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Abstract

Rapid growth in mobile computing and other wireless multimedia services is in-
spiring many research and development activities concerning higlet-syissess
communication systems. The main challenges in this area include the development
of efficient coding and modulation technigues to improve the quality and spectr
efficiency of wireless systems. Multiple-input multiple-output (MIMO) techugg

for wireless communication have recently emerged and offer a powerfatgm

for meeting these challenges. In particular, MIMO systems constitute a unified
way of modeling a wide range of different communication channels, whigtbea
handled with a compact vector-matrix notation. This thesis proposes neal sign
processing techniques for two representative cases of MIMO sysfajrsistems
employing multiple transmit and receive antennas, and (b) systems with multi-
ple users transmitting simultaneously and overlapping in both time and frequency
Owing to the common MIMO system model notation, similar signal processing
techniques are applicable to both scenarios as will be demonstrated in tise thes

Chapter 2 gives an overview of the recent development in space-tiniegcod
and signal processing techniques for MIMO communication systems havihg mu
tiple antennas. We first review the information theoretic results on the cagacitie
of wireless systems employing multiple transmit and receive antennas. We then
describe two representative categories of space-time systems, naméyASeé
systems and systems employing space-time block coding. The extension @ MIM
techniques to frequency-selective channels is also addressed. Fafigipative
coding and signal processing techniques for wireless systems employltiglenu
transmit and receive antennas are also briefly touched upon.

The most costly element of a multiple antenna device is usually the RF chains
(amplifiers, filters, digital-to-analog converters, etc.). A promising amtrdar
reducing the cost and complexity while retaining a reasonably large fraofion
the high potential data rate of a MIMO system is to employ a reduced number of



RF chains at the receiver (or transmitter) and attempt to optimally allocate each
chain to one of a larger number of receive (transmit) antennas. In thisongy

the bestset of antennas is used, while the remaining antennas are not employed,
thus reducing the number of RF chains required. Different appresaolselecting

the bestantennas are proposed in Chapter 3. In particular, we consider a new
framework for antenna subset selection in noisy environments and atsnfanna
selection algorithms.

Wireless communication using multiple antennas can increase the multiplex-
ing gain (i.e., throughput) and diversity gain (i.e., robustness) of a comtiorc
system in fading channels. It has been shown that for any given nuoflze-
tennas there is a fundamental tradeoff between these two gains. Pigneerks
on space-time architectures had focused on maximizing either the diversity ga
or the multiplexing gain. However, recent works have proposed siiaeear-
chitectures that simultaneously achieve good diversity and multiplexing rperfo
mance. In Chapter 4 of this thesis a family of lattice space-time (LAST) codes
is presented that can achieve the optimum diversity-multiplexing tradeoffag-de
limited MIMO channels. In Chapter 4, using stochastic optimization techniques
we design LAST codes that can further optimize the error rate. The des$ign
minimum error rate LAST codes is later extended to scenarios in which multiple
transmitting terminals cooperate by sharing their antennas.

In the final part of the thesis we consider MIMO systems with multiple users
instead of multiple antennas. In particular, we address the downlink of time do-
main duplex code division multiple access (TDD-CDMA) systems. First we ob-
tain and compare the capacity results of a downlink CDMA system with either
multiuser detection (i.e., receiver processing) or precoding (i.e., transipitier
cessing). It is demonstrated that the two schemes exhibit similar capacitpsegio
which motivates the development of efficient transmitter precoding techsimue
reduce the receiver complexity at the mobile units without degrading thensyste
performance. We then compare two classes of linear interferencesssjipr tech-
niques for downlink TDD-CDMA systems over multipath fading channels, mame
linear multiuser detection methods and linear precoding methods. We laterglevelo
non-linear multiuser precoding methods, to remove multiuser interference, inte
chip interference and inter-symbol interference. Efficient algorithmsnigtiuser
power loading and cancellation ordering are also developed.

In summary, a range of signal processing tools appropriate for use MCMI
communication systems have been developed in the work presented in this thesis
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Chapter 1

Introduction

Rapid growth in mobile computing and other wireless multimedia services is in-

spiring many research and development activities concerning higle-syissess

communication systems. The main challenges in this area include the development

of efficient coding and modulation technigues to improve the quality and gpectr

efficiency of wireless systems. Multiple-input multiple-output (MIMO) techugg

for wireless communication have recently emerged and offer a powernfatigm

for meeting these challenges. In particular, MIMO systems constitute a uwéigd

of modeling a wide range of different communication channels, which cévabe

dled with a compact vector-matrix notation. In this thesis, we propose newlsign

processing techniques for two representative cases of MIMO sysfajrsistems

employing multiple transmit and receive antennas, and (b) systems with multi-

ple users simultaneously transmitting and overlapping in both time and frequency

Owing to the common MIMO system model notation, similar signal processing

techniques are applicable to both scenarios as will be demonstrated in tise thes
The main motivation of this research is to propose powerful signal psowes

techniques to improve the performance of MIMO communication systems.

1.1 Outline of the thesis and main contributions

Chapter 2 provides an overview on the recent developments in space-time coding
and signal processing techniques appropriate for MIMO communicat&terag
having multiple antennas. We first review the information theoretic results on the
capacities of wireless systems employing multiple transmit and receive antennas
We then describe two representative categories of space-time systenety,rthe
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Bell-Labs Layered Space Time (BLAST) systems and systems employing-spac
time block coding. Signal processing techniques for channel estimatiodexnd
coding in space-time systems are also discussed and compared. Théexbéns
MIMO techniques to frequency-selective channels is also addresisedlyFsome
other useful signal processing techniques for wireless systems entployiltiple
transmit and receive antennas are also briefly touched upon.

Previously published work has shown that it is possible to improve the per-
formance of MIMO systems by employing a larger number of antennas than is
actually used at any instant, where the optimal subset of antennas is ¢blastsl
on the channel state information. Existing antenna selection algorithms assume
perfect channel knowledge and optimize criteria such as Shannocityamavari-
ous bounds on error rat€hapter 3 begins by examining MIMO antenna selection
algorithms where the set of possible solutions is large and only a noisy estimate o
the channel is available. Using an approach similar to that employed by tradlition
adaptive filtering algorithms, we propose a new framework based on simulatio
based discrete stochastic optimization algorithms to adaptively select a better an
tenna subset using criteria such as maximum mutual information, boundsoon er
rate, etc. These discrete stochastic approximation algorithms are ideally tsuited
minimize the error rate since computing a closed form expression for therateo
is intractable. We also consider time-varying channels for which the antxna
lection algorithms can track the time-varying optimal antenna configuration. We
present several numerical examples to show the convergence ofallgesthms
under various performance criteria, and also demonstrate their tracipaipidi-
ties. We later propose various new antenna selection criteria and alsmfasha
selection algorithms.

Wireless communications using multiple antennas can increase the multiplex-
ing gain (i.e., throughput) and diversity gain (i.e., robustness) of commiiorica
systems in fading channels. It has been shown that for any given muiéeten-
nas there is a fundamental tradeoff between these two gains. Pioneenikg w
on space-time architectures focused on maximizing either the diversity gain or
the multiplexing gain. However, recent works have proposed space-tiche a
tectures that simultaneously achieve good diversity and multiplexing penficana
In Chapter 4 of this thesis we consider a family of lattice space-time (LAST)
codes that can achieve the optimum diversity-multiplexing tradeoff in delay-timite
MIMO channels. Unfortunately, the diversity-multiplexing tradeoff anialyles
not say anything about the coding gain or error rate at signal-to-n8iSR) ratios
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of interest (also note that the tradeoff analysis gives asymptotic restiiga}. is,

two space-time codes belonging to the family of LAST codes can obtain differ-
ent error rate performance at the signal to noise ratios of interest.efbiner in
Chapter 4 we design spherical LAST codes subject to the minimum etsoctia
terion by employing a stochastic approximation technique based on the wethkno
Robbins-Monro algorithm together with unbiased gradient estimation. Tdigrde

of minimum error rate LAST codes is later extended to scenarios in which multiple
transmitting terminals cooperate by sharing their antennas.

In Chapter 5 we consider MIMO systems with multiple users instead of mul-
tiple antennas. In particular, we address the downlink of time division dwolé&
division multiple access (TDD-CDMA) systems. First we obtain and compare
the capacity results of a downlink CDMA system with either mulituser detection
(i.e., receiver processing) or precoding (i.e., transmitter processingseen that
the two schemes exhibit similar capacity regions for both sum-rate and maximum
equal rate, which motivates the development of efficient nonlinear transmiéte
coding techniques to reduce the receiver complexity at the mobile units without
degrading the system performance. We then compare two classes ofifitegar
ference suppression techniques for downlink TDD-CDMA systemsrovdtipath
fading channels, namely, linear multiuser detection methods and linear prgcod
methods. For the linear precoding schemes, we assume that the chateriafeta
mation (CSI) is available only at the transmitter but not at the receiver. @fgope
several precoding techniques and the corresponding power calgooithms. The
performance metric used in the comparisons is the total power requiredatribe
mitter to achieve a certain Quality of Service (QoS) at the receiver (e.g., minimum
signal to noise ratio). Our results reveal that in general multiuser detestwbpre-
coding offer similar performance; but in certain scenarios, precodingocing a
substantial performance improvement. These results motivate the useading
techniques to reduce the complexity of the mobile terminals (only a matched-filter
to its own spreading sequence is required and CSl is not required). We later de-
velop both bit-wise and chip-wise Tomlinson-Harashima (TH) multiuser precod-
ing methods for downlink CDMA with multipath, to remove multi-user interfer-
ence, inter-chip interference and inter-symbol interference. Efti@kyorithms
for multiuser power loading and ordering are also developed. Implementation
the proposed TH-precoding schemes in time-varying channels basdthonet
prediction is also addressed. Simulations results are provided to demotis¢rate
effectiveness of the proposed techniques in suppressing interéeirethe CDMA
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downlink. It should be noted that CSI at the transmitter can facilitate efficient
user scheduling. We therefore further develop low-complexity useraditowcal-
gorithms based on the proposed linear precoding techniques.

Chapter 6 concludes the dissertation summarizing the main results and enu-
merating future lines of work.



Chapter 2

Overview of MIMO Systems

2.1 Introduction

Multiple-input multiple-output (MIMO) communication technology has received
significant recent attention due to the rapid development of high-speadtmend
wireless communication systems employing multiple transmit and receive anten-
nas. Information theoretic results show that MIMO systems can offer signtfi
capacity gains over traditional single-input single-output channelsif#g], This
increase in capacity is enabled by the fact that in rich scattering wireless en
ronments, the signals from each individual transmitter appear highly @eiated

at each of the receive antennas. When conveyed through untedrelaannels
between the transmitter and the receiver, the signals correspondinghtofaeae
individual transmit antennas have attained different spatial signaflineseceiver
can exploit these differences in spatial signatures to separate the siggedating
from different transmit antennas.

Many MIMO techniques have been proposed and are usually targetid at
ferent scenarios in wireless communications. The Bell-Labs LayereceSpae
(BLAST) system [42, 131] is a layered space-time architecture originediggsed
by Bell-Labs to achieve high data rate wireless transmission. In this schiéfee, d
ent symbol streams are simultaneously transmitted from all transmit antennas (i.e
they overlap both in frequency and in time). The receive antennas yieklifes-
position of all the transmitted symbol streams and recover them via proped sign
processing. On the other hand, in Space-Time Coding (STC) systenist]3, 15,
118], the same information symbol stream is transmitted from different transmit
antennas in an appropriate manner in order to obtain transmit diversitgeHien
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STC systems the MIMO channel is exploited to provide more reliable communica-
tions, whereas in the BLAST system the MIMO channel is used to provideshig
rate communications. Note that by employing higher level signal constellations,
STC systems can also achieve higher throughput. In this chapter, we géreeral
overview of the capacity results for MIMO systems as well as for BLAST aihC
techniques.

The remainder of this chapter is organized as follows. In Section 2.2 we sum-
marize the capacity results for MIMO systems and discuss the impact of antenna
correlation on capacity. In Section 2.3, we describe the BLAST systenetated
decoding and channel estimation techniques. In Section 2.4, we disagsstipe
coding techniques and in particular the space-time block codes. Perfcgroam-
parisons between the BLAST system and the space-time block coding system
also made. In Section 2.5 we consider MIMO systems in frequency selebtwve
nels. Finally, in Section 2.6, we briefly touch upon some other useful spaee
coding and signal processing techniques.

2.2 Capacity of MIMO Systems

In this section, we summarize the information theoretic results on the capacities of
MIMO channels, developed in the late 1990s [40, 119]. These resuolstbe sig-
nificant potential gains in channel capacity by employing multiple antennastat b
the transmitter and receiver ends; and inspired an enormous surgeldfwide
research activities to develop space-time coding and signal processimgoiees

that can approach the MIMO channel capacity.

2.2.1 Capacity Results

Consider a MIMO system with transmit antennas antk receive antennas sig-
naling through flat fading channels, as shown in Figure 2.1. The ingptibtela-
tionship of this system is given by

y=Hx+ v, (2.1)

wherex = [z, 72, ..., zn,] T isthe rx 1) transmitted signal vectay, = [y1, ya, -, Yng )~
is the (ug x 1) received signal vecto; = [v,va, ..., v )7 is the received noise
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Figure 2.1: Schematic representation of a MIMO system.
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is the (g x n7) MIMO channel matrix with;; representing the complex gain of
the channel between tljil transmit antenna and tith receive antenna.

Itis assumed that the noise samplei = 1, 2, ..., ng, is a circularly symmetric
complex Gaussian random variable with zero mean and variaficdenoted as
vi ~ No(0,2). Thatis,R{v:} ~ N0, %), S{vi} ~ N (0, %), and that they are
independent. It is assumed that the complex channel gajns N,(0, 1). Note
that in general, the channel gains may be correlated.

Assuming that the channel matr®{ is known at the receiver, but not at the
transmitter, the ergodic (mean) capacity of the MIMO channel with an agerag
total transmit power (i.e., tr <E {xxf} ) < P)is given by [119, 40]

1 P
¢~ pfoste (14 - L))
nro

1 P
= E{logdet <InT-|-
nr

o2

HHH>} bits/s/Hz, (2.3)

where the expectation is taken with respect to the distribution of the randam ch
nel matrix H.

To gain some insight on the capacity expression in (2.3), dgref/o? which
permits the capacity to be expressed as
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p
C =" E{log(1+- )}, (2.4)
k=1 nr
wherep = min{ny,nr} andAy, ..., A, are the eigenvalues of the matit H 7
or H H. Note that the matrice® H* and H" H have the same eigenvalues
which are all real and non-negative. If we compare (2.4) with the d¢gpata
single-input single-output (SISO) channel [25], we observe that#pacity of a
MIMO system is equivalent to the sum pfparallel SISO channels, each one with
an equivalent signal-to-noise ratio equalito
Furthermore, it can be shown that when bathandn g increase, the capacity
increasedinearly with respect to mifinr, ng}. On the other hand, it is fixed
andny increases, then the capacity saturates at some fixed value; whergas if
is fixed andnp increases, the capacity increases logarithmically with These
asymptotic behaviors of the ergodic capacity are shown in Figure 2.2.

Capacity with respect the number of antennas for p = 15dB
70 T T T T T

—o- :Increase both n; and n,
—+ np=1 and increase s
60~ —x— 1Ny =1landincrease n.

50

N
o
T

C in bit/channel use
w
o
T

10~

number of antennas

Figure 2.2: Ergodic capacities of uncorrelated MIMO channels. Thearaias
assumed to be known at the receiver but not at the transmitter.

Another notion that is frequently used in practice is the outage capacity. The
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instantaneous capacity is defined as
¢ (H, p) = log det <InR + niHHH > . (2.5)
T

Obviously¢(H, p) is arandom variable sindd is random. Given a certain outage
probability P,,;, the corresponding outage capadity,,; is defined through the
following equation,

P{o(H,p) < Cout} = Pous. (2.6)

So far we have assumed that the channel médifixs known at the receiver
but not at the transmitter. Another scenario is that the channel is knowattathe
transmitter and receiver. This is the case, for example, when the systelmysmp
time-division duplex (TDD) so that the uplink and downlink channels ariprec
cal to each other. In this case, the instantaneous capacity is given lpfltvérig
“water-filling” equation [112]

nr
Y(H,p) =" [log (vA:)]" bits/s/Hz, (2.7)
=1
where\q, ..., A, are the eigenvalues of the matd” H, v is chosen such that
n +
p= ZT [v - ﬂ and the operataf)* is specified as

i=1

x if x>0,

+
(@) _{ 0 if x<0. (2:8)

The ergodic capacity is then given oy = E{«v(H,p)}. Moreover, the outage
capacity in this case is specified by

P{¢(H7P) S Cout} - Pout' (29)

Figure 2.3 shows the 10% outage capacity of uncorrelated MIMO channels
with and without water-filling. It is seen that by knowing the channel at testr
mitter, some capacity gain can be obtained at low signal-to-noise ratios.

2.2.2 Effects of Antenna Correlations

It has been observed that antennas placed with large enough sepaveitiae-
ceive essentially uncorrelated signals [83]. However, in handsetmnalt germi-
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10% outage capacities (without antenna correlation).r =ng
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Figure 2.3: 10% outage capacities of uncorrelated MIMO channels witlwihd
out employing water-filling.
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Figure 2.4: Model with local scatterers. Incident wave is approximatelyepi
the receiving array.
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nals, large separations among the antennas may not be feasible. On theathe
when the transmitter or receiver is not surrounded by scatterers, alcstzttering
or diversity occurs, and the spatial fading at the antennas is correldéste, in-
sufficient antenna spacing and lack of scattering cause the individteiraas to
be correlated.

