , whereL is the
number of resolvable paths andfk,l is the complex fading gain corresponding to
thel-th path of thek-th user. We assume thatL ≤ N so that the delay spread is at
most one symbol interval.

Different from the previous section, here we also consider intersymbolinter-
ference (ISI). Denoterk[i] as theN × 1 received signal vector by thek-th user
during thei-th symbol interval (i.e.,N consecutive chip intervals). Then

rk[i] = DkSx[i] + D̄kSx[i − 1] + nk[i], (5.47)

wherenk[i] ∼ Nc

(
0, σ2

nIN

)
is the complex white Gaussian noise vector at the
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k-th receiver, and

Dk =




fk,1 0 · · · 0

fk,2 fk,1 0
.. .

...
...

. .. .. . 0

0 · · · fk,L · · · fk,1




,

N×N

and D̄k =




0 · · · fk,L · · · fk,2

0 · · · .. . .. .
...

...
. .. .. . 0 fk,L

0 · · · · · · 0




N×N

.

(5.48)
At the k-th mobile receiver, a matched-filter is applied to the received signalrk[i]

with this user’s signature waveform, i.e.,yk[i] = sH
k rk[i]. By stacking the matched-

filter output from all users into a single vector we have




sH
1 r1[i]

sH
2 r2[i]

...
sH

KrK [i]




︸ ︷︷ ︸
y[i]

=




sH
1 D1S

sH
2 D2S

...
sH

KDKS




︸ ︷︷ ︸
H

x[i] +




sH
1 D̄1S

sH
2 D̄2S

...
sH

KD̄KS




︸ ︷︷ ︸
¯H

x[i − 1] +




sH
1 n1[i]

sH
2 n2[i]

...
sH

KnK [i]




︸ ︷︷ ︸
v[i]

. (5.49)

A different situation is when instead of applying a fixed matched filter, the receiver
implements a RAKE receiver as proposed in [39]. The main difference is that each
receiver must also estimate the channel to apply the RAKE receiver, consequently,
increasing the number of pilot symbols and the complexity of the receiver. We
discuss this method only for comparison since we seek precoding solutions with
simple receivers without receiver CSI. The RAKE receiver can be implemented
with a matched filter using the normalized effective spreading sequence (i.e.,the
k-th effective spreading sequence iss̄k = fk ⋆sk) instead of the original spreading
sequence. With our notation, the normalizedk-th effective spreading sequence is
given by the convolution̄sk = 1

‖Dksk‖
Dksk, where we have limited the convolu-

tion toN chip samples.
The problem of the precoder design is to choose an appropriate precoding func-

tion Ψ(·) so that the output vectory[i] of the matched-filters is as close as possible
to the transmitted data vectorb[i].

5.4.2 Bit-wise Multiuser TH Precoding

If the ISI termH̄x[i − 1] were not present in (5.49) (this is the case when a guard
interval is inserted between consecutive symbols as considered in section5.3), then
the TH precoding scheme in [130] for multiple-input multiple-output (MIMO) sys-
tems can be directly applied here. In such a case the TH precoder consistsof a
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Figure 5.14: Bit-wise TH-precoded downlink CDMA system over multipath chan-
nels.
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feedforward (FF) filter matrixF and a feedback (FB) filter matrix(C − I), which
are obtained in the following way. Denote the LQ factorization of the matrixH as
H = WF H , whereF is unitary andW is lower triangular. The purpose of the
FF matrixF is to convert the interference into a causal form without increasing the
transmit power. This permits the cancellation of the causal interference using the
FB filter matrix(C − I). For the interference cancellation to be possible,C needs
to be monic lower triangular. To obtainC, decomposeW = G−1C whereG is
the diagonal matrix that makesC monic, i.e.,G = diag(w−1

1,1, ..., w
−1
K,K) where

wi,i denotes thei-th diagonal element inW . Denotex̃[i] as the output of the FB
filter. Then we havẽx[i] = b[i] − (C − I)x̃[i], and consequently, the equivalent
FB operation is̃x[i] = C−1b[i]. Thus, the input data symbolsb[i] are first passed
through the FB filterC−1 and then through the FF filterF , i.e.,x[i] = FC−1b[i],
followed by spreading (cf. Fig. 5.14).

Feedback and Modulo Operations:Due to the lower triangular structure of the
matrix C, the output of the FB filter̃xk, k = 1, ..., K, is successively generated
from the input data symbolsbk[i] ∈ A, and the previous output of the FB filter,
x̃ℓ[i], ℓ = 1, ..., k − 1, asx̃k[i] = bk[i] −

∑k−1
ℓ=1 ck,ℓx̃ℓ[i], k = 1, ..., K. To prevent

an increase in transmit power, a modulo operation with respect toA is applied. For
example, forM -QAM constellations, the modulo operation corresponds to adding
integer multiples of2

√
M to the real and the imaginary parts ofbk[i], so that the

resulting output signal falls in the range ofA. Then the output of the FB filter
becomes

x̃k[i] = bk[i] + dk[i] −
k−1∑

ℓ=1

ck,ℓx̃ℓ[i], k = 1, ..., K, (5.50)

wheredk[i] ∈ {2
√

M(dI + jdQ)|dI , dQ ∈ Z}. That is, instead of feeding back
bk[i], the symbolsvk[i] = bk[i] + dk[i] are passed throughC−1. If the receiver
applies the same modulo operation, then the effect is cancelled.

Cascade of Operations:At the k-th user’s receiver, a matched-filtersk, a scalar
operationgk = G[k, k] = w−1

k,k and the same modulo operation as applied at the
transmitter are applied to the received signalrk[i]. Therefore, without considering
the modulo operation, the end-to-end operation for allK users is given by

z[i] = G
(
HFC−1b[i] + v[i]

)
= b[i] + Gv[i]. (5.51)

and thek-th user makes a decision onbk[i] based on the decision statisticzk[i].
Note that the scalar gainsgk, k = 1, ..., K, can be either estimated at the mobile
receiver (automatic gain control) or broadcast by the base station.

TH-Precoding with ISI: Consider now (5.49) without dropping the ISI term. In
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Figure 5.15: Chip-wise TH-precoded downlink CDMA system over multipath
channels.

addition to the FF and FB filters discussed above based on the decomposition
H = G−1CF H , another FB filter is employed to cancel the ISI term̄Hx[i − 1].
Suppose that the previously precoded symbolx[i − 1] is first filtered by a filterV
and then substracted from the current data symbolb[i], as shown in Fig. 5.14. To
find the matrixV that minimizes the mean-square error (MSE) consider the error
signal at the decision device

e[i] =
(
GHFC−1(b[i] − V x[i − 1]) + Gv[i] + GH̄x[i − 1]

)

︸ ︷︷ ︸
z[i]

−b[i]. (5.52)

By the orthogonality principle,E{ezH} = 0, which leads to(GH̄−GHFC−1V ) =

0, i.e.,V = GH̄. Hence the end-to-end cascade of operations is given by

z[i] = G︸︷︷︸
rx

(
G−1CF H
︸ ︷︷ ︸

channel

(
F︸︷︷︸
FF

C−1
︸︷︷︸

cancel,FB

(
b[i] − GH̄x[i − 1]︸ ︷︷ ︸

cancel ISI

))
+ H̄x[i − 1]︸ ︷︷ ︸

ISI channel

+v[i]
)