We next discuss the correlation model and the effect of antenna dmrela
on capacity. Following [17], assuming correlations at both the transmitter and
receiver, their x nr) channel response matrix can be modeled as

H = R!/*H,R}* (2.10)

with H,, being a fop x nr) matrix with i.i.d. N.(0,1) entries and®?; and R,.,

of size (o x ny) and Qg x ng), representing the covariance matrices inducing
transmit and receive correlations respectively. Note that for the ¢aseorrelated
transmitter (receiver), we hag; = I (R, = I).

The form of cross-correlation between the waves impinging on antenna ele
ments (i.e..R, or R;) has been studied and modeled in several publications, e.g.,
[7,17, 20, 36, 112]. These models use similar parameters to charatherizerre-
lation. Specifically, assuming that no line of sight exists between the transthit an
the receive antennas, the signal reaching the receive antennasmaaléled as ar-
riving from a number of equivalent point sources or scatterers inittieity of the
receiver as shown in Figure 2.4. Assuming that the antennas are omtdtietc
(i.e. they radiate and receive from all directions in space), there age thain
parameters that characterize the correlation between antennas (see2Hgu

e Distanced between antennas in terms of wavelengths,
e Angular spread of the arrival incident wawe?”,
e Mean angle of arrival of incident wavedi®.

Large values of the angular spreafl® result in uncorrelated signals at each of
the antennas. The angular spread is a function of the distance of the tdutste
antenna array and radius of the cluster. For example, in an outdoooemeént,

a cluster could be a building located far away from the antenna array ygelin
small angular spread?”. In an indoor environment, the cluster of scatterers will
be the walls surrounding the array. In this case, there will be signals impgingin
the antenna array from all directions resulting in a large value of angpitead;
therefore, uncorrelated fading among the antennas can be expedtede E.5

11
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depicts various scattering scenarios similar to those defined for COSMad6ls
[112]. In this representation, the circle represents a cluster of saattdree five
different scenarios correspond to:

e Uplink: This scenario corresponds to a base station operating as aetecei
from some high point without any nearby scatterers. The receiveallys
a handset or small terminal, will be surrounded by scatterers. The angula
spread at the receiver (i.e., base station) is very low, resulting in chorela
among the receive antennas.

e Downlink: This scenario is similar to the uplink but with the base station
acting as a transmitter.

e Urban area: Medium size angular spread for both the transmitter and the
receiver. Scatterer clusters represent buildings.

e Rural area: Low angular spread for both the transmitter and the receive
Scatterer clusters represent mountains and hills.

¢ Indoor: Large angular spread for both the transmitter and the recéiaer
pinging waves arrive from all directions in space.

Figure 2.6 shows the 10% outage capacities for the different scenafiosdi
in Figure 2.5 withn, = nr = 4 and an antenna spacingdf 0.5\. We assume
that the channel is known at the receiver but not at the transmitter. \Weusad
the correlation model described in [7]. We also show the SISO capacitofar
parison. It is seen that urban and indoor scenarios with rich scatteffergrmuch
higher MIMO capacities than do rural environments.

Figure 2.7 shows the 10% outage capacities of a correlated MIMO channel
with and without water-filling. The correlation scenario corresponds to tharu
area depicted in Figure 2.5 with an antenna spacing-6f0.5\. Comparing with
Figure 2.3, it is seen that significant capacity gain can be achieved with-wate
filling in the presence of antenna correlations however the channel mbstdovn
at both the transmitter and the receiver.

2.3 The BLAST System

The information theoretical results presented in the preceding sectiontmthea
large capacity gains available by employing multiple antennas at both ends of the

12
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Figure 2.5: Various MIMO scattering scenarios.
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10% outage capacities n=n,= 4, antenna spacing 0.5\

35 T T T T
—©- : Scenario A
—x— : Scenario B Uncorrelated
—— : Scenario C MIMO
30} | =% : Scenario D . .
—A~ : Scenario E/Indoor Scenario E A
—&- : Uncorrelated Indoor g
—— : SISO X
251 : ;
o Scenario C
5 (urban)
T 201 Scenario B
= link) .
g (up Scenario D
g (rural
a Scenario A
£ 15F !
o (downlink)
(@]

Figure 2.6: MIMO outage capacities for different channel scenagssribed in

Figure 2.5.
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communication systems. Identifying such a large potential gain, researaher
Bell-Labs developed the first MIMO architecture for high-speed wisetesnmu-
nications, namely the BLAST systems.

\/ e \V
[ ™ F =
\/ \V
[T ST B
Tx Vector S|gn§I |, Rx
Data processing:
d
encoder estimate Data
and decode
\/ \/

Figure 2.8: Schematic representation of a BLAST system.

BLAST (Bell-Labs Layered Space Time) [42, 131] is a high speed wiseles
communication scheme employing multiple antennas at both the transmitter and
the receiver. In a BLAST system, the transmitted data is split equallyripto
transmit antennas and then simultaneously sent to the channel overlappot in
time and frequency. The signals are receivechlpyreceive antennas as shown in
Figure 2.8 and signal processing at the receiver attempts to separase¢hed
signals and recover the transmitted data. The input-output relationship.g$&B
system can be expressed as

yz,/iﬂs—k'v (2.11)
nr

wheres = [s1, 52, ..., s, ] isthe @7 x 1) transmit signal vector withk; belonging
to a finite constellationd, v = [vy1,ve, ...,vnR]T is the (ar x 1) receive noise
vector withv; ~ N.(0,1), H is defined in (2.2) ang is the total signal-to-noise
ratio independent of the number of transmit antennas. Unitary powerumasis
for the transmitted symbolg; {|si|2} =1.

2.3.1 BLAST Detection Algorithms

It is seen from (2.11) that the receive antennas see the superpoditaintioe
transmitted signals. The task of a BLAST detector is to recover the transmitted
datas from the received signa}. Several BLAST detection algorithms will now

be described [41, 48]. Here we assume the channel mafris known at the

15
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receiver. We will discuss channel estimation algorithms in Section 2.3.2.

Maximum Likelihood (ML) Receiver

The ML detector is the optimal receiver in terms of bit error rate. Mdbe the
symbol constellation set (e.g., QPSKa-QAM) whose size isVf. Then, the ML
detection rule is given by

2

Yy — LHs
nr

(2.12)

§ = arg min
SeA"T

Note that the minimization problem is performed over all possible transmitted sig-
nal vectorss in the set4”7. The computational complexity of an exhaustive search
is thenO(M™T). Hence, although the ML receiver is optimal, its complexity
grows exponentially with the number of transmit antennas. A low complexity local
search method called “sphere decoding” whose complex®(i&®) is developed

in [26, 38].

Zero Forcing and Cancellation Receiver

A more simpler receiver is known as the zero forcing (ZF) receivere Zh re-
ceiver considers the signal from each transmit antenna as the degitatesd the
remainder as interferers. Nulling is performed by linearly weighting theivede
signals to satisfy the ZF criterion, i.e., by inverting the channel response. F
thermore, a superior performance can be obtained by using nonlinbaidees,
for example cancellation. Using symbol cancellation, the previously detaotdd
sliced symbol from each transmit antenna is subtracted out from theedcagnal
vector, in a similar manner to that employed ino decision feedback equalization o
multiuser detection with successive interference cancellation. Theréfiera@aext
signal to be decoded will see one interferer less.

For simplicity, assume. = ny = ny. Denote the QR factorization dif as
H = QR whereQ is unitary, i.e.,QQ" = I and R is upper triangular. The
nulling operation of the received vectgris performed by

z=Qly =, /%RS + Qv (2.13)

16
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that is
Z1 7”171 ’1”172 . Tl,n S1 w1
Z9 0 r22 ... T2n S92 w9
=2 _ S e XYY
n . . . . : :
Zn 0 o 0 TTL,TL Sn Wn

Note that sincaR is unitary, there is no noise amplification, i.ev, = Qv is
alsoN,(0,I). In (2.14), the decision statistig, is just a noisy scaled version of
s» Which can be directly estimated and then subtracted frpm. Repeating the
estimating and subtracting operations until all transmitted signals are detbeed,
complete algorithms is summarized in Algorithm 1 where the quan@4ertakes
values from the constellatioA.

Algorithm 1 ZF and cancellation BLAST receiver
A 1 n
Sn = Q (,,,n’n \/;Zn>
Sp—1 =@ (Tn711,n71 (\/%Zn—l - Tn—lm,gn))

1

A 1 n. A
S; = Q <E<\/;Zl - k§|—1 Tz,ksk)>

Nulling and Cancellation Receivers with Ordering

In the decoding algorithm discussed above, an incorrect decision irethetibn

of a symbol adds interference to the next symbols to be detected. It imshow
[41, 48] thatitis advantageous to first find and detect the symbwlth the highest
signal to-noise ratio, i.e., that with the highest reliability. The detected symbol is
then subtracted from the rest of the received signals. Therefdes,ancelling

sk, we have a system withy — 1 transmit antennas angg receive antennas,
i.e., the corresponding channel matrix is obtained by removing colufrom H .

The same process is then applied on this ¢ 1,n) system and the algorithm
continues until all transmitted symbols have been detected. That is, the nulting a
cancellation operation is performed starting with the more reliable symbols and

17



2.3 The BLAST System

moving to the less reliable ones.

The nulling operation can be performed by means of ZF or the minimum mean-
square error (MMSE) criterion. Similarly to ZF equalization in single antenna
systems, the ZF criterion yields the following problems: (1) The algorithm can
encounter singular matrices that are not invertible; and (2) ZF focusearelling
the interference (i.e., overlapping signals) completely at the expensdafieing
the noise, possibly significantly. On the other hand, the MMSE criterion minimizes
the error due to the noise and the interference combined. In the ord@engtion,
the MMSE method nulls the component with the smallest MSE. Following [48],
the BLAST decoding algorithm based on the MMSE nulling and cancellation with
ordering is given in Algorithm 2.

Algorithm 2 MMSE nulling and cancellation with ordering
G=H
r=y
FOR i=1:np DO
P=(tG"G+1)™!
k; = argmin{Pj’j}, Jj & {ki,ka,....;ki—1}  (ordering: find min MSE)
= (GP)(:,k;)  (nuliing vector)

Z_’LUH’I"

w>

k —_
r=r— \/7H ,ki)Sk, (cancellation)

G =G\ H(:,k;) (remove column of that transmit antenna)

END

Figure 2.9 compares the BER performance of the four detection methods dis-
cussed previously in a BLAST system with = nr = 4 antennas and QPSK mod-
ulation. It is seen that the ML decoder has the best BER performance giittau
every transmitted code vector, the receiver needs to evaluate (2.12)ove256
possibilities. On the other hand, the MMSE nulling and cancellation algorithm
with ordering exhibits the best performance among the suboptimal algorithms.

2.3.2 MIMO Channel Estimation Algorithms

So far, we have assumed that the MIMO channel makfixs known at the re-
ceiver. In practice, the receiver needs to estimate this matrix prior to theobtar
the decoding process. We next discuss the channel estimation methodi®base
training preamble [91].

Supposd’ > ny MIMO training symbol vectors (1), s(2), ...,s(T") are used
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BER for different BLAST decoding algorithms ( no=ng= 4 and QPSK modulation)

10" T T T T
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—— 1 ZF Null & Canc + Ordering

—%— : MMSE Null & Canc + Ordering
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Figure 2.9: BER performance of different BLAST decoding algorithms with=
ng = 4 and QPSK. Uncorrelated MIMO channels and perfect channellkdge
at the receiver are assumed.
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to probe the channel. The received signals corresponding to thesadgraymbols
are
y(i) = | L Hs(i) +v(i), i=12 T (2.15)

DenoteY = [ y(1),y(2),..y(T) |, § = [ s(1),5(2),....s(T) | andV =
[ v(1),v(2),...,v(T) } Then (2.15) can be written as
y=./LHStV. (2.16)
nr
The maximum likelihood estimate of the channel maftixis given by

2

I:IML = argmin||Y — LHS
H nr
- ”—:YSH(SSH)—P (2.17)

According to [91], the optimal training symbol sequengehat minimizes the
channel estimation error should satisfy

SSH =1.1,,. (2.18)

One way to generate such optimal training sequences is to use the Hadarmard ma
trices [61] (when they exist for specific valuesrof). As an example, consider a
system withny = 4 and a training sequence of leng@th= 16 symbol intervals. We

first generate & x 4) Hadamard matrix as

1 1 1 1
1 -1 1 =1

A- Lt (2.19)
V2 1 1 -1 -1
1 -1 -1 1

Then the optimal training sequence can be constructed by concatenating fo
matrices as
S=lAa A A A]. (2.20)

As an alternative to the ML channel estimator, the linear MMSE channel es-
timator is obtained as a linear transformation of the received signdtgat mini-

20



2.3 The BLAST System

mizes the estimation error and it is given by
N -1
Honse = /iYSH(issH + I) . (2.21)
nr nr

BER of different lengths of the training sequence using the MMSE IC with ordering decoder .
Assume p =10dB and n.=n,=4 and QPSK modulation

T T
—©— : Perfect Channel Estimate
—&- : ML Channel Estimate
—— : MMSE Channel Estimate

Bit Error Rate

10°

Figure 2.10: Effect of the training length on the BER performance.

We next give a simulation example. Consider a BLAST system with=
ng = 4 antennas and QPSK modulation. We assume uncorrelated fading and a
signal-to-noise ratipp = 10dB. Figure 2.10 shows the BER for various channel
estimation algorithms for different lengths of the optimal training sequence. Th
MMSE nulling and cancellation with ordering algorithm is employed as the de-
coder in all cases. It is seen that the MMSE and ML channel estimatoes hav
similar performance which gradually approaches optimum performariEésag-
creased. Figure 2.11 compares the BER performance of the MMSE nutlthg a
cancellation with ordering decoder using the ML channel estimator with differe
lengths of the optimal training sequence.
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2.4 Space-Time Coding

BER with ML channel estimator and different length of the training sequence.
Assume Ng=n.= 4 and MMSE IC + ordering decoder

10" T T T T T

o<

10

Bit Error Rate

10

: Perfect channel estimate
: ML channel estimator, T = n.

: ML channel estimator, T = 2n;
: ML channel estimator, T = an,

440

10~ ! L 1 !
0 2 4 6 8 10 12 14 16

p (dB)

Figure 2.11: BER performance of the ML channel estimator with differengthes
of the optimal training sequence.

2.4 Space-Time Coding

In the previous section, we discussed the BLAST system which increhses
data rate by simultaneously transmitting symbols from multiple transmit antennas.
However, the BLAST approach suffers from two major drawbackkit (Equires

ng > np thatis not always feasible when the receiver is a small or battery ogderate
device; and (2) the performance of the suboptimal BLAST decodingigigus is
limited by error propagation. In this section, we discuss the space-time coding
approach that exploits the concept of diversity.

2.4.1 The Concept of Diversity

With space-time codes (STC) [3, 114, 115, 118], instead of transmittingpémde
dent data streams as in BLAST, the same information is transmitted in an appro-
priate manner simultaneously from different transmit antennas in ordert&nob
transmit diversity. The underlying principle of transmit diversity is that if asme
sage is lost in a channel with probabiliyand if we can transmit replicas of the
message over independent such channels, the loss probability becgfheshe
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2.4 Space-Time Coding

use of diversity improves the reliability of detection which allows modulation em-
ploying higher order constellation to be used and so yielding a higher thpotigh

as is possible with the BLAST system. The main difference between BLAST and
STC can be summarized as: (1) BLAST transmits more symbolspi-esymbol-
s/channel used; and (2) STC transmits only (at mosglihble symbol/channel
used by means of diversity.

As an example, consider a systems wishing to transmit 4 bit/s/Hz with 2 trans-
mit antennas. BLAST would use QPSK symbols per antenna, i.e., 4 bit/s/Hz. STC
can only send 1 symbol/channel used, therefore 16-QAM symbols weeld o
be employed. In this case, the same quantity of data is transmitted through the use
of higher order constellations. There are two main types of STCs, namate sp
time trellis codes (STTC) [118] and space time block codes (STBC) [115].

The STTC is an extension of trellis coded modulation [15] to the case of mul-
tiple transmit and receive antennas. It provides both full diversity adéhg gain.
However, it has the disadvantage of high decoding complexity which gesms-
nentially with the number of antennas. Specific space-time trellis codes désigne
for two or four antennas perform very well in slow fading environments eome
within 2-3 dB of the outage capacity. STTC's are designed to achieveifelisity
and then, among the codes that achieve full diversity, maximize the coding ga
For further references on STTC refer to [11, 118].

In the hope of reducing the exponential decoding complexity of STTC, Alam-
outi proposed a simple space-time coding scheme using two transmit antennas
[3]. Later, the STBC introduced in [114], generalized the Alamouti transariss
scheme to an arbitrary number of transmit antennas. STBC achieves/aritly
as does the STTC although they do not provide any coding gain. This i not
problem since they can be concatenated with an outer channel coddHsifles
achieving full diversity, the main property of STBC is that there is a very Emp
ML decoding algorithm based only on linear processing. These coddsased
on some specific linear matrices and the reduced complexity receiver is the to
orthogonal properties of these matrices.

2.4.2 Space-Time Block Codes

We assume a wireless communication system where the transmitter is equipped
with n and the receiver witmy antennas. A space time block code matrix is
represented as
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2.4 Space-Time Coding

«—space—
1,1 €1,2 ... Clng T
— C C: ... C
Cony = 21 €22 2,n7 time (2.22)
Cpl Cp2 --- Cpnr

At each time slot, signalsc; ;, i=1,2,...n7, are transmitted simultaneously from
theny transmit antennas as shown in Figure 2.12. Therefore, atttitrensmitter
antenna will transmitc;,; in the matrix (1< ¢ < pand 1< ¢ < np, wherep is the
length of the block code). Next, we describe the encoding and decopérgtaons
of the STBC for two transmit antennas, namely the Alamouti code.

Y,
= [ Rx |
\/ \/
12 ! T e ] ML
% STBC

decoder
Data » L Rx

C =
[s,-Sd p,nT (linear Data

processing)

<

T _F y R |

Figure 2.12: Schematic representation of an STBC system.

STBC with ny = 2: Alamouti Code

The Alamouti code is an STBC using- = 2 transmit antennas and any number of
receive antennas. The Alamouti code matx; is defined as [3]

Ocs = [ oo ] . (2.23)

* *
—Ty Iy

Consider transmitting symbols of a signal constellatibof size 2. Every two
time slots,2b bits arrive at the encoder and select constellation sighadsd s-.
Settingz; = s; andzy = s in O, 2, we arrive at the following transmission
matrix

=83 S

Cao = [ 152 ] (2.24)

Then, in the first time slot, antenna 1 transmitsand antenna 2 transmits. In
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2.4 Space-Time Coding

the next time slot, antenna 1 transmits; and antenna 2 transmit$. Since two
time slots are needed to transmit two symbagls §-), the rate of the code i8 =
1 symbol/channel used.

At the receiver, the signal received by anterrturing two consecutive time

slots ¢=1,2) is
\/ECZth +v;
2
p

Y1,
Y2,

h. .
o el I B B Bl B Ay CES

2| —s5 s hi2 V2,

which can be rewritten as

O - \/E s T T = 1,2, (2.26)

y;,i 2 hf,Q _h;ﬁ 52 V2,i

—— —_————
Yi H; s \Z

We note that the orthogonality of the co@k , implies the orthogonality oH ;,

e, HIH, = (\hi71|2 + ]hi72|2> I,. Assuming that the receiver has knowledge
of the channel coefficients; ;, we form a decision statistic at each receive antenna
by left multiplying the received vector in (2.26) B which results in

Zi = [ by ] = Hi'y; = \/gﬂinS‘FHZH%' (2.27)

22,i

Hence, using the orthogonality property Hf; yields

214 S
2 = [ 1, ] _ \/g <‘h7j71|2 + ’hi72|2> [ 1
22,0 52

Adding all the decision statistics from all; receive antennas we obtain

nR
21 21,

z _= =
][]
\/E§<|hi1\2+\hi2!2> o

24 ’ ’ 59
=1

In (2.29), in the absence of noisg,will be just an scaled version ef andz, will
be an scale version & without any cross dependency. To estimate the symbols

Jr

Wi ] . (2.28)
wa,;

R W14
+)° ’

1

n

] . (2.29)

i w2 4
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2.4 Space-Time Coding

that were sent, we just scale and quantize the decisions statistics in (2.29) as

51 = Q=),
and 8 = Q(z2). (2.30)

We recall that the decoupling has been possible because of the ordibgohthe
Alamouti code matrix.

BER performance comparison: Alamouti vs BLAST
( ne=ng= 2, R =2 bit/s/Hz and without antenna correlations)

10" ¢ T T

1 1 T

T T T
—©— : BLAST with ML decoder
—— : BLAST with MMSE Null & Canc + Ord decoder

—&- : Alamouti

10 “E

Bit Error Rate
(=

o\

&

N
o\
T

10 E

-7 L 1 1 1 1 I I I
-4 -2 0 2 4 6 8 10 12 14
Eb/No (dB)

10

Figure 2.13: BER performance comparison between BLAST (BPSK modul)atio
and Alamouti (QPSK modulation) withy = np = 2 (transmission raté& = 2
bit/s/Hz). Uncorrelated MIMO channel and perfect channel knovdeaighe re-
ceiver are assumed.

We now compare the performance of the Alamouti scheme with that of the
BLAST system discussed in the previous section. For both systems, \s&eon
nr =ng = 2. We assume that both schemes have a transmissioR rafehit/s/Hz.
This rate can be achieved using BLAST with BPSK or using the Alamouti code
with QPSK modulation. For a fair comparison, we compare the two systems in
terms of signal-to-noise ratio per bit, i.€2;,/N,. Assuming perfect channel esti-
mation at the receiver and no antenna correlations, Figure 2.13 shawsaheouti
performs better than BLAST and this improvement is greater at higher dignal-
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2.4 Space-Time Coding

BER performance comparison: Alamouti vs BLAST
( ne=ng= 2, R =2 bit/s/Hz and with antenna correlations)

10" ¢ T T
F —&- : BLAST with ML decoder
—0— : BLAST with MMSE Null & Canc + Ord decoder
—©— : Alamoulti
107E 4
107%F 4
Q
T
o
S
i
I
10°E 4
10°E E
10'5 i I i I |
-5 0 5 10 15 20 25
E,/N, (dB)

Figure 2.14: BER Performance comparison between BLAST (BPSK modujjatio
and Alamouti (QPSK modulation) withy = np = 2 (transmission raté& = 2
bit/s/Hz). Correlated MIMO channel (urban environment in Figure 2.8)@erfect
channel knowledge at the receiver are assumed.
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2.4 Space-Time Coding

noise ratio. We next compare their performance in correlated MIMO aianwWe
consider a medium level of correlation typical of urban environments swithed

in Figure 2.5. Itis seen from Figure 2.14 that Alamouti performs much beter th
BLAST in such a scenario.

General STBC Based on Orthogonal Designsi > 2)

The Alamouti scheme presented previously only works with two transmit aasenn
This scheme was later generalized in [114, 115] to an arbitrary numbemsinit
antennas. In a similar manner to the Alamouti code in (2.23), the general STBC
is defined by a code matrix with orthogonal columns. Just like in the Alamouti
scheme, a simple linear receiver is also obtained owing to the orthogonality of
the columns of the code matrix. In general, an STBC is defined hy>a )

matrix G. The entries of the matri& are linear (possibly complex) combinations

of the variablesty, xo, ..., x;, (representing symbols). The columns of the matrix
represent antennas and the rows time slots. Therefdime slots are needed to
transmitk symbols, resulting in a code rate= k/p symbols/channel used. Itis of
special interest code matrices achieving the maximum transmission rate permitted
by the STC theory, i.eR = 1 symbol/channel used. For a fixeg¢:, among the

code matrices that achieve the maximum rate, we will be interested in those with
minimum values op or equivalently, the minimum number of time slots needed

to transmit a block. These code matrices are referred as delay optimalegrat¢h
interesting because they minimize the memory requirements at the transmitter and
at the receiver (i.e., encoding and decoding delay). We recalpthat 7.

STBC for real constellations

For real signal constellations such as pulse amplitude modulation (PAM)nthe e
tries of the code matrices are only real linear combinations, pfo, ..., x;. Gen-
eral STBC based on real orthogonal designs achieving full diveasitifull rate,
can be found for any number of transmit antenna$118]. Usingny =2, 4 and 8
antennas, STBC code matrices can be found withn (i.e., minimum possible
delay in STBC). As an example, an STBC suitable for real constellationsyith
=4is

r1 X2 z3 X4
—T2 r1 —T4 €T3 (2 31)

—x3 T4 Ty —x2

—ZT4 —I3 T2 T
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2.4 Space-Time Coding

4
for which it can be verified tha&T G4 = ( 3 2? ) - I,. The encoding process

at the transmitter is similar to that for the Kllamouti code, as follows. Consider a
real constellation of size®2 At time instant 1, # bits arrive at the encoder and
select symbolsy, ss, s3, s4. Letx; = s; in matrix G4 in (2.31) to obtain the code
matrix C4. Attimet = 1,2,3 and 4, the-th row of C4 is transmitted from the four
transmit antennas simultaneously. Therefore, with= 4 transmit antennas and
employing the code matrig’', four symbols are transmitted during four symbol
intervals achieving? = 1 symbol/channel used, i.e., the maximum rate allowed by
the STC theory. At the receiver, the orthogonality of the matfixsimplifies the

ML decoder by decoupling the detection of each of the transmitted symbols.

STBC for complex constellations

Complex STBC are analogous to the real ones except that the code matntais
entriestxy, £, ..., &4, their conjugates, and them multiplied k{1, making
them useful for complex constellations such as M-PSK or M-QAM. As amgle,

an STBC withny = 4 for complex constellations can be constructed using the real
orthogonal design in (2.31) as

T X9 I3 T4
—X9 X1 —X4 T3
—x3 x4 ryp —X2

—X4 —X xI9 T
Gy = [ o ] = ; I (2.32)
1 2 3 4
—ry @ —rp 13

* * *

| -y —xy wy o a)
As before, the cod€'. 4 can be obtained substituting by the data symbols
si in G.4. In this code, transmitting each row at a time, 8 symbols intervals are
needed to transmit 4 symbols, therefore giving a Fate1/2 symbol/channel used,
i.e., half of the maximum rate permitted by the STC theory. Complex STBE of
= 1/2 achieving full diversity can be built for any number of transmit ardsnn
Gy
G
It has been shown that complex STBC having full symbol rate (Res 1)
only exist forny = 2, i.e., the Alamouti code. In this sense, the Alamouti codes is

unigue. Codes that achieve a rdte= 3/4 with complex constellations have been

from real STBC usind=..,,, =
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2.5 MIMO systems in frequency selective channels

found withny = 3 andny = 4 [114].

2.5 MIMO systems in frequency selective channels

So far we have considered flat fading channels. In this section, in adddio
showing how to extend MIMO detectors to frequency selective chanmelg|so
introduce a new class of linear detectors, namely lattice-reduction-aided) (L
detectors.

2.5.1 MIMO Frequency Selective System Model

An apparent disadvantage of single-carrier based MIMO systemsgudney se-
lective channels is the fact that the computational complexity of the reqenieer

a vector-MLSE or a multi-channel equalizer) will in general be very hilgie use
of orthogonal frequency division multiplexing (OFDM) alleviates this probley

turning the frequency-selective MIMO channel into a set of parallelomeband
MIMO channels [17, 98], which greatly simplifies the equalization process.

For the equivalent narrowband detection process, although themearfoe of
the ML receiver is optimal, its complexity is very high. A number of other de-
tectors, offer substantially lower complexity, but their performance is saamifly
worse. This section shows that a class of lattice-reduction-aided (L&X&jvers
in MIMO-OFDM systems can achieve near maximum likelihood detector perfor-
mance with low complexity. We extend the LRA receiver technique proposed in
[133], applicable for & x 2 system, to a generalg x np system, wherer > np.

It will be shown that particularly with higher order constellations and when th
channel is correlated, LRA significantly outperforms other suboptimattatein
terms of BER.

Consider the equivalent discrete time baseband model for the MIMO-OFDM
system shown in Figure 2.15 haviig carriers,np transmit antennas, and re-
ceive antennas. Assuming thaf|t] is the output of the parallel-to-serial converter
at thewv-th transmit antenna at time the signal received at the-th antenna can
be written as

nr L—1
rilt] = L B llolt — 1] + winlt], (2.33)

wherep is the received signal to noise ratio (SNR),,[t] is the noise observed at
the m-th receive antenna, distributed &5(0, 1) andh,, , [I] represents the com-
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B>L-1 { 1 ,ffji
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Figure 2.15: The block diagram of MIMO-OFDM transceiver.

plex channel gain between theh transmit antenna and the-th receive antenna
for thel-th path, wheré = 1,..., L — 1. We considet, , [I] ~ N.(0, 07 ;) with

L— 10_2 - 1.
1=0 Th,l
Denotingr[t] = [r1[t], ... rnplt]]7s 2lt] = [z1[t],. .. 2wy [t]]T, andwlt] =
[w1[t], walt], ..., wn,[t]T, we can rewrite (2.33) as

Z Hlar: t— 1]+ wlt], (2.34)

where the elements of the@r x ny) matrix [H iy, = hm o[l].

The MIMO-OFDM structure is one way to avoid the complexity of time do-
main equalization to recover the transmitted signal in (2.34). MIMO-OFDM con-
verts a frequency selective channel into a seVgparallel frequency flat channels
with N, subcarriers [17, 98]. In MIMO-OFDM systems, the transmitted signal
at thewv-th transmit antennag, [t], is generated by the IFFT af,. data symbols
81()1)[1.], s “)[] Wheres(k)[ /] is the input data on the-th antenna on thé-th
subcarrier. A cyclic prefix (CP) is pre-appended at each block offR& output
as shown in Figure 2.15. The receiver at each antenna discards thenCP,, [t]
and passes the remainirg. samples to the FFT block. If the length of the CP,
B > L — 1, then the system in (2.34) during tiwth MIMO-OFDM symbol can
be written as

y W] = HLH(’“)S(’“) [i] + n®[i], (2.35)
T

where the equivalent flat fading matr® (*) corresponding to thé-th subcarrier
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is denoted as

L-1
. 1 .
HW = H (™ /Ney = —— N " Hyem/2mh/Ne (2.36)
VN, ’
=0

and s(*)[i] consists of the input data symbols of all the transmit antennas,
n®[i] is the noise at thé-th output of the FFT blocks at each of the; re-
ceive antennas. Owing to the OFDM operations, ISl is avoided and tatiooal
convenience, we will drop the time indéxn the remainder of this section, i.e.,
sW[] =[5 n® = P BT andy® = [y 0T

The MIMO-OFDM symbol has a duratidfi equal toN,. + B samples of the time
domain signal,[t].

2.5.2 Correlated Channel Model in Frequency Selective Charals

Consider that there is no line of sight between the transmit and receivenaste
Also assume that all the signals reflected from one cluster of scatteringt®bje
and arriving at the receiver can be considered as having unde@on path of
the multipath channel as shown in Figure 2.16. If the angular sprﬁﬁd)f the
arriving rays corresponding to one path/cluster is not large enougtherdistance
between the antennag,is not sufficient, the signals arriving at different receive
antennas will be correlated. Similar arguments apply to the transmit antennas.

Consider the matri4d; whose entries.,, ,,[I] represent the complex channel
gains between the-th transmit andn-th receive antenna for tHeth path. When
the channels are correlated at either the transmitter or the receiver thides;
ements ofH; cannot be considered as independent and in a similar manner that
previously presented in section 2.2.2 the channel matrix response fettl@ns-
mission path can be modeled as [17]

H,=R)’H, R}, (2.37)

whereH ,,; is an uncorrelated r x n7 matrix with i.i.d. entries R, ; is anny x

np transmit covariance matrix for thieth path corresponding to the correlation
between transmit antennas, aRg; is ann xnr receive covariance matrix for the
[-th path. Note that when theth path is uncorrelated at the transmitter(receiver),
Ry =I(R,, =1I).
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XYY TX

Figure 2.16: Geometry of the scattering scenario itk 3 paths.

2.5.3 Basic Linear Receivers

Consider the received signal vector on théh OFDM carrier in (2.35). For this
model, any of the BLAST detectors described in Section 2.3.1 can be applied.
However, let us describe more simple receivers, namely linear detectors.

In a linear receiver, the received signal veayd) in the k-th carrier is linearly
transformed by a matrix equaliz&*) which basically undoes the effects of the
channel to obtain

rk) = GRy k) = [P Gg®) k) gk) o G (2.38)
nr

which is later quantized to obtain an estimate of the transmitted symbol vector, i.e.,
sk = Q(r®). The whole process is shown in Figure 2.17. The matrix equalizer
G™®) can be computed according to different criteria. For the zero-forcifig (
criterion, the equalizer is given bg*) = %H(kﬁ, where H ¥ denotes the
pseudo-inverse. The ZF criterion suffers from noise enhancerimad i focuses

on cancelling the effects of the channel response at the expenshafaimg the
noise, possibly significantly. On the other hand, the minimum mean-square err
(MMSE) linear equalizerG®*) = ag\/%HH (‘%?H(k)H(k)H + o—?LIMR)fl,
minimizes the error due to the noise and the interference combined. The nonlin-
ear BLAST receivers described in previous Section 2.3.1 offer bettéonmance
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than linear receivers with a moderate increase in complexity. Howeveretfar{p
mance of these receivers is far away from the much more complex MLvezsei
especially in correlated channel scenarios.

y slicer
s® y() r&) (k)
™ =N H® P G Qr)

Figure 2.17: Traditional linear receiver.