= b[i] + Gv[i], (5.53)

where the modulo operation is not included for clarity. The transmitter and receiver
diagram for the bit-wise TH-precoded downlink CDMA system is shown in Fig.
5.14.
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5.4.3 Chip-wise Multiuser TH Precoding

In a similar manner to the chip-wise linear precoder scheme in Section 5.3.2, we
next propose a chip-wise TH precoding scheme that effectively combines precod-
ing and spreading. The diagram for this scheme is shown in Fig. 5.15. It is seen
that the precoder takes as input theK × 1 symbol vectorsb[i] and produces as
output theN × 1 chip vectorp[i] that is transmitted through the channel. At the
k-th user’s receiver, theN ×1 received signal vector corresponding top[i] is given
by

rk[i] = Dkp[i] + D̄kp[i − 1] + nk[i]. (5.54)

At each receiverk, the matched-filtersk is applied tork[i]. By stacking the outputs
of all K matched-filters we obtain




sH
1 r1[i]

sH
2 r2[i]

...
sH

KrK [i]




︸ ︷︷ ︸
y[i]

=




sH
1 D1

sH
2 D2

...
sH

KDK




︸ ︷︷ ︸
H

p[i] +




sH
1 D̄1

sH
2 D̄2

...
sH

KD̄K




︸ ︷︷ ︸
¯H

p[i − 1] +




sH
1 n1[i]

sH
2 n2[i]

...
sH

KnK [i]




︸ ︷︷ ︸
v[i]

.(5.55)

Note that different to Section 5.4.2, hereH is not a square matrix but has dimen-
sionK ×N with N ≥ K. Similarly as before, to apply TH-precoding we perform
the LQ decomposition onH = WF H = G−1CF . The decomposition is easily
obtained applying the Gram-Schmidt orthogonalization procedure on the rows of
H, where the resulting orthonormal vectors form the columns ofF of dimension
N ×K with F HF = IK . The Gram-Schmidt coefficients define theK×K lower
triangular matrixW . The diagonal matrixG = diag(w−1

1,1, ..., w
−1
K,K) converts

W into the monic lower triangular matrixC. In this way,F andC − I are the
FF and FB filter matrices respectively, and the FB matrixV = GH̄ cancels the
inter-symbol interference, as shown in Fig. 5.15. Thek-th diagonal element inG
corresponds to the scalar gain applied at thek-th user’s receiver.

5.4.4 Power Loading and Ordering

Power Loading

It is seen from (5.51) that the noise at each user’s receiver is amplifiedby the cor-
responding diagonal element ofG = diag(w−1

1,1, ..., w
−1
K,K) resulting in different

SNR (hence BER) performance among users. Power loading can be employed
to enforce the same performance across users. That is, the symbol vector b[i] is
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first multiplied by a diagonal matrixA = diag(A1, · · · , AK) with A2
k denoting

the power assigned to userk. The modulo operation for each user then needs to
take the loading value into account since the distance between the constellation
points is scaled by it. Given the total transmit powerPT , we then need to solve for
A1, · · · , AK such that

∑K
k=1 A2

k = PT , andA2
kw

2
k,k = η,∀k. The solution is

A2
k =

w−2
k,k∑K

k=1 w−2
k,k

PT , k = 1, ..., K, and η =
PT∑K

k=1 w−2
k,k

. (5.56)

The base station can broadcast the common constant valueη to all mobile receivers
and then the receivers can adjust their respectivewk,k to obtain the requiredAk

value in the modulo operator. Therefore, the loading operation only requires the
transmission of a constant valueη common to all mobile users.

Assuming thatE{|bk[i]|2} = 1, then the bit error probability of each user can

be well approximated byPe = αQ
(√

η/σ2
n

)
, whereα accounts for the increase

in number of nearest neighbors due to the modulo operation (e.g., in QPSKα = 2)
[57, 121]. Note that as in traditional TH-precoding withM -QAM constellations,
TH-precoding in ISI channels enhances the transmit power by a factor of β = M

M−1

[57, 121].
We next show that when orthogonal spreading sequences are employed, i.e.,

whenST S = IK , then we havew(b)
k,k ≤ w

(c)
k,k, for k = 1, ..., K, and therefore

η(b) ≤ η(c), where the superscriptsb andc denote bit-wise and chip-wise precoders,
respectively. First, comparing (5.49) and (5.55) we haveH(b) = H(c)S. Let

uK+1, ...,uN be(N −K) orthonormal vectors inV⊥ △
= RN\span(S). Define the

unitary matrixS′ = [s1, .., sK , uK+1, ...,uN ] = [S, U ] and let

X = [H(b), H(c)U ] = H(c)S′. (5.57)

SinceS′ is a unitary transformation, the rows inX andH(c) maintain the norm
and the angles. Therefore, if theK×(N−K) block matrixHcU has any non-zero
row (i.e., the projection of the rows ofHc onto span(U) is non-zero), the norm
of the corresponding row inH(b) will be smaller than inH(c). Now consider
the LQ factorizationH(c) = W (c)F (c)H , obtained using Gram-Schmidt on the
rows ofH(c), i.e.,{h(c)T

k }K
k=1. Each valuew(c)

k,k can be obtained as follows. As-
sume that at thek-th step of the Gram-Schmidt algorithm the orthonormal vectors
f

(c)
1 , ...,f

(c)
k−1 (i.e., firstk columns inF (c)) have been obtained fromh(c)

1 , ...,h
(c)
k−1,

and denoteUk−1 = span{f (c)
1 , ...,f

(c)
k−1}. Then, by simple inspection of the struc-

ture of the LQ factorizationw(c)
k,k is the norm off̃

(c)
k = projU⊥

k−1
{h(c)

k } where
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U⊥
k−1 = RN\Uk−1 andf

(c)
k = f̃

(c)
k /w

(c)
k,k. That is

w
(c)
k,k = ‖h(c)

k − projUk−1
{h(c)

k }‖ = ‖f̃ (c)
k ‖. (5.58)

On the other hand, the diagonal elements ofW (b) are similarly obtained from
[H(b), 0K,N−K ]. Then, using (5.57) and (5.58) we obtain

w
(b)
k,k = w

(c)
k,k − ‖projV⊥{f̃ (c)

k }‖, (5.59)

and hencew(b)
k,k ≤ w

(c)
k,k. Note that whenN = K and orthogonal spreading

sequences are employed,S is unitary andw
(b)
k,k = w

(c)
k,k for all k, and hence

η(b) = η(c) [cf. Fig. 9].
On the other hand, when the spreading sequencesS are non-orthogonal, it is

not true thatw(b)
k,k ≤ w

(c)
k,k. However, we conjecture thatη(b) ≤ η(c) still holds.

User Ordering

We can optimize the system BER performance by optimizing the diagonal elements
of the matrixW such that the common SNR of all usersη is maximized. Notice
that W is obtained from the LQ decomposition ofH. The LQ decomposition
is essentially the Gram-Schmidt orthogonalization of the rows ofH. The k-th
diagonal element ofW is the length of the projection of thek-th row vector of
H onto the orthogonal complement of the space spanned by the first(k − 1) row
vectors already orthogonalized. Different ordering in the orthogonalization process
resulting in different diagonal values ofW , and hence different values ofη. Let
P be the set of theK! possibleK × K row permutation matrices. Then for any
P ∈ P, PH is a row-permuted version ofH, which corresponds to a particular
ordering of theK users in TH-precoding. Denotewk,k(P ) as thek-th diagonal
element ofW resulting from the LQ decomposition ofPH. Then the optimal
row permutation matrix is given by

P opt = arg max
P ∈P

PT∑K
k=1 w−2

k,k(P )
= arg min

P ∈P

K∑

k=1

w−2
k,k(P ). (5.60)

With the optimal permutationP opt, the following modifications are needed at the
transmitter and receiver: (1) Perform the LQ decomposition asPH = WF H ,
or H = P T G−1CF ; (2) Apply GP at the receiver (i.e., apply the scalar gains
according to the optimal order); (3) The feedback matrix for removing the ISI be-
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comesV = GPH̄. With these modifications, the cascade of operations becomes

z[i] = GP︸︷︷︸
rx

(
P T G−1CF H
︸ ︷︷ ︸

channel

(
F︸︷︷︸
FF

C−1
︸︷︷︸

cancel,FB

(
Ab[i] − GPH̄x[i − 1]︸ ︷︷ ︸

cancel ISI

))

+ H̄x[i − 1]︸ ︷︷ ︸
ISI channel

+v[i]
)

= Ab[i] + GPv[i]. (5.61)

Note that the matricesG, F andC above are obtained fromPH.
Clearly an exhaustive search solution to (5.60) is computationally prohibitive.

We next propose a suboptimal algorithm for an approximate solution to (5.60)that
performs especially well in the chip-wise precoder whenN > K. First note that∏K

k=1 w2
kk is invariant to the permutation matrixP . This result is easily proved

recalling thatPH = WF H , with orthonormal columns inF , then

det(HHH) = det(P T ) det(W ) det(W H) det(P ) =
∏K

k=1 w2
k,k. (5.62)

We first consider the simplest case withK = 2 users, thenH contains two rows
denoted byhT

1 andhT
2 . Without loss of generality, assume that‖h2‖ < ‖h1‖. Next

we show that to maximize the objective function in (5.60), we should start withhT
2 ,

i.e., start by orthogonalizing the row with minimumwk,k. Recall thatwk,k is the
length of the projection of thek-th row of H onto the orthogonal complement of
the subspace spanned by the previous(k − 1) rows already orthogonalized. Then
we need to show that

1

‖h2‖2
+

1

‖h1 − h
H
2 h1

‖h2‖2
h2‖2

<
1

‖h1‖2
+

1

‖h2 − h
H
1 h2

‖h1‖2
h1‖2

. (5.63)

From (5.62), the products of the denominators on both sides in (5.63) are equal.
Therefore, (5.63) is equivalent to

‖h1 −
hH

2 h1

‖h2‖2
h2‖2 + ‖h2‖2 < ‖h2 −

hH
1 h2

‖h1‖2
h1‖2 + ‖h1‖2 (5.64)

which yields

|hH
2 h1|2
‖h2‖2

>
|hH

2 h1|2
‖h1‖2

, (5.65)
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which is true by the assumption that‖h2‖ < ‖h1‖.
WhenK > 2, we adopt the greedy solution given in Algorithm 8 that at the

k-th iteration, orthogonalizes the row with minimumwk,k. In other words, the
algorithm selects the row that is the closest to the subspace spanned by the rows al-

ready chosen. In the algorithm,µp,j = ĥ
H

p hj andΘi represents the subset of rows
already orthogonalized up to thei-th step. Note that besides finding the ordering
P , the algorithm also provides the LQ decompositionPH = WF H , sinceW is
given by the GS coefficientsµij and thei-th row of F is given byĥi. Clearly the
complexity of the above search algorithm isO(K2), which is significantly lower
than theO(K!) complexity of the exhaustive search method.

Algorithm 8 Greedy ordering and LQ decomposition

INPUT: row vectors hT
1 , ...,hT

K in H

P = 0K×K

k1 = arg mini≤K{‖hi‖};
ĥ1 = hk1/‖hk1‖;P (1, k1) = 1; Θ1 = {k1};
FOR i = 2 : K
FOR EVERY j ∈ {{1, ..., K}\Θi−1}

uj = hj −
∑i−1

p=1 µp,jĥp;
END FOR
ki = arg minj{‖uj‖};
ĥi = uki/‖uki‖; Θi = {Θi−1} ∪ {ki};
P (i, ki) = 1;

END FOR
OUTPUT: matrix P and LQ decomposition of PH.

5.4.5 Simulation Results

TH-Precoding with Perfect Channel Knowledge

We first provide simulation results to compare the BER performance of different
precoding techniques. Each user employs a normalized Hadamard sequences of
lengthN = 8 as its spreading signature. The number of users isK = 3. All
users employ QPSK modulation. We assume that each mobile user experiencesan
independent multipath channelfk = [fk,1, ..., fk,L]T with L = 3 resolvable paths
and the transmitter has perfect channel state information of all users. Thepath
gains are generated according tofk,i ∼ Nc(0, 1

L). For each data block, independent
channel realizations are simulated for each user and the results are averaged over
1000 blocks.

Figure 5.16 shows the BER performance of the bit-wise TH-precoder proposed
in Section 5.4.2 and the chip-wise TH-precoder proposed Section 5.4.3. Loading
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Figure 5.16: BER performance of different precoding schemes withK = 3 users,
spreading gainN = 8, number of pathsL = 3.
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Figure 5.17: BER performance of different precoding schemes withK = 7 users,
spreading gainN = 8, number of pathsL = 3.
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Figure 5.18: The received SNR valueη after loading as a function of the number
of usersK, spreading gainN = 8.

is employed in both schemes. For both methods, we consider the cases of no-
ordering, optimal ordering (i.e., exhaustive search) and the suboptimal ordering
method given in Algorithm 8. For comparison purposes, we also show the perfor-
mance of the linear block-wise precoding method given in [126]. In the figure, the
solid lines correspond to the approximate BER formulaPe = αQ(

√
η/σ2

n), and
the symbol marks correspond to the simulated results. It is seen that the analytical
BER expression matches very well with simulation results. Both nonlinear TH-
precoders significantly outperform the linear precoder. Comparing bit-wise and
chip-wise precoding schemes, the chip-wise precoder offers better performance.
Moreover, ordering has a significant effect on the bit-wise TH-precoder; whereas it
does not make a notable difference to the chip-wise TH-precoder (for small number
of usersK). Therefore, the chip-wise TH-precoder not only offers superiorper-
formance but is also computationally less complex since ordering is not required.
Furthermore, the greedy ordering algorithm provides performance close to that of
the exhaustive search method.