2.5.4 Lattice-Reduction-Aided Receivers

Constellation, Lattices, and Basis Change

Let us first consider a real-valued MIMO-OFDM system with=n p=2 antennas,
where the transmitted symbo;lgc) andsék) belong to &N +1-PAM constellation,
ie. s§k) €e{-N,—-N+1,...,0,...,N — 1, N}. Assume that the channel matrix

23

for the k-th OFDM carrier isH®) = [{") A{M] = . Then, the received

constellation will consist of a lattice of linear combinations of the columr 67,
e, H®s® = sF2 117 4 s (3 9], As shown in Figure 2.18, due to the
equalizing operation and the direction of the basis vectors, the decisionsegn
be seen as parallelograms described by the columid#(6f [133]. In this case,
it can be seen that when the angle betwhgﬂ andhék’) is very narrow (i.e., the
vectors are correlated), a small amount of noise can make a receivdubisiall
out of the decision region and cause the decoder to make a wrong d4&38)n

The idea proposed in [133] is to change the original b&Ei® to a new basis
representing the same lattice in which its column vectors are less correlated, the
decode the symbols in the new basis, and finally transform the decodealsymb
into the original basis. All of these operations need to performed at tleévesc
For example, as can be seen in Figure 2.19, the new Ue’gg%andh’z(k) is closer
to orthogonal as compared h;ik) andh,gk), and yet still generate the same lattice
with better decision regions. Thus, with the new basis, the decision regiens a
more robust against noise and interference. In this section, we grapaxtension
of a reduction technique which first appeared in [133PfR systems, to a general
nr X ny system.
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Figure 2.18: Original basis and decision regions.
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Figure 2.19: Original and new bases.
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Theorem 1 [133]: If H is a basis of a lattice I’ = H P is also a basis of the
same lattice ifP and P~! have integer (possibly complex) entries

For the problem in hand, the objective is to find a change of h&sks which
transformsH %) into H'®), for k = 0, ..., N. — 1 such that the decision regions
for a specific lattice and decoder are more robust against noise arfdiiatee.

LRA Receiver

For generalh complex vectors and QAM input symbols, an input symbol vec-
tor of thek-th carrier represented by*) in the original basis with elements %,
whereZc is the set of complex integers, can be representedly= (P*))~15*)

in the new reduced basis. We can assume that the received yé&etan (2.35) is
already represented in the new reduced basis since

SO \/Z )50 | k) (2.39)
nr

Now H'®) = H*) P¥), and so for the ZF receiver whe@*) =, /"2 (H® PM)1,
(2.38) can be written as

P8 = [P g k) pk) (k) 4 k) (), (2.40)
nr

The estimate 0£(*) is () = Q(r(*)). Since the lattice points consist of elements
in Z¢, the quantization consist of a rounding operation whereby the real argd ima
inary parts are rounded separately. Findl%) is transformed to its original basis
by performing the operatiog*) = P*) 3,

To use the lattice theory and the decoding operation in (2.40), the original
points in the constellation are required to consist of symbol&dn Note that
the origin [0, ...,0]” also belongs to the lattice. Since ordinary QAM constel-
lations consist neither of contiguous integers nor contain the origin, it issaec
sary to scale and shift the original constellation. In this section, we canside
M-QAM constellations such thaﬁ{sék)} € {—vVM +1,...,v/M — 1} and
%{sék)} € {—VM +1,...,v/M — 1}, thus, to convert the symbols into contigu-
;(k), we can shift the original constellation by= [1+4,...,1+4]"
and scale byl /2. Since the transmitter might not know the type of receivers used,

ous integers

the scaling and shifting operations have to be done at the receiver.
Assuming the shifted and scaled constellat8f is transmitted, the received
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signal vector is

y® =\ [La0gw - [P gl ). (2.41)
nr nr 2

In terms of the signal received when the data bits are transmitted using thrabrig
constellationy¥), (2.41) can be rewritten as:

y/(k) _ %y(k) +% s (OF] (2.42)
nr

To summarize, combining (2.40) and (2.42), the operations at the recemsist

H®PK = pseudo-inverse

®) 1 g
s® T1z® : y . undo
X =) PO T EHE HEp® Ssclale = HOPO = glicer = pi) shift &

scale

LRA receiver operations
Figure 2.20: LRA linear receiver.

of two steps as shown in Figure 2.20: (a) scaling, shifting, and equalizititgin
new basis

r(k) — n—T(H(k)P(k))T o[ LHs® i [P a®a)], 249
P 2 nr nr ’
v N w

equalize in new basis scale rx signaly shift

and (b) slicing, returning to the original basis, and undoing the scalinglaiftthg
as

5§ =2PRQ(rh) _d. (2.44)

Note that the slicing(-) is a rounding operation since the symbols in the lattice
belong toZ¢. In general, LRA receivers are expected to have better performance
than traditional linear receivers, especially in realistic communication systams s
narios, where the channel and therefore the column vectors aréated& some
degree. When the columns or rowsHf*) are correlated, the inversion of channel
matrix H *) in the ZF equalizer may enhance the noise significantly.
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2.5 MIMO systems in frequency selective channels

2.5.5 Basis Reduction Algorithm

Given the columns o ®), i.e.,h{" ... h!f) are the basis of the lattice for tite
th OFDM catrrier, let us consider the problem of findinga@dchange of basi$
to transformhgk), cee hg’“) into h'l(k), e higf,) as illustrated in Figure 2.19 for the

case of 2 transmit antennas. This problem is known as the basis reductianp
and borrows the ideas from Gram-Schmidt orthogonalization.

We first give an overview of the Gauss basis reduction algorithm limited to ran
np = 2 which is used in [133]. The reduction algorithm uses a method similar to
the Gram-Schmidt orthogonalization. Assume th%"t) and hgk) are a basis of
the lattice. Define the Euclidean inner product<h§k), h(k)> = hgk)Hh(Qk) and
consider the Euclidean norm. Assuming tthh§k)\| < th’% , the basis reduction

algorithm does operations in the basis vectors of the form

S A (2.45)
which yields a different basis for the same latticg i€ Z¢. Since the purpose of

the lattice reduction is to make lattice basis vectors as close to orthogonal-as pos
sible, Gram-Schmidt orthogonalization can be used tofimdth the further con-

(k) p (k)
strainty, € Z¢. The ideal Gram-Schmidt orthogonalization, ugés- %

but this operation would change the lattice sinéeis not in Z¢. The weakly
reduced Gram-Schmidt orthogonalization, uses an integer rounding dddehe
Gram-Schmidt coefficient g8 = |x'| where real and imaginary parts of com-
plex numbers are rounded separately. Using a weak reduction, the lattieins
the same. Oncézgk) has been reduced with respecthék), if hgk) < hgk)
we have the possibility of reducinlggk) with respect to the nevhgk). We first
swaph(k) and hgk). This second reduction will occur if sugh exists, i.e., if
RURS, BN > LIRP)2 or [5{(, O] > L% The aigorithm
repeats this process until no more reduction is possible. As an examptagfor

basis given in Figure 2.21 we give the two steps performed in the algorithm.

Initial state Step 1 Step 2

Figure 2.21: Lattice basis reduction using the Gauss reduction algorithm.
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2.5 MIMO systems in frequency selective channels

A notion of lattice reduction for a lattice basinék), - h%kT) of arbitrary rank
np was proposed by Lenstra, Lenstra and Lovasz (LLL) [87]. It wg®dar ideas
to the Gauss reduction algorithm. For a givbn}I < 0 < 1, the LLL reduction
algorithm modifies an input basisgk), ...,hﬁfT) so the output basis satisfies the
following é-reduction properties

1
Poui < 3 for 1<i<u<nyp, (2.46)

which guarantees that the next reduced vector cannot be furtheregadavith re-
spect to the previously reduced vectors, and

> (k) > (k) k) (k)
R 1Y T i (2.47)
where the vectorégk), . hffT) denote the Gram-Schmidt orthogonalization of the

output basis that can be obtained by the following recursion

(k) k
1 ",

(k)

2

i—1
hgk) - Zﬂzyjfb;'k) for i=2,...,np, (2.48)
j=1

and the Gram-Schmidt coefficients, are equal to

<ﬁ(k) hz(k)>
(

A possible implementation of the LLL algorithm to obtain the reduced basis is
given in Algorithm 3.

During the algorithm we keep two sets of vectors, namely the lattice reduced
basis vectorgh!", ... ("} and the Gram-Schmidt vectofd.” ... A} (with
the corresponding Gram-Schmidt coeﬁiciemgfz) which are continuously up-
dated. Note that only adjacent vectdts_; and h, may be exchanged. When
the rank isnp = 2 andd = 1, Algorithm 3 is identical to the Gauss reduction al-
gorithm used in [133]. Reduced bases with better properties can beexbtairen
the constant is closer to one although the number of iterations of Algorithm 3
would increase. More efficient implementations of the algorithm can be found
[105] and [106].

Other types of reduced bases are the Korkin-Kolotarev (KZ) basjR,079],
the Minkowski basis [1, 62], the Seysen basis [80, 109] and hybtids][which
have different reduction criteria. These bases have in general sligdttsr fprop-

(2.49)
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2.5 MIMO systems in frequency selective channels

Algorithm 3 LLL lattice-reduction algorithm

INPUT: Lattice basis Al¥ = H®[ 1], A = HW[ ny €
C'r and ;<d<1
FOR k£ =0,...,N. — 1 DO for each carrier
U =2
VH LE v <np DO
FOR i=u—1,...,1 DO

h,(f) = h&k) — V&)-‘ hz(k); round real and imag separately
END FOR )
Compute h,  as in (2.48)

LF 0l P > Ny + Ry THEN
hg‘fl > h&k) (exchange)
u = max(u —1,2)
ELSE u=u+1
END VHI LE
END FOR
QUTPUT: Reduced lattice basis H® = [ _ &d] and
P®) defined as H'® = H® pk)

erties although the reduction is more time consuming.

The performance of the LRA receivers will be closer to that of the Mlenesr
as the size of the QAM constellation increases. This occurs because ERW tr
finite constellations as infinite and therefore, constellation points on the bound
of the constellation that originally had less constellation neighbors, endwp ha
ing the same number of neighbors as the internal constellation points. Heisce, th
loss in performance will be smaller if the ratio of boundary constellation points
and internal points becomes smaller which occurs in high order QAM constella
tions (e.g., 64-QAM or 256-QAM). Moreover, it is known that the computslo
complexity of the ML decoder in MIMO systems with large constellations or large
number of transmit antennas becomes prohibitive. Therefore, LRAddes@re
a good alternative when large order constellations or large number sfriiiban-
tennas are used. Note that the complexity of the LRA receivers has tus par
computing the reduced basis of the lattice, and ii) implement the linear equalizer.
In quasi-static channels, the lattice is fixed during a long period of time, so the
basis reduction is performed just once and then the resulting basis is &ored
subsequent use. Thus, the complexity of solving i) is not of major concern
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2.5 MIMO systems in frequency selective channels

2.5.6 Simulation Results

The simulations presented in this section were conducted Withl6 OFDM
sub-carriers, 1000 symbols transmitted per carrigs3 transmit antennag,z=3
receive antennasj = 1, and a multipath channel with=3 resolvable paths.
The distribution of the multipath complex channel gaing,is, [!] ~ N;(0, a}%,l),
form = 1,...,ng andv = 1,...,ny with 0',2170 = 0.44, 0%71 = 0.34, and

a,%’z = 0.22. Channel noise is complex Gaussian with symmetric density function
N.(0,1). An uncoded system is considered and Gray coding is used for ai case
(QPSK and 16-QAM). For the correlated channel case, scatteringisos similar

to the ones suggested in the COST-259 model [7, 112] is used. The mglan an
of arrivals (AOA) at the transmitters agd © = 30°, f{* = 45° and f1* = 60°,

and at receiver side argf’* = 50°, ffi* = 70°, ff** = 100°. The rms angular
spread at the transmitters arg” = 20°, a]® = 22° andal® = 17°, and at the
receiversal’® = 20°, af* = 18° andad’® = 23°, respectively. Fifty independent
realizations are simulated for each SNR and the BER results are averaged.
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Figure 2.22: BER performance of3ax 3 system with QPSK modulation in an
uncorrelated channel.

Comparing Figures 2.22 to 2.25, it can be seen that the performance of the
LRA receivers approaches the ML receiver as the size of the QAMtebdation
is increased. This occurs because the LRA treats finite constellationsrageinfi
and therefore, data points at the constellation boundary that originaléy/feaxer
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Figure 2.23: BER performance of3ax 3 system with QPSK modulation in a
correlated channel.
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Figure 2.24: BER performance of3ax 3 system with 16-QAM modulation in an
uncorrelated channel.
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Figure 2.25: BER performance of3ax 3 system with 16-QAM modulation in a
correlated channel.

neighbours end up having the same number of neighbours as the intensédle
lation points [133]. Due to the high computational complexity of the ML receiver
the LRA receiver is a promising alternative, especially if a large numbean$init
antennas and large constellation are used. Recall that for 3 antenmamsitting
16-QAM symbols, the ML receiver performs 4096 comparisons to deeadb
symbol vector.

From Figures 2.23 and 2.25, it is observed that only the ML and LRAver=i
are robust against correlated channels whereas the performatraditbnal lin-
ear and V-BLAST receivers is very poor. Since LRA receivers hess which
are closer to orthogonal, there is less correlation between the columH4 /st
k=0,...,N.— 1, as compared to the origin& (*), therefore it performs much
better than the linear receiver in correlated channel. It can be seeth¢hbRA
is an attractive method to improve the bit error rate performance when ehann
correlation is high. For all of the cases considered, it can be seen thaRA

and ML receivers achieve the same diversity order, where diversigfised as

B . log BER(p)
v =—limp oo =g
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2.6 Further Topics and Conclusions

In this chapter, we have discussed the huge increase in capacity tiat chtained

in rich scattering environments by using multiple antennas at the transmitter and
the receiver; and we have given an overview of the main classesa#-tipae tech-
niques recently developed in the literature. In conclusion, the area oégjpae
coding and signal processing is new, active and full of challenges.fdllowing

is a list of some other important topics related to MIMO systems and space-time
coding and signal processing:

e Space-time trellis codes (STTC): An STTC is basically a trellis-coded mod-
ulation (TCM) code, which can be defined in terms of a trellis tree. Rather
than transmitting the output code symbols serially from a single transmit-
ter antenna as in the traditional TCM scheme, in STTC all the output code
symbols at each time are transmitted simultaneously from multiple transmit-
ter antennas. The first STTC communication system was proposed in [118]
Some design criteria and performance analysis for STTC in the presénce o
channel estimation error are given in [117]. Some improved STTC codes
found by exhaustive computer search are given in [11].

¢ Differential space-time codes: Previous sections have assumed that the r
ceiver has knowledge of the channel matrix before starting the detedtion a
gorithms. In some situations, this is not possible since no training symbols
are available. In some other situations, the channel changes so rapidly tha
channel estimation is difficult or requires training symbols to be sent very
often. That is the reason why it is interesting to consider differential tech-
niques that do not require estimation of the channel response neither at th
receiver nor at the transmitter. Differential STBC based on orthogdeal
signs are proposed in [67, 113] and those based on unitary groep eaie
proposed in [66]. Similarly to the SISO case, differential decoding inaurs
performance penalty of about 3dB compared with coherent detection.

e Space-time precoding: The space-time coding schemes presented in this
chapter only require channel knowledge at the receiver. In sones aazan-
nel status can be fedback to the transmitter or directly estimated by the trans-
mitter such as in a TDD system. In such scenarios, the performance can be
improved if the transmitter uses this channel information. Different precod-
ing schemes have been proposed in [102].

¢ MIMO antenna selection: Usually, the RF chain (amplifier, digital-to-analog
converters, etc.) in wireless devices is one of the most significant costs. A
promising approach for reducing the cost and complexity while retaining a
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reasonably large fraction of the high potential data rate of a MIMO system is
to employ a reduced number of RF chains at the receiver (or transmitter) an
attempt to optimally allocate each chain to one of a larger number of receive
(transmit) antennas. In this way, only the best set of antennas is usiel, wh
the remaining antennas are not employed, thus reducing the number of RF
chains required. Different approaches to selecting those antervebden
recently proposed in the literature [51, 52, 59, 103].

MIMO applications in OFDM and CDMA systems: Code design criteria for
the MIMO OFDM systems are given in [89, 90], and specific code designs
are given in [18]. Moreover, MIMO coding and signal processingmégues

for code-division multiple-access (CDMA) systems are developed in [64,
100].

Turbo processing for MIMO systems: lIterative or turbo demodulation and
decoding for coded BLAST or coded STC systems have been investigated
[30, 55, 88, 90, 107, 120].

Other space-time coding schemes: Other classes of codes are beikig deve
oped for MIMO systems. As an example, linear dispersion (LD) codds [58
can be used with any configuration of transmit and receive antennadksend

are designed to optimize the mutual information between the transmitted and
received signals. The LD codes can be decoded using any BLASGtidete
algorithm. Moreover, layered space-time coding schemes are proposed in
[44, 116] and LAttice Space-Time codes have been proposed in [43].
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Chapter 3

MIMO Antenna Selection

3.1 Introduction

Multiple-input multiple-output (MIMO) systems can offer significant capag#yns
over traditional single-input single-output (SISO) systems [40, 119%wéVer,
multiple antennas require multiple RF chains which consist of amplifiers, analog
to digital converters, mixers, etc., that are typically very expensive. gfmaach

for reducing the cost while maintaining the high potential data rate of a MIMO sy
tem is to employ a reduced number of RF chains at the receiver (or tran$atter
attempt to optimally allocate each chain to one of a larger number of receire-tra
mit) antennas which are usually cheaper elements. In this way, only thedbest s
of antennas is used, while the remaining antennas are not employed,dbasce

the number of RF chains required.