We repeat the simulations with the same parameters except that the number of
users is increased toK = 7. Figure 5.17 shows that both TH-precoding schemes
perform very well even in such highly loaded systems. When the number ofusers
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is high, ordering brings a significant improvement for both bit-wise and chip-wise
precoders, although the complexity of the exhaustive search method becomes pro-
hibitive (i.e., it involves computingK! = 5040 LQ decompositions of7× 7 matri-
ces). The suboptimal ordering algorithm performs especially well in the chip-wise
precoder and it requires less than 7 LQ decompositions. Comparing Fig. 5.16 and
Fig. 5.17, we observe that the performance difference between the two precoders
is reduced as the number of users increases.

Next we illustrateη in (5.56) obtained by the two TH-precoding solutions for
different number of users whenL = 3 andN = 8. For both methods we show theη

value for cases of no-ordering, optimal ordering and suboptimal ordering, averaged
over 100 different channel realizations. In the simulations, we keepPT /K fixed
to unit. Figure 5.18 shows that as the difference betweenN andK is reduced, the
chip-wise solution decreases its performance, and eventually, whenN = K, both
the bit-wise and the chip-wise solutions are equivalent. When the number of users
K is large, ordering improves the performance considerably. As mentioned before,
the greedy ordering algorithm performs especially well whenN > K.
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Figure 5.19: chip-wise TH precoding with fixed matched filter at the receiver vs.
bit-wise TH precoding with RAKE receiver. Spreading gainN = 8 andK = 4
users.

Next we compare our chip-wise TH-precoder proposed in Section 5.4.3, which
does not require CSI at the receiver, with the bit-wise TH-precoder proposed in
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Figure 5.20: chip-wise TH precoding with fixed matched filter at the receiver vs.
bit-wise TH precoding with RAKE receiver. Spreading gainN = 8 andK = 7
users.
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[130], which implements a RAKE receiver at each mobile user (i.e., mobile users
must estimate the channel). The results are shown in Figure 5.19 and Figure 5.20
for K = 4 andK = 7, respectively. It is seen that the TH-precoder with a RAKE
receiver only performs slightly better in heavily loaded systems. For fewerusers,
our chip-wise TH precoder obtains better results. Therefore, the chip-wise TH
precoder is not only simpler but it also has excellent performance.

TH-Precoding with Channel Prediction

A crucial assumption in the development of the precoding techniques in the previ-
ous section is that the transmitter has perfect knowledge about the multipath chan-
nel states of all mobile users. In TDD wireless systems, the downlink channel
state information is available at the transmitter (which is estimated from the uplink
transmission) as long as the coherence time of the channel is larger than the time
difference between the uplink and downlink slots. On the other hand, in fast fad-
ing channels, the channel state that has been estimated during an uplink slotmay
have changed and the estimate may no longer be accurate for precoding in the next
downlink slot. In this case, channel prediction techniques can be used to estimate
the future downlink channel state from the current and previous uplink channel
estimates, by exploiting the second-order statistics of the fading channel [31]. As-
sume that the complex Gaussian fading process of each channel pathfk,i(t) fol-
lows the Jakes’ model [68] with the maximum Doppler spreadfd, that is, we have
E{fk,i(t1)fk,i(t2)} = ν2

k,iJ0(2πfd|t1 − t2|), k = 1, . . . , K; i = 1, . . . , L, where
J0(·) is the zeroth-order Bessel function of the first kind.������Uplink

slot
Downlink

slot
Uplink

slot
Downlink

slot

...

guard
 interval

time
T

Figure 5.21: Time division duplexing.

Assume that in the TDD system the uplink and downlink slots are separated
by T seconds; and the base station estimates the multipath channel of each user
every uplink slot. We set the time of the latest channel estimation as the ref-
erencet = 0. Then the base station will estimate the channel state at times
t ∈ {0,−2T,−4T, ...}. We consider channel estimation based on pilot sym-
bols and the channel estimate has the formf̂k,i(t) = fk,i(t) + ξk,i(t), where
ξk,i(t) ∼ Nc(0, γ2

k,i). We assume that the base station estimates the channel once
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per slot and these estimates will be used to predict the channel for data precoding
in the next downlink slot.
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Figure 5.22: BER performance of chip-wise TH-precoding in time-varyingchan-
nels.

Assume that after the current channel estimate at timet = 0 the base station
predicts each channel path at timeτ which is called the prediction depth (e.g.,
τ = T whereT is the slot duration). The prediction is implemented using aP -th
order finite impulse response (FIR) filter

f̃k,i(τ) =
P∑

p=0

wk,i(p)∗f̂k,i(−p2T ) = wH
k,if̂k,i, (5.66)

wherewk,i
△
= [wk,i(0), wk,i(1), . . . , wk,i(P )]T , f̂k,i

△
= [f̂k,i(0), f̂k,i(−2T ), ..., f̂k,i(−P2T )]T .

The optimal filter that minimizes the mean square errorζpred , E{|fk,i(τ) −
f̃k,i(τ)|2} is given bywk,i = R−1

k,irk,i, where the entries ofRk,i and rk,i are
given respectively by[Rk,i]p,q = ν2

k,iJ0(2πfd|p − q|2T ) + γ2
k,iδp,q, and[rk,i]p =

ν2
k,iJ0(2πfd(τ + p2T )), p, q = 0, 1, . . . , P.

In the prediction filter described above, we use estimates of the channel that
have been sampled every2T seconds. This sampling rate is in general much higher
than the required minimum Nyquist sampling rate equal to twice the Doppler fre-
quency2fd. It has been shown in [31] that such oversampling could be unfavorable
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when the order of the filterP is fixed. Assume that the base station is able to es-
timate the channel every2T seconds. Define the optimal sampling period asδ2T ,
whereδ is a positive integer. Then for fixed values of the prediction depth, noise
variance, Doppler frequency and filter order, we can compute the MSE of the pre-
diction filterζpred for different integer values ofδ and select the one that minimizes
ζpred. On the other hand, it has been observed that when the system parameters are
fixed, ζpred decreases with the order of the prediction filterP . However, after a
certain filter order,ζpred saturates since the noise in the previous channel estimates
dominates in the MSE of the prediction error. Therefore, it is convenient toevalu-
ate the MSE expression for different values ofP and choose the shortest one that
getsζpred close to the saturation level.