Originally, antenna selection was proposed for systems having a singleiitan
antenna and multiple antennas at the receiver employed for standarsitgiper-
poses at the receiver [72, 129]. Recently, for multiple transmit and mulgpkive
antennas several algorithms have been developed for selecting the aptierata
subset given a particular channel realization. In [95] it is proposeskkect the
subset of transmit or receive antennas based on the maximum mutual itiberma
criterion and [93] gives an upper bound on the capacity of a system wiémaa
selection. A suboptimal algorithm that does not need to perform an et&us
search over all possible subsets is proposed in [46] and [53]. Aatselection
algorithms that minimize the bit error rate (BER) of linear receivers in spatikl mu
tiplexing systems are presented in [59]. In [51], antenna selection algritine
proposed to minimize the symbol error rate when orthogonal space-timedudek
ing is used in MIMO systems. Selection algorithms that only assume knowledge
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of the second order statistics of the MIMO channels are also present49, ig].
Theoretical studies in [9] and [53] show that the diversity order aetiglirough
antenna selection is the same as that of the system using the whole set ohanten
in spatial multiplexing and space-time coding systems, which motivates the use of
antenna selection.

All the algorithms appeared in the literature assume perfect channel katgevie
to find the optimal antenna configuration. Moreover, these algorithms taatio
urally cope with time-varying channels. This chapter presents discreteastc
approximation algorithms for selecting the optimal antenna subset based on ad
vanced discrete stochastic optimization techniques that can be found ircéms re
operations research literature [5, 6, 28]. These techniques optimizbjective
function (e.g., maximum mutual information or minimum error rate) over a set of
feasible parameters (e.g., antenna subsets to be used) when the ofjectiven
cannot be evaluated analytically but can only be estimated. The methods are in
the same spirit as traditional adaptive filtering algorithms, for example the least
mean-squares (LMS) algorithm in which at each iteration, the algorithms make
computationally simple updates to move towards a better solution. Consequently
the performance is successively improved until converging to the optirhdisa
But in this case, the parameters to be optimized take discrete values (i.e.,aantenn
indices to be used). In a similar manner to the continuous parameter casis-the d
crete adaptive algorithms asymptotically converge to the optimum solution. The
algorithms also have an attractive property, in that it can be proved thespiead
more time at the optimum value than at any other parameter value. In the transient
phase, the algorithms converge geometrically fast toward the vicinity of ttie op
mum point [6]. These techniques have recently been applied to solveketreer
problems in wireless communications [8, 74].

When the MIMO channel is time-varying, the optimal antenna subset is no
longer fixed. To cope with this situation we extend our proposed algorithms to
be able to track the time-varying optimal antenna configurations. The fitheof
proposed adaptive algorithms uses a fixed step size which acts astéirigripetor
to be able to track the optimal antenna subset. The motivation is the same as in the
adaptive filtering applications with a continuous parameter space, suck8s L
in non-stationary environments, where the computation is distributed over time
enabling slowly varying dynamics to be tracked. The choice of the stepsiae
has important effects in the tracking performance in terms of convergateand
stability. However, its value is difficult to select when the dynamics of the rmélan
are unknown. Hence, we may optimize the tracking performance by supEsiingp
an adaptive algorithm for the purpose of tuning the step-size paramelers, T
we propose a second adaptive algorithm comprising two cross-cougiégadiae
algorithms: (1) a discrete algorithm to adaptively select the best antefsatsu
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and (2) a continuous algorithm to adaptively optimize the step size. Thisdecon
combination is attractive when the details of the underlying physical modetof th
MIMO channel and its variability are unknown. To the best of our knoggeduch
adaptive discrete stochastic approximation algorithms are new and hakeerot
used previously for antenna selection.

In the final part of this chapter we consider new antenna selection criéeria
different MIMO configurations. The motivation for considering thesenseios is
that they permit the introduction of suboptimal fast (i.e., low complexity) antenna
selection algorithms based on greedy selection as was recently proposehler
selection criteriain [46, 53]. That is, in the incremental greedy selectiamitigns
we begin with the full set of antennas available and then remove one argenna
step. In each step, the antenna with lowest contribution to the optimization of the
objective function of the system is removed. Similarly, we consider incrementa
greedy selection algorithms in which we start without selecting any antertha an
at each step of the algorithm, a new antenna is added until enough anteiweas
been selected.

The remainder of this chapter is organized as follows. In Section 3.2, the
MIMO system model with antenna selection is presented. We also formulate the
antenna selection problem as a discrete stochastic optimization problem.-In Sec
tion 3.3, two general discrete stochastic optimization algorithms are presemnted a
their convergence properties are summarized. In Section 3.4, seatgaha se-
lection criteria are presented, including maximum mutual information, minimum
bound on error rate, maximum signal-to-noise ratio, mmgimum error rate The
performance of the corresponding stochastic approximation algorithmsnisrde
strated through several numerical examples. In Section 3.5, antenotosela
time-varying channels is addressed. In Section 3.6, new antenna seleition
ria are developed for different MIMO system configurations and tlasir dntenna
selection algorithm counterparts are also presented. Section 3.7 prinseots-
clusions.

3.2 System Description

3.2.1 MIMO System with Antenna Selection

Consider a MIMO system as shown in Figure 3.1 withtransmit anch  receive

RF chains and suppose that there &g > np transmit andNp > np receive
antennas. The channel is represented byén x N7 ) matrix H whose element

h;; represents the complex gain of the channel betweentth&ransmit antenna

and theith receive antenna. We assume a flat fading channel remaining constant
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over several bursts. In this chapter we first concentrate on antetecisn im-
plemented only at the receiver and therefdie = nr. The subset ohp < Ny
receive antennas to be employed is determined by the selection algorithatioger

at the receiver which selects the optimal subsef all possible(fg) subsets of

ng receive antennas. More generally, antenna selection can also be impmdraen

the transmitter with similar selection algorithms although the channel information
needs to be known at the transmitter side. This is the case when there exis$ts a f
feedback channel so the receiver can return channel state infomatioe trans-
mitter. In the case of limited feedback between the transmitter and the receiver,
the selection algorithm can be implemented at the receiver and only information
about the antenna indices to be used is fedback to the transmitter. Another situ
ation where the selection algorithm is implemented at the transmitter occurs, for
example, when the system employs time-division duplex (TDD) transmission so
that both the uplink and downlink channels are reciprocal. In the caseteha
selection at both sides of the transmission, the same selection algorithms can be
used although the amount of possible solutic(lﬁl’if,) (fg) increases dramatically.

We note that loading is generally implemented when the transmitter has knowledge
of the channel [102]. Therefore, if antenna selection is implemented atahe
mitter, different optimality criteria will be considered to select the best antenna

subset.
h21
1 < 1
(' RrFchain 1 X z 1 yl

> SWIt(.Dh SWIt(.Dh RX
selection selection

Py - Y e
RF Chain e ngl RF Chain
E K

n; (inputs) - N (outputs) Ng (inputs) - ng (outputs)

)

Figure 3.1: Schematic representation of a MIMO system with antenna selection

DenoteH [w] as the(ny x ny) channel submatrix corresponding to the receive
antenna subset, i.e., rows of H corresponding to the selected antennas. The
corresponding received signal is then

Y= LH[w]s%—n (3.1)

nr

wheres = [s1, 52, ..., Sn] L IS the(ny x 1) transmitted signal vectoy, = [y1,y2, -, Ynp)~
is the(ng x 1) received signal vecton, is the(ny x 1) received noise vector, and
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p is the total signal-to-noise ratio independent of the number of transmit aagenn
The entries ofn are i.i.d. circularly symmetric complex Gaussian variables with
unit variance, i.e.n; ~ N.(0,1). Itis assumed that the transmitted symbols have
unit power, i.e.F { [s;]? } = 1.

For the problems that we are looking at in this paper, the receiver is egjair
estimate the channel. One way to perform channel estimation at the reisdiver
use atraining preamble [91]. Suppose each block of symbols compriges of
MIMO training symbolss(1), s(2), ..., s(T') which are used to probe the channel.
In our numerical examples we uge= 2, 7' = 4 or T' = 6. The received signals
corresponding to these training symbols are

y(i) = | L= H[w)s(i) + n(i), i=12,..T. (3.2)
nr

DenoteY = [y(1),y(2),...,y(T)],S = [s(1),s(2),...,s(T)|andN = [n(1),n(2),...,n(T)].
Then (3.2) can be written as

Y= /L HWS+N (3.3)
nr

and the maximum likelihood estimate of the channel maifij] is given by

Hlw] = arg  min
[ ] HE(C"RX"T

2
Y - pHSH = Ly gH(ssH) 1.
nr P

According to [91], the optimal training symbol sequengethat minimizes the
channel estimation error should satisfy

Sst =1.1,.. (3.4)

In an uncorrelated MIMO channel, the channel estimatgéw] computed using
(3.4) with orthogonal training symbols are statistically independent Gaugsian
ables with [91]

gl ~ N (il 7). (3.5)

3.2.2 Problem Statement

We now formulate the antenna selection problem as a discrete stochastic optimiza
tion problem. Denote each of the antenna subsets-aq Ant(1), Ant(2), ..., Ant(ng)}
(e.g., selecting the first, second and sixth antennas is equivalenttd1,2,6}).
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Denote the set of alP = (]X}f:) possible antenna subsetsas= {wy,ws, ...,wp}.
Then, the receiver selects one of the antenna subsétstanoptimize a certain
objective function®(H |w]) according to some specific criterion, e.g., maximum
mutual information between the transmitter and the receiver, maximum signal-to-
noise ratio or minimum error rate. Thus, the discrete optimization problem be-
comes
w* = argmax ®(H [w]), (3.6)
weN

where we usev* to denote the global maximizer of the objective function. In
practice, however, the exact value of the chanHeél| is not available. Instead,
we typically have a noisy estimaﬁ[w] of the channel.

Suppose that at timethe receiver obtains an estimate of the chanf&h, w|,
and computes a noisy estimate of the objective funchioH [w]) denoted as[n, w].
Given a sequence of i.i.d. random variab{egn, w], n = 1,2, ...}, if each¢|[n, w]
is an unbiased estimate of the objective functigiH [w]), then (3.6) can be refor-
mulated as the following discrete stochastic optimization problem

w* = arg max O(H[w]) = arg ?E%E {p[n,w]}. (3.7)

Note that existing works on antenna selection assume perfect chamavdekige

and therefore treat deterministic combinatorial optimization problems. On the
other hand, we assume that only noisy estimates of the channel are availdble
hence the corresponding antenna selection problem becomes a ditmhtessc
optimization problem. In what follows we first discuss a general discrethat

tic approximation method to solve the discrete stochastic optimization problem in
(3.7) and then we treat different forms of the objective function undférdnt
criteria, e.g., maximum mutual information, minimum error rate, etc.

3.3 Discrete Stochastic Approximation Algorithms

There are several methods that can be used to solve the discrete titooptks
mization problem in (3.7). An inefficient method to solve (3.7) is to compute
estimates of the objective function for each of the antenna subsets2 and
compute an empirical average which approximates the exact value of tlutiabje
function. That is, for eacly € 2 compute

o) = = 3 gln,w] (3.8)



3.3 Discrete Stochastic Approximation Algorithms

and then perform and exhaustive search to fifd= max,co{dn(w)}. Since for
any fixedw € Q, {¢[n,w]} is an i.i.d. sequence of random variables, by the strong
law of large numbersjy (w) — E {¢[n,w]} almost surely a®V — oo. Using the
finite number of antenna combinationstiimplies that asV — oo

argmax v (w) — argmax E {¢[n, w]} = arg max ®(H[w]). (3.9)
Although the method can in principle find the optimal solution, it is highly ineffi-
cient from the antenna selection problem point of view. For each anteriost in

Q, N estimates of the objective function would need to be computed and hence it
would need to be estimatd\sﬂ(gg) times in total. These computations are mostly
wasted in the sense that only the estimate corresponding to the optimal set
eventually useful. Moreover, when the channel is time-varying, this metaoadot
naturally track the time-varying optimum solution.

More efficient methods to solve (3.7) have been proposed in the operation
search literature (see [6] for a survey). The ranking and selectionoegtiand
multiple comparison methods [63] can be used to solve the problem. However,
when the number of feasible solutiofsincreases (usually? > 20 antenna sub-
sets), the complexity becomes prohibitive. More recently, a number ofetiiscr
stochastic approximation algorithms haven been proposed to solve therprioble
(3.7), including simulated annealing type procedures [4], stochastic [1824,
and nested partition methods [110]. In this section, we construct iterdtjoe a
rithms that resemble a stochastic approximation algorithm in the sense that they
generate a sequence of estimates of the solution where each new estimate is ob
tained from the previous one by taking a small step in a good direction toward th
global optimizer. In particular we present two different discrete stachasprox-
imation algorithms based on ideas in the recent operations research litefdtare
most important property of the proposed algorithms is their self-learningbdap
ity — most of the computational effort is spent at the global or local optimiter o
the objective function. As we will show, an attractive property of these austh
is that they can be modified to track the optimum antenna subset in time-varying
scenarios.

3.3.1 Aggressive Discrete Stochastic Approximation Algathm

We now present an aggressive stochastic approximation algorithm bagéd

We use theP = (g}’;) unit vectors as labels for thB possible antenna subsets,
e, ¢ = {e1,eq, ....,ep}, Wheree; denotes thd P x 1) vector with a one in
theith position and zeros elsewhere. At each iteration, the algorithm updates the
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3.3 Discrete Stochastic Approximation Algorithms

(P x 1) probability vectorr|n| = [W[n, 1], ...,TF[n,P]:|T representing the state
occupation probabilities with elementsn,i| € [0,1] and), n[n,i] = 1. Let
w(™ be the antenna subset chosen atitHa iteration. For notational simplicity,
it is convenient to map the sequence of antenna suljsétd} to the sequence
{DI[n]} € ¢ of unit vectors wherd[n] = e; if v =w;,i=1,..., P.
Algorithm 3.1 Aggressive discrete stochastic approximation algorithm
O Initialization
n<0
sel ect initial antenna subset w® e€Q
set 7[0,w®] =1
set 7[0,w] =0 for all w#w®
for n=0,1,... do
O Sanpling and eval uati on
given w™ at time n, obtain ¢n,w™]
choose another @™ € M\w™ uniformy
obtain an i ndependent observation ¢[n,o™)]
O Accept ance
if ¢n,o™] > ¢n,w™] then
set ®tD) — Hn)
el se
wmt) = (")
end if
O Adaptive filter for updating state occupation
probabilities
wln+ 1] = 7[n] + pln + 1)(Dln + 1] - 7[n))
with the decreasing step size p[n]=1/n
O Conputing the maxi mum
if 7+ 1,0 > 7n+1,00] then
o) =y (n+D)
el se
set ot =)
end if

end for
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3.3 Discrete Stochastic Approximation Algorithms

We assume that in a realistic communications scenario, each iteration of the
above algorithm operates on a block of symbols comprisifdg of 0 training sym-
bols (see description above (3.2). Th@sgaining symbols are used to obtain the
channel estimate&l [, w(™] and hence the noisy estimate of the agfst, w(™].

In our numerical examples, we u$e= 2,7 = 4 or T = 6. At the end of each
iteration, antenna subsét™ will be selected for the next iteration.

In theSanpl i ng and Eval uati on step in Algorithm 3.1, the candidate
antenna subset(™ is chosen uniformly fronf2\w(™. There are several varia-
tions for selecting a candidate antenna subigét. One possibility is to select
a new antenna subsét™ by replacing only one antenna in(™. Define the
distanced(&™,w(™) as the number of different antennas between the two an-
tenna subset$(™ andw(. Hence, we can seleci” ¢ Q\w(™ such that
d(@™, w™) = 1. More generally we can select a new suhsg?t with arbi-
trary distancel(&™,w(™) = D, wherel < D < min(ng, Ng — ng). Note that
any variation for selecting a candidate need to be taken into account ®glahal
convergence.

To obtain the independent observations in$hepl i ng and Eval uati on
step in Algorithm 3.1 we proceed as follows. Attimewe collect training symbols
to estimate the channel and comptte, w]. Now, collect other training symbols
from another antenna subset and compilte @|. Thereforep[n,w] and¢[n, o]
are independent observations.

Remark: Heuristic variations ddanpl i ng and Eval uati on step with cor-
related observationsThe above procedure of using independent samples to eval-
uate the objective function allows us to rigorously prove convergendeeéiin
ciency of the algorithm. Here we briefly discuss three heuristic variationiseof
Sanpl i ng and Eval uati on step that use correlated observations of the ob-
jective function. In numerical simulations we observed that these variagisns

yield excellent results — however, due to the statistically correlated ohsersyaf

the objective function, the proof of convergence is intractable. Thiepossibil-

ity is to reuse same channel observation multiple times (i.e., use the same channel
estimate to compute several observations of the objective function unteredif
antenna configurations). Another heuristic variation is to incorporate rimely
antenna selection solutions (note that this is another form of correlatior®- or
duce the dimension of the possible transition states (i.e., possible solutions) in the
Markov chain. A third possibility is to devise hybrid solutions based on a com-
bination of Algorithm 3.1 and batch processing (e.g., exhaustive seasgdion
noisy channel estimates or greedy selections).

The sequencéw(”)} generated by Algorithm 3.1 is a Markov chain on the
state spac& which is not expected to converge and may visit each elemeit in
infinitely often. On the other hand, under certain conditions the sequerice}
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converges almost surely to the global maximizér Thereforew (™ can be viewed
as an estimate at timeof the optimal antenna subset.