As in the WCDMA TDD mode, we assume that the uplink and downlink are
time multiplexed into a carrier centered atfc = 2GHz. The frame length is 10ms,
which is subdivided into 15 slots that can be allocated for either uplink or down-
link. Therefore the uplink and downlink transmission can be interleaved in bursts
of T = 666.7µs. As in Section 5.4.5, we considerN = 8, L = 3 andν2

k,i = 1/L.
The fading process of each channel path is formed by samples of a stationary zero-
mean complex Gaussian process with autocorrelation functionJ0(2πfdt) [68] and
is generated according to the method described in [29]. We consider the perfor-
mance of the chip-wise TH-precoding technique with loading and ordering.We
assume that all the mobile users are moving atv = 36Km/h. The previous channel
estimates{f̂k,i(t), t = 0,−2T, ...} are given by the true channel values corrupted
by complex Gaussian noise with varianceγ2

k,i = 0.001. Evaluating the MSE ex-
pressionζpred for different orders of the prediction filter we find that a very short
prediction filter withP = 2 obtains good results. Evaluatingζpred we find that
slightly better results can be obtained if the channel is sampled withδ = 2. We
evaluate the results over 10 different initial channel realizations. For each channel
realization, we consider 200 slots of lengthT = 666µs (i.e., 200 channel varia-
tions) and in each slot we send 1000 QPSK symbols per mobile user. In the results
we consider perfect channel estimation (genie aided), old channel estimation τ sec-
onds before, and channel prediction with the optimal sampling (δ = 2) and with
the regular sampling (δ = 1). Figure 5.22 shows that the prediction algorithm gives
very good results even considering that all the users are moving atv = 36Km/h
and the prediction is based on noisy channel estimates. Notice that without channel
prediction and only using old channel estimates, the performance would decrease
considerably in these scenarios representing very high mobility.
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5.5 Downlink User Scheduling for Linear Precoding

Scheduling is a technique to increase the utilization of the wireless medium. For
example, in the recently proposed multiuser opportunistic scheduling scheme [85]
the schedulers opportunistically exploit channel variations of multiple usersto se-
lect thebestset of users to transmit data subject to fairness (e.g., maximum de-
lay), QoS (e.g., minimum SNR), and resource constraints (e.g., maximum power
available at the transmitter) [84], to obtain a significant increase of total system
throughput. In general the number of users that can be simultaneously supported
by the system is small and thus, there are a large number of possible user subset
selections when the number of users in the system in large. Straightforwardim-
plementation of the user subset selection by simple exhaustive enumeration suffers
from high computational complexity.

In this section, we propose user subset selection algorithms that can be natu-
rally implemented in precoded systems. We assume that the satisfaction that a user
receives in a system (i.e., the utilitiy) is a binary function that takes zero valuewhen
the SINR is below a threshold and takes unit value when the SINR is above the
threshold. This is appropriate for voice or video-on-demand applicationsin which
the SINR above a threshold will not provide additional benefit and the SINR be-
low the threshold leads to unintelligible speech or video. In this section we restrict
ourselves to the linear MMSE precoder. One important property of the chip-wise
linear precoder is that in the channel matrixHc, each row depends only on the
spreading sequence and channel of one particular user (actually, each row inHc

is the effective spreading sequence, i.e., the convolution between the channel re-
sponse and the spreading sequence of that particular user). Note thatin the bit-wise
solution this is not the case and each row depends on the spreading sequence of all
the active users. This property will allow us to propose low-complexity algorithms
for the chip-wise precoder.

Maximum User Allocation – Optimal Solution

Our objective is to accommodate as many users as possible such that if userk is
active, SINRk ≥ γ, assuming that the base station is constrained to a maximum
power budgetPT . Recall that in the chip-wise solution, for a fixed power budget
PT , the SINR for thek-th user is given by

SINRk =
β2A2

k

σ2
n

, with β =

√
PT

tr(A2(HcH
H
c )−1)

. (5.67)

Since a same target SINR valueγ is assumed for all users, the users should have
the same transmit power and hence can assumeAk = 1,∀k. Therefore, the QoS
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constraintSINRk ≥ γ translates into the following condition onHc:

tr((HcH
H
c )−1) ≤ PT

σ2γ
. (5.68)

DenoteU as the total number of users in the network,θ as the user subset
selected, and|θ| as the number of users inθ (e.g., selecting the first and third users
corresponds toθ = {1, 3} and |θ| = 2). The channel matrix corresponding to
the active users isHθ whereHθ is the submatrix ofHc (whereHc hasU rows)
obtained from the rows indicated inθ. LetΘ be the set of all possible user subsets.
Therefore, the total number of possible user subsets is|Θ| =

∑U
k=0

(
U
k

)
. Denote

Ω as the set of feasible user selections inΘ, i.e.,

Ω = {θ ∈ Θ : SINRk ≥ γ, ∀k ∈ θ} = {θ ∈ Θ : tr((HθH
H
θ )−1) ≤ PT /(σ2γ)}.

(5.69)
Then the optimization problem becomes findingθ ∈ Ω such that|θ| is maximized.
This is a highly complex combinatorial problem since for each possible solution
in Θ, a matrix pseudoinverse needs to be computed. Thus the total number of
complex multiplications required is

∑|θ|+1
k=1

(
U
k

) (
k3 + Nk2

)
.

Low Complexity Algorithms

Next we propose low-complexity algorithms that employ a greedy approach toadd
or remove one user at a time. As mentioned before, in addition to being the optimal
linear precoder, the advantage of using the chip-wise linear precoding method is
that adding or removing one user corresponds to adding or removing a row to
the channel matrixHc and the rest of the rows remain unchanged. Note that the
performance only depends on the selected users and not on the order inwhich the
users are selected. This is, for any reordering in rows ofHc, the required power is
equivalent. Any reordering of the rows can be expressed asH ′

c = PHc whereP

is a permutation matrix and henceP−1 = P H . Therefore, tr
(
(H ′

cH
′H
c )−1

)
=

tr
(
(PHcH

H
c P H)−1

)
= tr

(
(HcH

H
c )−1

)
.

Maximum Frobenius Norm Criterion:An intuitive and classical approach in user
allocation is to activate the users that see the best propagation channel. Two ap-
proaches can be taken: incremental allocation and decremental allocation.In the
incremental allocation algorithm, the base station starts without selecting any user.
At each step of the algorithm, it selects the user with maximum channel gain (i.e.,
maximum norm of the corresponding row of the chip-wise matrix). Then, the algo-
rithm checks if (5.68) holds. If it does, the corresponding user is allocated. This is
repeated until no more users can be allocated, i.e., until (5.68) no longer holds, or
|θ| = min(U, N). On the other hand, the decremental algorithm starts by assum-
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ing that all|θ| = min(U, N) users with best channels are active. And it removes
one user at a time until (5.68) is satisfied. The removed user is the one with the
worst channel quality, i.e., with the lowest channel gain. Obviously if the number
of active users is expected to be small, it is better to use the incremental algorithm.
The main disadvantage of the user allocation approaches described above is that
for every new user added, the matrix inverse in (5.68) cannot be reused.

Geometrical Criterion - Incremental Selection:We have already mentioned that
users with good channel qualities (i.e., large path gains) are in general good can-
didates to be allocated. However, due to the precoding operation, a matrix inverse
needs to be computed. Therefore, users with very large path gains but with highly
correlated effective signature sequences (i.e., rows in the matrixHc close to paral-
lel) can have a very negative effect in the required power at the transmitter. There-
fore here we propose to select users based not only on the gains but also on the
correlations (i.e., angles) between the respective effective signature sequences.