IntheAdaptive filter for updating state occupation
probabi lities step in Algorithm 3.1,7[n| = [ﬂ[n, 1], 7[n, 2], ...,TF[n,P]:|
denotes the empirical state occupation probability at timad the Markov chain
{w™}. If we denotelV () [w] for eachw € Q as a counter of the number of times
the Markov chain has visited antenna subsét by timen, we can observe that
wn] = 2 WO [wy],... W™ [wp]]". Hence, the algorithm chooses the antenna
subset which has been visited most often by the Markov chaif?} so far.

Global Convergence of Algorithm 3.1

A sufficient condition for Algorithm 3.1 to converge to the global maximizer of
the objective function®(H[w]) is as follows [5]. Forw # w*,w # w*, and
independent observatioggn, w*|, ¢[n, w|, ¢[n,w]

Pr{¢n,w*] > ¢[n,w]|} > Pr{¢[n,w] > ¢[n,w*]}, (3.10)

Pr{¢[n,w*] > ¢[n,w]} > Pr{o[n,w] > ¢[n,w|}. (3.11)

It is shown in [5] that if the conditions (3.10) and (3.11) are satisfied, ¢éheasnce
{w(”)} is an homogeneous irreducible and aperiodic Markov chain with state space
Q. Moreover, the sequenc{eb(”)} converges almost surely to* in the sense

that the Markov chai{w™} spends more time in* than any other state. The
transition kernel for the Markov chaifiw(™} is given by a transition probability
matrix K whose elements are given by

1

=l 1P7’ {8ln, w;] > ¢n,wil}

(3.12)

1
kii=1- Z kij = o —1 Z Pr{¢[n,w;] < ¢[n,w;l}
Je{L,...,P}j#i Je{1,...,P}j#i
(3.13)

foralli € {1,..., P} (assuming that the observatiopp:,w] are independent for
all n andw).

The two conditions in (3.10) and (3.11) basically state the conditions that the
Markov transition matrix defined in (3.12) and (3.13) need to satisfy. Comditio
(3.10) states that; ; > k; ; for w; = w* andw; # w*, i.e., it is more probable for
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the Markov chain to move into a state correspondingtdrom a state that does
not correspond ta* than in the other direction. And condition (3.11) states that
kji > kjoforw; = w* andw, # w*, w; # w*, i.e., once the Markov chain is in
a state that does not corresponditg it is more probable to move into a state that
corresponds ta* than into any other state.

The major difficulty of Algorithm 3.1 is to choose estimators that can be proved
to satisfy properties (3.10) and (3.11). Next, we propose a consanagorithm
that converges to the global optimizer of the objective function underdsssative
conditions.

3.3.2 Conservative Discrete Stochastic Approximation Algrithm

Now, we present a conservative discrete stochastic approximatioritiatgdrased
on ideas in [28] with less restrictive conditions for global convergence.

Algorithm 3.2 Conservative discrete stochastic approximation algorithm

O Initialization

n<<0

select initial antenna subset w® cQ

Initialize P-dinensional vectors h[0],1[0] and k[0] to zero
for n=0,1,... do

O Sanpling, evaluation and update
choose another @™ € M\w™ uniformy

obtai n an i ndependent observation ¢[n,&(™] and updat e:

ln+1,0M] =In,o™] + ¢[n,o™)] (Accumulated cost)
k[n+1,¢[n, o] = k[n, ¢[n,&™]] + 1 (Occupation time)
hin, ¢[n, &™) = Un+1, ¢[n, o™)]/k[n+1, p[n, &™) (Average cost

vector)
O Accept ance
if hn,o™] > h[n,w™] then
set w®t+h) = 5
el se
wnth) = ,(n)
end if

O Update estimate of optinmm subset
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o+l — ,(n+1)

end for
AsintheAdaptive filter stepofAlgorithm 3.1, th&anpl i ng, eval uation
and updat e step in Algorithm 3.2 can be rewritten as an adaptive algorithm
with a decreasing step size as: update the occupation time diagonal fafrixs
Kn+ 1] = K|n| + p[n + 1](diag(D1[n], ..., Dp) — K[n]) and

hin+1] = h[n]+un+11K " n+1] (qs[n,@(")]D[n] — diag(D1[n], ..., Dp)h[n]
(3.14)

where as in Algorithm 3.1,[n] = 1/n, D[n] = e; if & = w; and.D;[n] repre-

sents theth component oD [n]. The(P x P)-dimensional matri¥<|[n] in (3.14)

is initialized to K'[0] = Ip. Theconservativename refers to the convergence of

the Markov chaif{w(} in Algorithm 3.2 since the sequen¢e (™} in Algorithm

3.1 is not expected to converge — in Algorithm 3.1 ofdy™} converges. Note

that in Algorithm 3.2, we only require one estimate of the objective function per

iteration and in general, the complexity is similar to the one of Algorithm 3.1.

Global convergence of Algorithm 3.2

As proved in [28], a sufficient condition for Algorithm 3.2 to converge ®gfobal
optimum is to use unbiased observations of the objective function.

3.4 Adaptive Antenna Selections Under Different Criteria

In this section we use the optimization algorithms to optimize four different objec-
tive functions®(H [w]). These are (i) MIMO mutual information, (ii) bounds on
error rate, (iii) SNR, and (iv) error rate. Simulation results are providesgach
case to demonstrate the performance of the corresponding stochastgiayep

tion algorithm.

3.4.1 Maximum MIMO Mutual Information

Assuming that the channel matréf [w] is known at the receiver, but not at the
transmitter, the mutual information between the transmitter and receiver is given
by [40, 119]

n

T[w] = log det <InT + Lt MH[@) bit /s/Hz. (3.15)
T
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One criterion for selecting the antennas is to maximize the above mutual informa-
tion, i.e., choosing the objective functidn H [w]) = Z|w].

Aggressive Algorithm to optimize the mutual information

We now present an implementation of Algorithm 3.1 to find the maximum of the
mutual information in (3.15) using

¢[n,w] = log det (InT + niIA{[n,w]HIA{[n,w]) . (3.16)
T

Notes on convergence

To prove the convergence to the global optimum when we use (3.16) inifkigor
3.1, we need to verify that conditions (3.10) and (3.11) are satisfied. riympe
the following result that will help us to verify these conditions.

Proposition 1 : The random variable in (3.16) can be accurately approximated by
the Gaussian distribution

pln,w] ~ N (uz,,0%), (3.17)

where

~

— E. N HE,
pr, = Ep {log det (InT + nTH[n,w] H[n,w})}
etr(Alw)) s

n(2)(T(t — 5 + 1)° det(V) g det (¥ (k)), (3.18)

with det(U(k)),k =1, ..., s are(s x s) matrices with entries

(W)} = { oSy (1 + ay)e Yo Fu(t — s+ LyAjlw))dy, =k
I Pt—i+ 1 Fit—i+1,t—s+ 1, W), i#k
(3.19)
wheret = max(ny,ng) ands = min(np,ng), @ = % . Z—% = %, 0 <

Aw] < Aafw] < ... < As[w] < oo are the non-zero ordered eigenvalues of
%HHH, Alw] = diag(A[w], ..., A\s[w]), V is an(s x s) matrix with determinant
det(V) = Ili<icj<s(Nilw] — Aj[w]), oF1(+, -) is the generalized hypergeometric
function defined in [[54], Eqn. (9.14.1)] adi(a,2) = Y 1oy ﬁzk, I'(-) is the
gamma function [[54], Eqn. (8.31.1)]Fi(-,-,-) is the confluent hypergeometric
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function [[54], Eqn. (9.210.1)] defined as

> a)f
\Fi(aibiz) =) (b—k— (3.20)
k=0
and(a)g, = a(a+1)...(a+k—1) is the Pochhammer symbol. The second moment

of the estimator is

Vo)

ptr(AL) s

In?(2)(T(t — s+ 1)% det(V

E{I*\ = > det(¥ (3.21)

k=11=1

wheredet (VU (k,1)),k,l =1, ..., s are(s x s) matrices with entries

[y (1 + ay)e Yo Fi(t — s+ 1Lyjlw)dy, j=k=1

{U(R)}ij =9 Jo v In(l+ay)e YoFi(t —s+1,y\w)dy, j=korj=1Lk#1
T(t—i4 1)1 F(t—i41,t—s+1,\[w]), B
(3.22)

and the variance in (3.17) can be computed as
07, = B{I2} — 17, (3.23)

Proof: The channel estimate in (3.16) with orthogonal training symbols in (3.4)

contains independent elemerig;,| = N, (hij[ J, % ). Therefore, the channel

estimate can be written &% [n, w] = H|w]+ A H|[n,w] which contains a constant
term H [w] and a random complex Gaussian matki¥ [n, w]| of zero mean. Then,
the estimate of the mutual information function can be written as

o[n,w] = log det (InT + ni (H|w] + AH[n,w))"” (H[w] + AH[n,w)])

g (3.24)
which is equivalent to the mutual information of a Rician flat fading MIMO aieln
with a non-zero mean matrikl [w]. The expressions of the mean and variance of
the capacity of a non-iid Rician are derived in [71] which correspond.t8j3and
(3.23) respectively. |

In particular, under the maximum mutual information criterion, we note that
the estimator in (3.16) has a positive bias, i.g;, > Z|w] in (3.15). This fact can
be also understood with the results in [71] and the parallelism of the estimate of th
mutual information computed with noisy channel estimates and capacity results of
the Rician channel. Moreover, it has been observed that althoughtiimaies is
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biased,
if Tlw] >Z[wg], then pz, > pz, ,Vike{l,.., P}, (3.25)

which again can be intuitively deduced with the parallelism with a Rician channel.
To prove the convergence to the global optimum using (3.16) in Algorithm 3.1,

we still need to verify that conditions (3.10) and (3.11) are satisfied. i@enthree

different antenna subsets = w* andw;, w; € {Q\w*}. From (3.16) and (3.17),

we have independent random variabés, w;] ~ N (uz,,,, O'%Wi ), dln,w;] ~ N(uz,,, a%wj)

andg[n,w] ~ N(uz,,, U%wz ). Condition (3.10) can be written as

Pr(¢[n,w;] — ¢[n,w;] > 0) > Pr(p[n,w;] — ¢n,w;] >0), (3.26)

and since samples gfare independent and Gaussian distributed, (3.26) is equiva-
lentto

Pr (N (NIwi - “ijvg%wi + U%w]) > 0) > Pr (/\f (”ij - ,uzwi,a%wj + U%%) > 0) :
(3.27)

From (3.25) we havmax{uzwi,mwj, pz., } = pz,,, which implies(uzwi—uzuj) >

(,uzwj — pz,,.). Therefore (3.26) holds since both terms have the same variance.

Consider now condition (3.11). We can express it as

Pr <N (,uzwi - “ij’g%wi + O'%uj) > 0) > Pr (/\f (NLJZ - ,uzwj,a%wl + O'%w]_) > 0) ,
which can be rewritten as
Pr(¢[n, wi] — ¢[n,w;] > 0) > Pr(d[n,w] — ¢n,w;] > 0), (3.28)

that is equivalent to

Kz, — HIWJ, Hz,, — NZWJ.
> .
[ 2 2 [ 2 2
UIW + UIWJ_ UIwz + O’ij

The inequality in (3.29) has been observed to hold after extensive simsasorg
the expressions of the mean and the variance given in (3.18) and (8sp&xrtively.

(3.29)
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Conservative algorithm to optimize the mutual information

We now present an implementation of the conservative algorithm and pratvié th
converges to the global maximum of the mutual information in (3.15). Since the
logarithm is a monotonically increasing function, the antenna sulfsataximiz-
ing log det(-) is identical to that maximizingdet(-).

IntheSanpl i ng, eval uati on and updat e step of Algorithm 3.2 choose

¢[n,w] = det (InT + nﬁﬂf][n,w]ﬂg[n,wo , (3.30)
T

where the channel estimatkg, [n, w] andH[n, w] are obtained from independent
training blocks. We consider the case in whikh [n, w] and Hs[n, w] satisfy
(3.5).

Theorem 2 With ¢[n, w] computed according to (3.30), the sequefib€” } gen-
erated by Algorithm 3.2 converges to the antenna subserresponding to the
global maximizer of the MIMO mutual information in (3.15).
Proof: To prove global convergence, we only need to show ¢fatw| of (3.30)
is unbiased, which is proved in Appendix A.

To reduce the training symbols needed to estimate the channel in Algorithm
3.2, in practical systems we can use a single sample of the ch&hiiel ] and
choose

o[n,w] = det (InT + %ﬁl[n,w]Hﬂl[n,w]) . (3.31)

Although this sample is biased, numerical results can show that Algorithm 3.2 still
converges to the global optimum.

Simulation Results

We consider the performance of Algorithm 3.1 which selects the antens&tsub
maximizing the MIMO mutual information using (3.31) as an estimate of the ob-
jective function. We considetr = 2, Ng = 8 andng = 4 antennas. We use

the ML channel estimate in (3.4) wiff = 4 orthogonal training symbols. We set

p = 10dB. The(Ng x nr) channelH is randomly generated and fixed during the
whole simulation. The initial antenna subset was randomly selected. Fraanta pr

cal point of view, there are several variations for selectiff. For instance, based

on a noisy channel estimate, select the antenna subset whose Hifiirix(")] has
maximum Frobenius norm. Figure 3.2 shows one run of the algorithm. In the same
figure we show the mutual information of the best antenna subset and tise wo
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antenna subset, as well as the median mutual information amor@)the?O an-
tenna configurations, found by exhaustive search. Next, in Figure€&nsider
700 iterations per execution and we average the mutual information of thenante
subset selected at all iterations over 1000 channel realizations. lartefigure

we also show the performance of Algorithm 3.2. It is seen that in the transien
phase, Algorithm 3.2 has slightly better convergence behavior than Algo8th
although in the long term, Algorithm 3.1 performs better. From both figures, it is
seen that the algorithms adaptively move to the best antenna subset. Wesobse
that although the algorithms take some time to converge to the optimal antenna
subset, they move very fast to an antenna subset inducing high MIMO hintua
formation.

Mutual Information value of chosen antenna set vs iteration number
11 T T T T T T

| (bit/s/Hz)

— : mutual info of chosen antenna set
— - :mutual info with best antenna set
T : mutual info worst antenna set

— - : mean mutual info

5 I I I I I
0 20 40 60 80 100 120 140

iteration number, n

Figure 3.2: Single run of Algorithm 3.1: mutual information value of the chosen
antenna subset versus iteration number

From a practical point of view, instead of initializing the algorithm by choosing
a random antenna subset, there are several variations for seleting avoid the
initial transient phase (i.ehot startinitialization). For instance, based on a noisy
channel estimate, select the antenna subset whose miHjiix.(*)] has maximum
Frobenius norm (i.e., select the antennas that receive maximum povegr3idér
a system withNg = 5,npr = ng = 2,7 = 4, and SNR= 6dB. Figure 3.4
shows the average mutual information over 100 initial channel realizatenssiy
the iteration number with thieot startadaptive algorithm based on the maximum
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mutual info of chosen antenna set vs iteration number
9.5 e s e

©
T

85

o]
T

~
I
2
g
~75F q
—— : mutual info of chosen antenna set (Alg 1)
: mutual info of chosen antenna set (Alg 2)
— - : mutual info with best antenna set
7+ —+- : mutual info with worst antenna set -
— - : median mutual info
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Figure 3.3: The average of the mutual information values of chosen anseihsets
by Algorithm 3.1 and Algorithm 3.2 (over 3000 runs) versus iteration number

Frobenius norm initial selection. It is seen that from the very first iterattien
adaptive algorithm is close to the optimal solution. In the same figure we show the
mutual information of the antenna subset selected based on the maximum mutual
information criterion found by exhaustive search using noisy charstiehates.

3.4.2 Minimum Bounds on Error Rate

Consider the system in Figure 3.1 where the transmitteddstanultiplexed into
theny transmit antennas. The input-output relationship is expressed in (3.1¢ whe
in this case, the transmitted symbalsbelong to a finite constellatiod of size
|A|. The receive antennas see the superposition of all transmitted signaltaskh

of the receiver is to recover the transmitted datdhe ML detection rule is given
by
5 2
y— .,/ —HJw|s
nr

(3.32)

§ = arg min
SeA"T

At high signal-to-noise ratio, we can upper bound the probability of efrtire ML
detector using the union bound [59] which is a function of the squared minimum
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Mutual Information of chosen antenna set vs iteration number

5
451 B
~N
<
2
=
=3
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Figure 3.4: The average of the mutual information values of chosen atebsets
versus iteration number withleot startadaptive algorithm.

distanced? . of the received constellation given by [60]

2 _ : e \2
Aiin r [w] = I [H[w] (s — ;)" (3.33)
Si;ﬁSj

Therefore, minimizing the union bound on error probability is equivalent tei-ma

, 2
mizingd2;, .. In Algorithm 3.1, we use[n, w| = o fmin Hin,w] (s; — Sj)H :
1397
S;#8;

In Algorithm 3.2, we propose the following theorem.

Theorem 3 With

d[n,w] = Si’g?é&nT Hi[n,w)(s; — sj)]H [ﬁg[n,w] (si — sj)] (3.34)
Si#8,;

the sequenc{ab(”)} generated by Algorithm 3.2 converges to the global maximizer
w* of (3.33).