Assume thatK = |θ| users have already been allocated, i.e.,Hθ with rows
h1, ...,hK . Then we propose to select a new rowhi from the(U − K) remaining
ones (i.e., users not allocated yet) such that the projection onto the orthogonal
complement of the already selected rows is maximum, i.e.,

max
i

‖π⊥(hi)‖, i ∈ {non-selected users}, (5.70)

whereπ⊥(hi) denotes the projection ofhi on span(h1, ...,hK)⊥ and(·)⊥ denotes
the orthogonal complement. We consider a greedy incremental approach.The al-
gorithm starts by selecting one row with the maximum norm and at every iteration
the algorithm adds the row with the largest projection onto the orthogonal comple-
ment of the subspace spanned by the rows already selected. This selection can be
implemented with the help of the Gram-Schmidt procedure. At every step of the
algorithm, (5.68) needs to be checked to see if a new user can be allocated given the
total power budgetPT . For every new user added, (5.68) requires a matrix inverse.
Next, we propose a method to compute the matrix inverse recursively.

Denote the LQ decomposition of aK × N matrix asH = LQ whereL is
K × K lower left triangular andQ has dimensionK × N with QQH = IK . The
LQ decomposition can be obtained using Gram-Schmidt where the row vectorsin
Q, i.e.,q1, ..., qK are given by the recursion

q1 = h1/‖h1‖, and qi =
hi −

∑i−1
j=1 µijqj

‖hi −
∑i−1

j=1 µijqj‖
, for i = 2, ..., K, (5.71)

where the Gram-Schmidt coefficients form the lower triangular matrixL and are
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given by

µij = 〈hi, qj〉, j < i, and µii = ‖hi −
i−1∑

j=1

µijqj‖. (5.72)

By simple inspection, we have that[L]ij = µij , andµjj is the value required in
(5.70). Therefore, the LQ decomposition does not require any extra computations
if we use the greedy geometrical user allocation.

Assume that one knows the LQ decomposition ofH. Then, (5.68) can be
evaluated using

tr
(
(HHH)−1

)
= tr

(
(LQQHLH)−1

)
= ‖L−1‖2

F . (5.73)

Note that (5.73) can be computed recursively as follows. Assume that we have
computedL−1

i−1 of size(i − 1) × (i − 1). Then, after selecting the new user (i.e.,
add one row toH), the (i − 1)-th leading submatrix ofL−1

i is given byL−1
i−1

available from the previous iteration and the last row inL−1
i is given by

l−1
i =

1

µi,i
(ei −

i−1∑

j=1

µijl
−1
j ), (5.74)

which follows from the Gauss-Jordan elimination and the relationship betweenthe
Gram-Schmidt coefficients and the triangular matrixL. Hence (5.73) is computed
recursively as

‖L−1
i ‖2

F = ‖L−1
i−1‖2

F + ‖l−1
i ‖2

2. (5.75)

Finally a low-complexity incremental selection algorithm for user allocation is
summarized in Algorithm 3. Clearly, the complexity is dominated by the com-
putation of all the Gram-Schmidt coefficients in step(♦) computed using (5.72),
which requires

∑|θ|
i=1 N(U − i)i complex multiplications. The total complexity of

the algorithm is upper bounded byNU |θ|2 complex multiplications.

Simulation Results

Next we give some simulation results to illustrate the performance of the different
user allocation algorithms when the chip-wise linear precoder is employed.

We first consider the average number of users that each algorithm is ableto
allocate with respect to the total available power at the transmitterPT . We set
γ = 12dB. We assume that each mobile user experiences an independent multipath
channelfk = [fk,1, ..., fk,L]T with L = 3 resolvable paths and the transmitter
has perfect CSI of all users. The path gains are generated according to fk,i ∼
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Algorithm 9 Low-complexity user allocation based on geometrical criterion
INPUT: all row vectors h1, ...,hU, γ, PT, σ.
θ = ∅; Pr = 0; %start without any user selected

FOR i = 1, 2, ...,
FOR EVERY j ∈ {{1, ..., U}\θ} DO % every user not selected

yet

bj = hj −
∑i−1

p=1 µj,pqp (♦)
END FOR
ki = arg maxj{bjb

H
j }; %user with max projection onto

orthogonal complement

qi = bki/‖bki‖ ; %the new Gram-Schmidt vector

l−1
i = 1

µi,i
(ei −

∑i−1
t=1 µi,tl

−1
t ); %last row in the new L−1

Pr = Pr + σ2γ‖l−1
i ‖2; %power required if we allocate this

user ki

IF Pr < PT

θ = θ ∪ ki; %allocate this user and continue

IF |θ| = min(U, N) THEN BREAK; %finish the algorithm

ELSE
Pr = Pr − σ2γ‖l−1

i ‖2;
BREAK; % finish the algorithm

END IF
END FOR
OUTPUT: selected users θ, required power Pr, selected
submatrix Hθ and H

†
θ = QHL−1.

Nc(0, 1
L). We consider random spreading sequences with spreading gainN = 8,

andU = 12 available users in the region. Fig. 5.23 illustrates the average number
of users allocated, i.e.,|θ| with respect toPT by different algorithms. It is seen that
the low-complexity geometrical incremental algorithm achieves almost the optimal
performance. Note that for instance, withPT = 26dB, the optimal algorithm
allocates around 7 users and it would require

∑8
i=0

(
12
i

)
(i3 + Ni2) = 1931664

complex multiplications, whereas the complexity for the proposed low-complexity
algorithm is upper bounded byNU |θ|2 = 6144 complex multiplications. As the
number of users increases, the optimal solution becomes intractable. It is seen that
under this scenario, the maximum Frobenius norm selection criterion incurs aloss
of between 2-4dB.

Next, to illustrate the effectiveness of the different algorithms, we consider a
hypothetical scenario in whichK users need to be allocated. TheK users are
chosen among theU available users in the network using either optimal selec-
tion, maximum gain selection, or low-complexity geometrical selection. We look
at the total power required at the transmitterPT to obtainγ = 12dB across the

160



5.5 Downlink User Scheduling for Linear Precoding

17 18 19 20 21 22 23 24 25 26 27
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Total power at transmiter P
T
 (dB) 

N
um

be
r 

of
 u

se
rs

 th
at

 c
an

 b
e 

al
lo

ca
te

d 
−

 m
ea

n

Random Seq, U =12 and N = 8

: Maximum Frobenius Norm Algorithm
: Low Complexity Geometrical Algorithm
: Optimal Algorithm

Figure 5.23: Average number of users allocated with respect to the total transmit
power. Random codes, spreading gainN = 8, U = 12 available users in the
network, and target SINRγ = 12dB.
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Figure 5.24: CDF of the required total power at the transmitter to allocate the best
K = 4 users with target SINR per userγ = 12dB. Hadamard codes, spreading
gainN = 8, U = 8 available users.
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Figure 5.25: CDF of the required total power at the transmitter to allocate the best
K = 4 users with target SINR per userγ = 12dB. Random codes, spreading gain
N = 8, U = 16 available users.
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5.6 Conclusions

K selected users. Fig. 5.24 shows the results withU = 8 available users, and
Hadamard spreading sequences withN = 8. It is seen that the geometrical algo-
rithm again achieves almost the optimal performance. Fig. 5.25 shows the results
with U = 16 available users, spreading gainN = 8 andK = 4. It is seen that
as the number of possible combinations increases, the maximum Frobenius norm
criterion incurs performance loss whereas the the geometrical algorithm is quite
robust. Note that withU = 16 andK = 4, the optimal algorithm would compute(

U
K

)
(NK2 + K3)= 349440 complex multiplications, whereas the low complexity

algorithm would require less thanK2NU = 2048 complex multiplications.

5.6 Conclusions

In this chapter, we have first obtained the capacity results for downlink CDMA sys-
tems employing either multiuser detection or transmitter precoding. It is seen from
numerical examples that these two techniques offer comparable capacity regions.
However, multiuser detection at the downlink mobile receiver may not be practi-
cal due to the requirement that each mobile receiver should have the knowledge of
all users’spreading sequences and channel states, as well as the limitedsignal pro-
cessing capability of the mobile receiver. On the other hand, transmitter precoding
is an attractive solution for systems employing time-division multiplexing, where
uplink and downlink channels are reciprocal. Then we have compared theperfor-
mance of linear precoding and linear MUD in the downlink of frequency selec-
tive TDD-CDMA systems. We have proposed different linear precodingschemes
and our results reveal that in general precoding can outperform the more com-
plex MUD. Moreover, we have shown that the proposed chip-wise linearMMSE
precoding method is optimal in the sense that it requires the minimum total trans-
mitted power to meet a certain receiver QoS performance. Later, we have devel-
oped nonlinear multiuser precoding algorithms based on the Tomlinson-Harashima
precoding technique. Our precoding algorithms effectively remove multi-user in-
terference, inter-chip interference and inter-symbol interference in the downlink of
CDMA systems. The main property of the proposed algorithms is that they can be
implemented at either bit level or chip level, and they are considerably less com-
plex compared with the block-wise linear precoders in the literature. We havealso
proposed a suboptimal user ordering algorithm for power loading which further
optimizes the system performance. Channel prediction for precoding hasalso been
discussed. Simulations results have shown that the proposed precoding techniques
offer excellent performance even in heavily loaded systems or time-varying scenar-
ios. These results strongly motivate the use of transmit precoding in the downlink
of TDD-CDMA systems due to the multiple advantages over MUD, including the
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5.6 Conclusions

simple implementation of power control and user scheduling, and the reductionof
the power consumption and complexity at the mobile unit. Finally, in conjunction
with the precoding techniques we have proposed very low-complexity opportunis-
tic user scheduling algorithms to maximize the utilization of the wireless resources.
Simulations results have shown that the proposed algorithms obtain nearly optimal
performance.
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Chapter 6

Conclusions and Future Work

This dissertation has considered communications through MIMO channels which
encompasses many different scenarios including multiple antenna systems and
multiple-user communications.

For the multiple antenna scenarios presented in Chapter 3, we have developed
adaptive antenna selection algorithms that converge to optimal solutions based on
various performance criteria in situations where only noisy estimates of the chan-
nels are available. We have also developed antenna selection algorithms fortime-
varying channels where the optimal antenna subset will change only gradually.
Furthermore, we have considered new selection criteria which permit suboptimal
algorithms to be developed that yield a considerable reduction in complexity with
only a small loss in performance.

Chapter 4 has proposed a systematic method to design LAttice Space-Time
(LAST) codes that minimize the error rate when the structure of the receiver and the
statistics of the channel are known a priori. It has been shown that our LAST codes
outperform other LAST codes proposed in the literature and also that the LAST
code optimization method is flexible enough to be applied in different detector
schemes and for different channel statistics.

For the multiple user scenario, Chapter 5 has shown that precoding schemes are
an effective technique for the downlink of TDD-CDMA systems. In particular, we
have considered precoding schemes with very simple receivers, i.e., having only a
fixed matched-filter corresponding to theownspreading sequence and without em-
ploying CSI. This translates into a power consumption reduction and a decrease in
cost of terminals since they do not have to perform sophisticated signal processing
for channel estimation and interference mitigation. Note that variations in channel
conditions and the number of active users in the network do not affect thereceiver
operations. Power control is also easy to implement with precoding since the base
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station has information about the quality of each link and so additional feedback in-
formation from the terminals is not required in order to control the transmit power
from the base station.

Future Work

The work presented in this thesis can be extended in many ways.
In Chapter 3, antenna selection algorithms to reduce the cost of multiple an-

tenna systems while improving the performance has been considered. Different
antenna selection criteria (e.g., minimum error rate, maximum SNR, etc.) might
be required for each of the different space-time schemes proposed in the literature.
Moreover, fast selection algorithms for each of these criteria would be valuable
since they would permit antenna selection to be implemented in practical systems
when there are a large number of antenna subsets available.

In Chapter 4, a new systematic stochastic optimization method has been pre-
sented to minimize the error rate of LAST codes. This method departs from the
typical optimization approach to design space-time codes based on number theo-
retic tools. It is possible that our powerful optimization method and others em-
ploying a similar rationale could be used to optimize other codes that do not need
to be designed in real time (just like the LAST codes considered). On the other
hand, in cooperative diversity scenarios we have assumed that the power assigned
to the source and to the cooperative relays is fixed. An interesting topic of research
would be to incorporate the optimization of the power allocated to each node into
a joint optimization problem (i.e., optimize jointly the LAST code and the allo-
cated powers). Extensions to nodes with more than one antenna are also worth
investigating.

In Chapter 5 we have proposed different precoding techniques in the downlink
of CDMA systems when the base station has CSI of all the users. In this situation, it
is natural to combine precoding, power control, and opportunistic scheduling with
fairness in the form of cross-layer optimization. In multiuser opportunistic schedul-
ing schemes, the schedulers opportunistically exploit the channel variations expe-
rienced by the multiple users. That is, the schedulers select thebestset of users
to transmit data subject to fairness (e.g., maximum delay), QoS (e.g., minimum
SNR), and resource constraints (e.g., maximum power available at the transmit-
ter), to obtain a significant increase in the total system throughput. A complete
framework and solution based on our precoding schemes needs to be investigated.
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Appendix A

Unbiased estimate ofdet(·) in

(3.30)

Obtain an estimate of

det

(
InT +

ρ

nT
HH [ω]H[ω]

)
(A.1)

using

φ[n, ω] = det

(
InT +

ρ

nT
Ĥ

H
1 [n, ω]Ĥ2[n, ω]

)
, (A.2)

where the channel estimateŝH1[n, ω] andĤ2[n, ω] are obtained from independent
training blocks. We consider the case in whicĥH1[n, ω] and Ĥ2[n, ω] satisfy
(3.5).