Proof: Applying similar arguments to the proof of Proposition 1 it follows that
the estimate of the objective function in (3.34) satisfies the requirements @i glob
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convergence specified by Algorithm 3.2.

To reduce the number of required training symbols in the implementation of
Algorithm 3.2, we can use a biased estimatodf, ,[w] using only one estimate
of the channel as in Algorithm 3.1.

Note that the computation af; .[w] is performed ovefA|"” (|A["" — 1)
possibilities for each antenna subset which can be prohibitive for |atber nr.
Let Anin[w] be the smallest singular value &f [w] and let the minimum squared

distance of the transmit constellation&fgin,t = min_||(si — s;)||*. Then, it

S;,8;€A"T
is shown in [60] thatl?;, .[w] > A% [w]dZ,;, , - Therefore, a selection criterion
can be simplified to select the antenna subset 2 whose associated channel
matrix H [w] has the largest minimum singular value. In our problem, based on an

estimate of the channel at timewe let¢[n, w] = Amin[1, w].

Simulation Results

We consider the performance of Algorithm 3.1 with; = 10, nr = 2 (45 differ-
ent antenna subsets) angd = 2 with ML channel estimate anfl = 2 orthogonal
training symbols. The channéf is assumed to be fixed during the whole run of
the algorithm and we set = 10dB. We compare three antenna configuration: (a)
best antenna set: antenna set withx,,,, (Amin [w;]); (D) Worst antenna set: antenna
set withmin,,, (Amin[w;]); @nd (c) the antenna set chosen by the algorithm at it-
erationn, i.e., ™). Antenna sets (a) and (b) are found by an exhaustive search
assuming that the channel is perfectly known. We performed 90 iteratfidhe o
algorithm. Figure 3.5 shows a single run of the algorithm. Figure 3.6 shows the
average of 100 runs of the algorithm over the same fixed chatind is observed
from the two figures that the algorithm converges and as in the maximum of the
mutual information case, it is seen that although it takes some time to converge, it
moves quite fast to an antenna subset whose channel has &high

It is important to point out that Algorithm 3.1 using the above cost functions
converges to the antenna subset which maximizgs, or A.,in. However, these
criteria do not necessarily minimize the bit error probability since they aedoas
bounds. Actually, we can show situations in which both cases convergféetedt
antenna subsets and none of them correspond to the antenna subsetingrtimeiz
bit error probability. The main reason for this is that the bound is tight only fo
high signal-to-noise ratio. To observe this phenomenon we considetesrsyisth
Ngr =10, ng = 2, ny = 2, andp = 10dB. We average the BER of 30 different
channels realization" and with each channel realization and each antenna subset
within the same channel we send 14000 QPSK symbols to compute the BER. Per-
forming an exhaustive search (assuming perfect knowledge of tin@ehawe find
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)\min of the selected antenna subset matrix vs iteration number

1.5 T
1l i
<E — )\min with antenna subset selected
: max()\min) among all the antenna subsets
_ min()\min) among all the antenna subsets
0.5} B
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

iteration number, n

Figure 3.5: Single run of Algorithm 3.1: minimum singular value of the antenna
subset selected versus iteration number
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)\min of the selected antenna subset matrix vs iteration number
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Figure 3.6: The average (over 100 runs) of the minimum singular valueeof th
channel of the chosen antenna subsets versus iteration number
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3.4 Adaptive Antenna Selections Under Different Criteria

the antenna subsets under each criterion. We observe that with,the&riterion,
the antenna subset selected obtains a BER of 0.00054, with,thecriterion the
BER is 0.00049, with thé,,;, , criterion the BER is 0.00039, and the minimum
BER of all antenna subsets is 0.00035.

3.4.3 Maximum SNR

Linear receivers for the system in (3.1) are simpler receivers in wheheiteived
vectory is linearly transformed to obtain

2= Gy = %Gﬂ[w]s + Gn. (3.35)

For linear receivers, the symbol error probability is influenced by tlst pmcess-
ing signal-to-noise ratio. For the minimum mean-square error (MMSE)vwecei

-1
after applying the equalizer mati® = , / 2- (LHH[w]H[w] - InT) H7[w]

nr nr

the signal-to-noise ratio for each of thg- transmitted data streams can be ex-
pressed as [59]

1
SNFéMMSE)[w] = — —1 for i=1,..,nr.
H
(ZH"WHW] + Loy ) |
(3.36)
Correspondingly, in Algorithm 3.1 we set
N N —1
¢[n,w] = max (LHH[n,w]H[n,w]—i-InT) . (3.37)
i€[l,ny] \NT i

For the zero-forcing (ZF) receiveGG = /”TTHT[w], wheret denotes the
pseudo-inverse. For each of the transmitted data streams, the signal-to-noise
ratio after applying the equalizer matii can be expressed as [59]

SNRZ [y = P for i=1,..,n (3.38)
R e (HUWHW) ’

i

and correspondingly, in Algorithm 3.1 we use

¢[n,w] = max (ﬁIH[n,w]lﬁI[n,w])_l. (3.39)

ie[l,nr] i

Another case of interest is when the orthogonal space-time block codes a
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employed. Using the coding and decoding algorithms in [3, 114], the mceiv
signal-to-noise ratio of the data stream is given by [51]

SNRw] = %trace (H" [w]H[w]) = % | H [w]||% (3.40)

where||-||3 indicates the Frobenius norm. Therefore, in Algorithm 3.1 we may use

2
o[n,w] = HH[n, w] HF With Algorithm 3.2, we propose the following theorem to
obtain an unbiased estimate of the objective function.

Theorem 4 With
¢[n,w] = trace ﬂ{{[n,w}f{f[n,w]] (3.41)

the sequencgy (™} generated by Algorithm 3.2 converges to the global maximizer
of (3.40).

Proof: Applying similar arguments to the proof of Theorem 1 it follows that the
estimate of the objective function in (3.41) satisfies the requirements of global
convergence specified by Algorithm 3.2.

3.4.4 Minimum Error Rate

As shown in Section 4.2 for the ML receiver, the antenna subset chpséme
different criteria based on bounds do not necessarily choose thenanseibset
minimizing the bit error rate (BER). In this section, we propose an anteree-se
tion algorithm that directly minimizes the symbol or bit error rate of the system
under any type of receivers.

In the proposed method, a noisy estimate of shreulatederror rate is used
as the cost function in the stochastic approximation algorithm instead of a noisy
estimate of a bound. The method proceeds as follows. Assume for examiple tha
the ML decoding algorithm in (3.32) is used. At timeg estimate the channel
H{[n,w] with antenna subset. At the receiver, generate fakerandom symbol
vectorsSy = [sf(1), ..., s¢(m)] with s7 (i) € A and perform a simulation of the
form

Y, = %ﬂ[n,w]s,@ +N (3.42)

where the(nr x m) matrix N contains i.i.d.N.(0, 1) samples. Perform the ML
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detection on (3.42) to obtain

2
(3.43)

S =arg min
f SeAnTxm

p A
Y;—, /EH[n,w]S

and estimate the bit error raEE\R[n,w] by comparinggf andS;. In this way,

at timen, an estimate of the reddER [w] has been obtained. Note that the noise

in the estimate of the BER is due to the error in the estimate of the channel and to
the limitation in the number of fake symbols used in the simulations. The number
of fake symbol vectors required to obtain a good estimate of the BER depend
on the signal-to-noise ratip of the channel. For low signal-to-noise ratio, only
short fake sequences are needed. The estimated BER will become rooratac

as we increase the number of the fake symbols although the complexity of the
algorithm will grow accordingly. Therefore, in Algorithm 3.1 we ugpr,w| =
—@{[n, w] as an observation of the cost function.

Note that the fake symbols; arenotactually sent through the channel. They
are merely generated at the receiver to estimate the BER. It is important to point
that this method uses agstimateof the BER and a closed-form BER expres-
sion is not needed, which makes it appealing for other receivers farhvdven
a tight bound is difficult to find. Among these receivers, we may cite theredde
nulling and cancellation BLAST receivers [48]. Obviously, the same method
be used in antenna selection for MIMO systems employing various spaceetitne ¢
ing schemes. Moreover, it is straightforward to modify the algorithm to minimize
the symbol error rate or frame error rate as well.

The main disadvantage of this approach is that in the high SNR regime, the
BER can be very low and therefore, a large amount of fake symbols ndagl to
used if we want to obtain a good estimate of the BER. On the other hand, it has
been observed by simulations that the antenna subset having the minimunt BER a
a SNR valuep,, corresponds to the antenna subset having the minimum BER for
a range of SNR values aroung as long as there is not a large difference in the
SNR. Therefore, we can reduce the SNR of the simulation to find the biesiren
subset when the SNR is high. In this way, a smaller number of fake symbols will
be needed to obtain a good estimate of the error rate and the complexity can be
considerably reduced.

Simulation Results

To show the performance of this method in Algorithm 3.1 we consider first an
ML receiver. We use QPSK symbols and we consit¥er = 6, ng = 2 (i.e.,
15 different antenna configurations) ang = 2. The (Ng x nr) channelH
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is randomly generated and fixed during the whole simulation. We set9dB

and we usel’ = 6 orthogonal training symbols to estimate the channel. Before
starting the algorithm, long simulations are performed assuming perfectahann
knowledge over all antenna configurations to find the BER associated adth e
antenna subset (including the worst and best antenna subset). We +ui60
iterations of the algorithm withn = 500 fake symbols per iteration. Figure 3.7
shows the BER of the antenna selected by the algorithm comparing it with the
median, the best and the worst BER. It is seen that the algorithm cosverge
the optimal antenna subset. Moreover, it is observed that antenna sekictiee
receiver can improve the BER by more than two orders of magnitude witkcesp

to the median BER even for such small values of the signal-to-noise ratio in the
channel.

10° ¢

T T
—&- : BER subset selected ]
O : BER best subset (perfect CSI, exhaustive) |]
—x— : BER worst subset (perfect CSI, exhaustive) |4
—v-_: BER median (perfect CSI, exhaustive)

[ 56 XK HEX AR H XA KX H KK 3 XA HEX 3 XX HEXHK R XK MR H R KX RN K XK 2 XK XX 3 XX KX Xt

10 | 3

[KCICIOO8Ol0]t S i=ISiSISISISISISIS ISi= 1SS S ESiSISISISISISISISis SISiSISSISIS SIS s SiSiSisis SIS SIS )

0 10 20 30 40 50 60
iteration number, n

Figure 3.7: Single run of Algorithm 3.1: BER of the of the chosen antenhaetu
versus iteration number employing an ML receiver.

Now, we consider the performance of this method in a system employing the
ordered nulling and cancellation BLAST receiver. We consider the MMS&E-
rion for the nulling operation [48]. We use the same channel realizatiosyatdm
parameters as in the ML case. Before starting the algorithm, long simulations are
performed assuming perfect channel knowledge over all antenffiga@tions to
find the BER associated with each antenna subset. WeQistake symbols per
iteration. Figure 3.8 shows the BER of the antenna selected by the algorithm an
we compare it with the median, the best and the worst BER. As in the ML case,
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Figure 3.8: Single run of Algorithm 3.1: BER of the of the chosen antenbaetu
versus iteration numberin a system employing the ordered nulling (MMSE) and
cancellation BLAST receiver.
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Figure 3.9: The average of 2000 runs of the algorithm: Exact BER oftitbsen
antenna subset versus iteration numbgra system employing the ordered nulling
(MMSE) and cancellation BLAST receiver.
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it is seen that the algorithm converges to the optimal antenna subset. Mgriéov
is observed that antenna selection at the receiver improves the BER bytmaor
two orders of magnitude with respect to the median BER.

We now consider the average of 2000 runs of the algorithm over a nam+ ch
nel realization employing the ordered nulling and cancellation BLAST receiv
We setp = 9dB and we usd’ = 6 orthogonal training symbols to estimate the
channel. Before starting the algorithm, long simulations are performed aggumin
perfect channel knowledge over all antenna configurations to findxaet BER
associated with each antenna subset. We consider four different impbdioes
of the algorithm depending on the length of the fake sequeneand thep used
in the simulations: (a) the simulation to estimate the BER at every iteration of the
algorithm is performed with the exagbf the channel angh = 500 fake symbols;

(b) to reduce the complexity, the simulation is performed with the exact SNR of the
channelp = 9dB but with onlym = 20 fake symbols; (c) the SNR is reduced to

p = 5dB andm = 500 fake symbols are employed; and (d) the SNR is reduced to
p = 5dB and onlym = 20 fake symbols are employed. In Figure 3.9, the average
of the exact BER selected by the algorithm at each iteration is plotted. Initie sa
figure we show the BER of the best antenna subset and worst antaoset,sas
well as the median BER among the 15 antenna configurations, found bystixiea
search. It is seen that the algorithm moves towards the optimal antenngueonfi
ration in the four cases considered. Comparing the performance o (@sand

(b), we observe that (a) has a better convergence behavior ledmausing longer
fake sequences, the estimate of the BER is less noisy. Comparing thevperter

of cases (a) and (d) we find that the behavior is very close although we(tiave
reduced the complexity by more than one order of magnitude. Comparingrthe pe
formance of (b) and (d), we observe that although (b) uses the téahe channel

to estimate the BER, the behavior is worse. This result is due to the fact tleayat
low values of the exact BER (i.e., high SNR) we cannot obtain a good estirhate o
the BER with onlym = 20 symbols. Moreover, we observe that case (c) has the
best performance since with = 500 symbols we can have a better estimate of the
BER when the SNR is 5dB. However, although not plotted in the figure, if the nu
berm of fake symbols became larger, the performance of (a) would become bette
than the one of (c). In summary, we can reduce the complexity without ingurr

in a convergence penalty by reducing the SNR of the simulations (assuming tha
the SNR difference is not large) and using a shorter sequence ofyakaolsm.
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3.5 Adaptive Algorithms for Antenna Selection in Time-
varying Channels

In the previous section, we described discrete stochastic approximatmittaigs

for antenna selection in static MIMO channels. Now we consider nonstagiona
environments for which the optimum antenna subset takes on a time-varying fo
w*[n] € , since the MIMO channel is time-varying. Consequently, the MIMO
antenna selection algorithms should be able to track the best antennaiktizset
variation of the channel islowfor tracking to be feasible. The adaptive discrete
stochastic approximation algorithms proposed in this section are directly dgplica
to any of the objective functions discussed in Section 4.

3.5.1 Fixed Step-size Discrete Stochastic Approximationlgorithm

In the static channel environment discussed in the previous section gnfordhe
method to converge, it was necessary for the method to become proghessdre

and more conservative as the number of iterations grew. Consequetlgrens-

ing step sizey[n] = 1/n, was used, in order to avoid moving away from a promis-
ing point unless there was a strong evidence that the move will result in aovuexpr
ment. In the time-varying case, we require a step size that permits moving away
from a state as the optimal antenna subset changes [74]. Thereforackdhe
optimal antenna subset, we replace Buapti ve filter for updating
state occupation probabilities stepin Algorithm 3.1 by

w[n+ 1] = w[n] + p(Dn + 1] — w[n]) (3.44)

where0 < p < 1. Afixed step sizg: in (3.44) introduces an exponential forgetting
factor of the past occupation probabilities and allows to track slowly timehvary
optimal antenna subset*[n]. The same arguments can be used to extend the
application of Algorithm 3.2 to time-varying channels by using a fixed step;size
in (3.14).

For 7[n| being a probability vector (i.e., the elements add 1 and are non-
negative) the step size must satigfy: u < 1. Note thatt” (D[n+1]+m[n]) =0
implying that1”z[n + 1] = 17#w[n] = 1. Expressing (3.44) a8 — p)w[n] +
uD[n+1] we observe that the elementsmdf. + 1] are non-negative, which proves
that is a probability vector.

It has been observed that time-varying channels modify the optimal antenna
subset over the time although most of the antennas in the optimal antennt subse
remain the same. Hence, in time-varying channels, we can modifyetip! i ng
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and Eval uat i on step in Algorithm 3.1 to select a candidate solutidf uni-
formly from ©\w(™ where® is defined as the set of antenna subséts € Q such
that the distancé(o(™, w(™) = D, where we choos® < min(ng, Ng — ng).

Simulation Results

We demonstrate the tracking performance of this version of the algorither timel
maximum mutual information criterion in time-varying channels. We use (3.31)
as an estimate of the objective function. We assume that each channél; gain
between a transmit and receive antenna remains constant dv@me intervals
(we assume that each frame interval corresponds to one iteration of trétaig

and follows a first order AR dynamics ovemritten as

hi;(t) = ah;j(t —1) + Pv;(t) i=1,..,Ng and j=1,..,Np (3.45)

wherea and 3 are the fixed parameters of the model related throtigh (1 —
a?)/2 andv; ; ~ N.(0,1). The parameter can be related to the maximum
Doppler frequencyy asa = Jo(27 fq7T) whereJy(-) is the zeroth order Bessel
function of the first kind and; is the duration of one frame. In the simulations we
seta = 0.9, 7 = 500 and the constant step sige= 0.002. We considefNp = 12,

nr = 6 andny = 2. We setp = 10dB and we use the ML channel estimate with
T = 6 orthogonal training symbols. It has also been observed that in mos case
d(w*[n],w*[n — 7]) < 2 and therefore we séd = 2. The tracking performance

of the algorithm is shown in Figure 3.10. The maximum, minimum and median
values of the mutual information as a function of time are also shown. It is seen
that the algorithm closely tracks the best antenna subset.