Theorem 5 With φ[n, ω] computed according to (A.2), the estimate of the deter-
minant in (A.1) is unbiased.
Proof: For convenience define

M [ω] = InT +
ρ

nT
HH [ω]H[ω],

M̂ [n, ω] = InT +
ρ

nT
Ĥ

H
1 [n, ω]Ĥ2[n, ω] (A.3)

and denote the elements of̂M [n, ω] asm̂i,j .
Consider (A.3). SinceĤ1[n, ω] and Ĥ2[n, ω] are statistically independent

samples, clearlŷM [n, ω] is an unbiased estimator ofM [ω]. Now considerdet(M̂ [n, ω]).
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From [65, p.8]

det(M̂ [n, ω]) =
∑

σ

sign(σ)

nT∏

i=1

m̂i,σ(i), (A.4)

where the sum runs over allnT ! permutationsσ of thenT items{1, ..., nT } and
sign(σ) is +1 or−1. Omitting the sign, each term in the summation is of the form

m̂1,σ(1)m̂2,σ(2)...m̂nT ,σ(nT ). (A.5)

Thus, each term in the summation involves the product of elements ofM̂ [n, ω]

from different rows and columns.
Next, due to the independence assumption in (3.5), it follows that for the matrix

M̂ [n, ω], the elementŝmi,j andm̂p,q are independent fori 6= p andj 6= q, i.e.,
elements ofM̂ [n, ω] from distinct rows and columns are statistically independent.
Hencem̂1,σ(1), m̂1,σ(1), ..., m̂nT ,σ(nT ) are statistically independent with zero mean
which implies thatdet(M̂ [n, ω]) is an unbiased sample ofdet(M [ω]) and satisfies

det(M̂ [n, ω]) = det(M [ω]) + v[n, ω] (A.6)

wherev[n, ω] is a zero mean random variable. ¥
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Appendix B

Enumeration of all the lattice

points in a sphere

In this appendix we show how to enumerate the coordinates of all the points be-
longing to an dimensional latticeG (i.e., defined by the basis{g1, ..., gn}) that
fall inside a sphereS of radius r centered at−u. That is, enumerate all the
points (Λ + u) ∩ S. Following the derivation and geometric meaning in [94]
let u be the optimal translation vector which can be written as a function of the
basis vector of the lattice, i.e.,u = ν1g1 + ν2g2 + ... + νngn ∈ Rn (where
n = 2MT ), or in matrix formu = Gν (and therefore,ν = G−1u). If a lattice
point x = z1g1 + ... + zngn ∈ Λ is inside the sphere of radiusr centered at−u,
it satisfies the sphere constraint‖x + u‖ ≤ r. The enumeration problem is to de-
termine all valid combinations ofz = [z1, ..., zn] ∈ Zn under the sphere constraint
which can also be expressed in terms of the Gram-Schmidt vectors. Recall that the
Gram-Schmidt vectors can be obtained as

g∗
k = gk −

k−1∑

i=1

µkig
∗
i ,

µki =
g∗T

i gk

‖g∗
i ‖2

, (B.1)

which can be expressed as

[G]T = U [G∗]T

G = G∗UT , (B.2)
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where[U ]ki = 1, if k = i, µk,i if k > i, and0 otherwise. That isgk = g∗
k +∑k−1

i=1 µkig
∗
i . Denoteh = x+u = G[z +ν] = G∗UT [z +ν]. And the constraint

‖h‖2 ≤ r2 becomes

‖h‖2 = tr
{[

G∗UT [z + ν]
] [

G∗UT [z + ν]
]T

}

= tr
{
G∗T G∗UT [z + ν][z + ν]T U

}

=

n∑

i=1

(
n∑

k=1

µki(zk + νk)

)2

‖g∗
i ‖2

=

n∑

i=1

(
n∑

k=i

µki(zk + νk)

)2

‖g∗
i ‖2 ≤ r2 (B.3)

where in the last equation we have applied thatµki = 0 if k < i. Recall that
µii = 1,∀i. Start byi = n, i.e.,(zn + νn)2‖g∗

n‖2 ≤ r2

− r

‖g∗
n‖

− νn ≤ zn ≤ +
r

‖g∗
n‖

− νn (B.4)

and sincezn ∈ Z

⌈
− r

‖g∗
n‖

− νn

⌉
≤ zn ≤ +

⌊
r

‖g∗
n‖

− νn

⌋
. (B.5)

Note that there are
⌊

2rn
‖g∗

n‖

⌋
+ 1 possible choices ofzn. For each of these choices,

we recursively do the same but updating a new radius (similarly to a tree search).
For example, withi = n − 1

n∑

i=n−1

(
n∑

k=n−1

(zk + νk)µki

)2

‖g∗
i ‖2 ≤ r2

[(zn−1 + νn−1) + (zn + νn)µn,n−1] ‖g∗
n−1‖ ≤

√
r2 − (zn + νn)2‖g∗

n‖2

︸ ︷︷ ︸
rn−1

.

171



That is, fori = n − 1, n − 2, ..., 1,

ri =

√√√√√


r2

i+1 −
∣∣∣∣∣

n∑

k=i+1

(zk + νk)µk,i+1

∣∣∣∣∣

2

‖g∗
i+1‖2




|(zi + νi)+(
n∑

k=i+1

(zk + νk)µk,i )| ≤ ri

‖g∗
i ‖

, (B.6)

or making use of the granularity ofzk we have

⌈
− ri

‖g∗
i ‖

−
(

n∑

k=i+1

(zk + νk)µk,i

)
− νi

⌉
≤ zi ≤

⌊
+

ri

‖g∗
i ‖

−
(

n∑

k=i+1

(zk + νk)µk,i

)
− νi

⌋
.

(B.7)
Note that there are

⌊
2ri
‖g∗

i ‖

⌋
+ 1 possible choices ofzi. One way to speed up the

enumeration by reducing the width of the stages of the tree (i.e., number of possible
choices ofzi) is to apply a preprocessing step applying lattice reduction to the rows
of G−1 [38, 94]. Note that the lattice reduction change of basis also needs to be
applied to the translation vector.
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Appendix C

MMSE unconstrained linear

precoding solution

For both the chip-wise and bit-wise system models, the total received vectorcan
be written as

y = HMb + v, (C.1)

whereH ∈ CK×N for the chip-wise solution andH ∈ CK×K for the bit-wise
solution. We restrict ourselves to the chip-wise solution since the bit-wise solution
(square matrices) is a special case of it. When the mobile units are constrained to
the matched filter receiver, the MMSE optimization function becomes

J = E{‖b − y‖2} = E{‖b − HMb − v‖2}. (C.2)

Proposition 5 The choice ofM ∈ CN×K that minimizesJ isM = HH(HHH)−1.
Proof In a similar manner to [99] we offer the following proof by contradic-
tion. Suppose there exists a matrixM0 that results in a smallerJ thanM =

HH(HHH)−1. Then,

E{‖b − HM0b − v‖2} < E{‖v‖2}. (C.3)

The left hand side of (C.3) can be rewritten as

E{‖b − HM0b − v‖2} = E{bHb} − 2E{ℜ[bHHM0b]}
+E{bHMH

0 HHHM0b} + E{nHv},
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which combined with (C.3) implies

E{bHb} − 2E{ℜ[bHHM0b]} + E{bHMH
0 HHHM0b} < 0 (C.4)

However, the left hand side of (C.4) is equal toE{‖b − HM0b‖2} which can
never be less than zero, which leaves a contradiction. This completes the proof. ¥
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