3.5.2 Adaptive Step-size Discrete Stochastic Approximatn Algorithm

In the previous version of the algorithm, the choice of the fixed stepsiaas

high influence in the performance of the algorithm. The faster the chaharbes

or the further away of the current subset estimate of the optimal antebsatsu
the largeru should be. On the other hand, the larger the effects of the observation
noise or the closer we are from the optimal antenna subset, the smalteyuld

be [76]. However, in practice, one does not know the dynamics of thera in
advance.

In this section we present a method to adaptively adjust the step[sizas the
algorithm evolves. In this way, at each iterationour stochastic approximation
algorithm has two estimation problems to contend with. The first is the estimation
of w*[n] and the second is the estimation;dh|. Since theu[n| is a continuous
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variable, we can use an adaptive algorithm similar to the gradient de$geritran
[14]. This underlying adaptive algorithm to adjysgt:| would use estimates of the
derivative of the mean square error with respect to the stepusizbese ideas are
based on [14, 77] and have been further exploited in [74, 75].

Within this new framework, the estate occupation probability vector depends
on u. Denote the mean-square derivatie® o)t [n] by J#[n], i.e.,

A [n] — wHn]

—J# [TL]

2
hmE{ }:0 (3.46)
A—0

Define the error,
e[n] = D[n + 1] — w#[n] (3.47)

and differentiate the square of the error with respeas

iﬁwmwmﬁzqumwu—wmfwm. (3.48)

Next, differentiatingr[n + 1] in (3.44) with respect tq, yields
JEn+1] = J¥[n] — pJ*[n] + (D[n + 1] — w#[n]) . (3.49)

The proposed scheme aims to minimize the expectation of (3.47) by sgddihg
depending on the error in (3.47). The following adaptive step-sizeatsstochas-
tic approximation algorithm is adopted as a modification of Algorithm 3.1.

Algorithm 3.3 Adaptive step-size discrete stochastic approximation algorithm
O Initialization, Sanpling, and Acceptance: the sane as Algorithm
3.1
O Substitute the update of the state occupation probabilities

by

el] = Din+1]- nln),
wln+1] = wn+ 1)+ plnleln),

pln+11 = {uln] +ne" ][]}

Jin+1 = (1—pn))Jn]+enl, J[0]=o. (3.50)

O Conmpute the maxi mum the same as Algorithm3.1
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In the algorithmn denotes the learning rate. Asdecreases, the rate of adap-
tation decreases. If the learning rate= 0, then the algorithm reduces to the
fixed step-size algorithm.{X}Zj denotes the projection oX onto the interval
[—, uy] with 0 < p— < py. For fast speed of tracking and good transient behav-
ior, one seekg . as large as possible but not greater than the instability value. We
note that the sequenggn] will not go to zero unless the optimal antenna subset
remains constant.

We point out that Algorithm 3.3 is composed of three parts: (1) A random
search of a next candidaté™ over(Q; (2) a continuous adaptive LMS algorithm
which updates the step sizén|; and (3) a discrete adaptive algorithm that updates
the state probability vecter [n|, where the last two adaptive algorithms are cross-
coupled. Assuming that there is a unique local minimunof £{||e*[n]||?}, it can
be proved that[n] converges weakly tp*, where we consider weak convergence
as a generalization of convergence in distribution [74].

An interesting feature of the algorithm is that it does not assume anything abo
the dynamics of the problem. It self adapts to track the dynamics of the dhanne
and consequently, the best antenna subskt|.

Simulations Results

To demonstrate the performance of this version of the algorithm, we coribiger
same system parameters as in Section 5.1. The bounds for the step shresare ¢
aspu— = 0 anduy = 0.003 and the learning rate is set to = 0.0005. We
restrict the candidate solution to antenna subsets ita 2. Figure 3.11 shows

the performance of the algorithm. The maximum, minimum and median values of
the mutual information as a function of time are also shown for comparison. It is
seen that the adaptive step-size algorithm has a better tracking peréerrieam

the constant step-size algorithm.

3.6 Fast Antenna Selection Algorithms

3.6.1 Transmit antenna selection in linear receivers: geoatrical ap-

proach

Next we consider transmit antenna subset selection in spatial multiplexitegsy/s
and perfect CSI at the receiver. In particular, we propose seleatgorithms
aiming to minimize the error rate when linear detectors are used at the receiver
In [50], selection criteria have been proposed which attempt to minimize the erro
rate when linear receivers are used. In that work, the signal-to-ratiseprior to
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Mut. Info. of chosen antenna set vs iteration number (924 antenna combinations)
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Figure 3.10: The mutual information values of the chosen antenna sulesstis v
iteration number (fixed step-size).
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Figure 3.11: The mutual information values of the chosen antenna sulessts v
iteration numben (adaptive step-size).
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the slicing operation is considered as the objective function to be optimizéusin
section, we propose a selection metric based upon the geometrical intiéopreta
of the decoding process in a linear receiver. This interpretation alsoitgsens

to develop a suboptimal algorithm that yields a considerable complexity reductio
with only a small loss in performance.

iy

TN
S . 2 h y
*(RF Chain)-| 1 j v % RF Chain )
TX Switch RX
baseband selection H baseband
SnT - %R - y”R
+—(RF Chain — n; N f? RF Chain
T
n; (inputs)A N; (outputs) *
Low Rate selected | | Antenna
Link indices Selection

Figure 3.12: MIMO system with antenna selection at the transmitter.

Consider the system shown in Figure 3.12 with transmit andny receive
RF chains. We assume that the receiver is equipped with equal numhbsteof a
nas and RF chains whereas the transmitter is equippedWyitantenna elements.
Thus, the selection algorithm consists of selecting the hgdransmit antennas
out of the(ﬁ) different combinations according to certain optimization criterion.
The wireless channel is assumed to be quasi-static and flat fading abe cep-
resented by dnp x Np) matrix H whose elemenk;; represents the complex
gain of the channel between thig¢h transmit antenna and tligh receive antenna.
Denote each of the transmit antenna subsets; as {Anty, ..., Ant,,.}. Define
the set of allP = (f[;) antenna subsets &= {w;, ..., wp} and denoted [w] as
the (nr x np) submatrix corresponding to the columnsHfselected byo. We
assume that the channel state information is available at the receivertiaitthe
transmitter. Thus, the selection algorithms are implemented at the receivereand th
antennas indices to be used are fedback to the transmitter assuming thaxisisre
a low rate link between the receiver and the transmitter.

In spatial multiplexing systems, different data streams are transmitted from dif-
ferent antennas. Assume that= [s, ..., s,  is the transmitted symbol vector
with E{s}s;} = 1. Then, the received signal when the transmit antenna subset

selected isu can be expressed gs= , /.2 H [w]s +n, wherey = [y1, ..., yn,] IS

the received signal vectan, is the received noise vector distributed®gQ, I, ,)
andp is the total signal-to-noise ratio independent of the number of transmit an-
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tennas. In linear receivers, a spatial linear equalizgy] is applied to recover the
transmitted symbol vector. The equalizer can be optimized according to the ZF
criterion, G[w] = %H[w]*, where} denotes the pseudo-inverse, or the MMSE

criterion, Glw] = \/%H[w]H(%H[w]H[w]H + I,,,,)~*. Since at high signal-
to-noise ratio with antenna selection the MMSE solution tends to the ZF solution,
we will focus on the ZF solution. As has been shown in [133] and Chapter 2
the decision regions in linear receivers consistgfdimensional complex paral-
lelepipeds formed by the column vectorsHfw]. Therefore, from a geometrical
perspective, we propose a simple transmit antenna selection criteriastoanef
selecting the columns dil such that the decision region minimizes the error rate.
At a high signal-to-noise ratio, the error rate performance will be limited by the
minimum error vector that makes a symbol fall out of the decision region. De-
noteh;|wl, ..., hy,[w] as theny columns ofH selected byo. Then, considering
that the symbol is located in the center of the-dimensional parallelepiped, the
minimum length of a vector to make an error is

dw] = min [t (Rlw])|2, (3.51)

1<i<np 2

wherert (h;[w]) denotes the projection &f; [w] onspan({hi[w], ..., n, [w]}\hi[w])*
and (-)* denotes the orthogonal complement. Then, the selection criterion be-
comes )

W' =argmax{ min o lwt (]|}, (3.52)
a) Low Complexity AlgorithmsThe selection process in (3.52) could be highly
complex when the number of antenna combinations is large. One solution to re-
duce the complexity consists of employing sub-optimal incremental or decremen
tal greedy algorithms similar to that proposed in [53] for the capacity castnel
decremental approach, we start considering the whalecolumns and at every
step, we remove the column that has the minimum projection onto the orthogonal
complement of the span of the remainilNg — 1 columns. The process is repeated
with the remaining columns until only columns are left. The inconvenience
of this approach is that the system requires not oty > np butng > Np
which is not always true. In the incremental approach, we start bytsgjeane
column that has the maximum 2-norm. Then, at every step of the algorithm, we
add the column with the largest projection onto the orthogonal complement of the
subspace spanned by the columns already selected. This approatth rgatuces
the complexity in the situation wherer is small in comparison té&vy. A very
low complexity implementation of incremental selection is given in Algorithm 4.
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In the algorithmy,, ; denotes the Gram-Schmidt coefficient; = h,, h; and©;
represents the subset of antennas selected up tetlhetep.

Algorithm 4 Reduced complexity incremental selection
I NPUT: all colum vectors hy,...,hy, in H
/fl = arg maXiSNT{hfIhi};
hy = hy, /||hg,|l; ©1 = {k1};

FOR i=2:np

FOR EVERY j € {{1,..,Nr}\O;_1}

i—1 7
bj =h; — > 1 tpihp:

END FOR

k; = arg maxj{bJHbj};

hi = by, /||bk, |l; ©i ={©i—1} U {ki};
END FOR
QUTPUT: sel ected antenna indices: ©O,,

Bit Error Rate

w

=
o
|
T
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: Low Complexity Approach (incr)
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Figure 3.13: Selection criteria comparison.

Simulations Results

In Figure 3.13 we show the performance of the antenna selection algorithens in
system withnyp = 4 receive antennas and; = 8 antennas where only;r = 4
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are actually used. We average the results over several channehtieakz In

the same figure we also show the error rate of a system employing a selection
criterion that maximizes the minimum eigenmode [50] and also the error rate of a
system without antenna selection. It is seen that the geometrical appiotadhs

the best performance although its complexity is very high (although similar to the
complexity of the eigenmode criterion). On the other hand, the much less complex
incremental algorithm only shows a small loss of performance.

3.6.2 Antenna selection in the downlink of linearly precodd MISO

systems

We consider the downlink of multiuser multiple-input single-output (MISO) wire-
less systems, where the base station is equipped with multiple antennas and each
mobile user is constrained to a single antenna. In particular, we considar line
precoded systems such that the single antenna receivers do not batientate the
channel, but only scale and quantize the received data. In this scemafioopose

low complexity antenna selection algorithms. The highly complex optimal antenna
selection algorithm is first derived, and then, a low complexity greedy optiioiza
algorithm is proposed. It will be shown that the proposed algorithm obteiady
optimal performance.

System Model

We consider a multiuser MISO wireless system consisting of a single base sta-
tion and K mobile units scattered over the service area. We assume that the base
station is equipped with multiple antennas and each receiver is constrained to a
single antenna. Precoding schemes for broadcast channels efiettansfer the
signal processing for interference suppression from the mobilevexdeithe base
station transmitter. This approach is feasible if the base station can estimate the
downlink channels of all users (e.g., in systems employing time division duglexin
(TDD) where the uplink and downlink channels are reciprocal). Diffepgactical
techniques (linear [70] and non-linear [130]) have been proposagdpmach the
downlink capacity. We consider the case in which the transmit signal is preco
pensated such that the single antenna receivers do not have to estintdathel,
but only quantize the received data. Linear precoding is the simplest method to
perform precoding. In this case, the receiver simply quantizes théveecsig-
nal to the original symbol constellation, which translates to a reduction inmpowe
consumption and decrease in the cost of the terminals.

In the downlink of multiuser MISO systems, different data streams are trans-
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Figure 3.14: Downlink multiuser MISO system with antenna selection.

mitted for each of the users. Consider first a system ithsers andvy anten-
nas @r > K). Assume thab = [bl,...,bK}T is the transmitted symbol vector
with E{|b;|*} = 1,i = 1,..., K. The base station computes the precoding matrix
M ¢ C"m*K with the knowledge of the CSI of every user with the constraint of
the total power budget available at the transmifter where Pr is independent

of the number of transmit antennas. Then, thex 1 precoded signal ready to
be transmitted is given by = Mb. By stacking the received signal from all the
mobile units in a single vectay = [y1, ..., yx]’ we can write

y = HMb + n, (3.53)

where H € CE*nr corresponds to the flat fading channel whose elenagnt
represents the complex gain of the channel betweeti-thégransmit antenna and
thei-th mobile unit, and; is the noise at theth receiver distributed a§'(0, o7, ;).

The spatial linear precode¥! optimized according to the MMSE criterion
is given by M = HT, where () denotes the pseudo-inverse [70]. Notice
that the precoding matridZ ¥ = HT places no explicit constraint on average
transmit power and a power normalization factor is required. Assuming teat th
total available power at the transmitter/®, the scaling factor is given bg? =
Pr/tr(HTH) and the precoding matrix becoma$ = 3M ™ = gH'. Then
the k-th receiver makes a decision basedygn= by + ni. With the precoding
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3.6 Fast Antenna Selection Algorithms

matrix M, the received SNR is equal across the users and is given by

3 Pr
SNRy =2 - T 3.54
Re o2 tr(H'HM)g2 (3:54)

Antenna Selection

Althoughn; = K is sufficient to implement linear precoding, it has been shown
in [97] that there is an optimum ratio of antennas-to-usegs/ K > 1) such that
linear precoding can achieve around 80% of the sum capacity of thelid&wn
channel computed at the same ratio. At other ratios the difference betiveen
capacity with linear precoding and the downlink capacity can become much more
pronounced. In particular, whdk = np, the sum rate capacity of the linearly pre-
coded system does not increase linearly with(or K), while the capacity of the
downlink channel does. Similarly, wher = K, linear precoding exhibits a poor
BER performance. The optimal ratio implies that the number of transmit antennas
np needs to be not equal but larger than the number of mobile Ahitdowever,
when multiple userd{ want to communicate concurrently with the base station,
one major concern to implement > K antenna systems is the high cost due to
the expense of the RF chains required for each antenna. A technicgaiuizerthe

cost of the multiple antenna system while maintaining part of the capacity is the use
of antenna selection [92] (see Fig. 3.14). In this section, we choosketd geen
antennas (i.eny columns inH) that maximize the signal to noise ratio across the
users in (3.54). Although a combinatorial exhaustive search o(ifgé antenna
subsets can find the optimal solution, the selection would become highly complex
since for every new antenna subset,;ax np matrix pseudo-inverse needs to be
computed. In this section, motivated by the greedy algorithms in [53] we peopo
sub-optimal low complexity antenna selection algorithms that only show a mini-
mum loss of performance. In particular, we consider a solution usingaetrtal
selection.

This solution begins by considering that all available antennas can be used
in the transmission, and at every step, an antenna is de-activated suSiNtRa
decreases as low as possible. The process is repeated with the remaiamtpa
until only ny antennas are left. Recall that removing one antenna is equivalent to
removing one column it while the rest of the columns remain unchanged.

Consider first the full matridd € CK*Nr and leth; and H; denote theth
column inH, and the submatrix off after removing théth column, respectively.
Therefore, in the decremental algorithm we removeittiecolumn inH such that
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3.6 Fast Antenna Selection Algorithms

the submatrix left; minimizes the denominator in (3.54), i.e.,

i* = arg min tr((HinI)_1>. (3.55)

i=1,....Np

Notice that(3.55) requires the inversion aV; matrices of sizé{ x K. Here we
make use of the following equality

H,HY = HH" — h;h7, (3.56)
and (3.55) becomes
¥ =arg min tr ((HHH - hHhi)A) : (3.57)
i=1,....Np '

DenoteA = HH" . Using the matrix inversion lemma we can write
(A—hfR) " =A '+ A 'h (1-hFA 'R RIAY (3.58)

Then, applying fU + V') = tr(U) + tr(V') we can express (3.57) as
i* = min {tr (A7"h; (1 - hTA7'h)REATY) . (3.59)

Notice that now, for théV; possible antennas that can be removed, only one matrix
inverse has to be computedd H')~!. Next assume that after removing one
antenna, the number of antennas is still excessive. Then, a secondanteds

to be removed from the remaininyr — 1 columns inH;-, and the inverse of
(H;- H)~1 is required. However, this inverse has already been computed using
the matrix inversion lemma when we removed tfigh column in (3.58) (i.e.,

we do not need to explicitly compute a new matrix inverse at each step of the
algorithm). Hence, we iteratively remove one column until omfyantennas are

left. The algorithm is shown in Algorithm 5 below. It is straightforward to mov
that with Ny = np + 1, the algorithm is optimal. Note that the algorithm also
provides us with the unconstrained precoding mati®) = HJw]'. Also note

that the operations in the “update inverse” step are computed in the preweuus

Simulation Results

In the simulations we compare the BER obtained by the different antennéicelec
criteria with a system without antenna selection, idér, = np and a system that
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Algorithm 5 Decremental antenna subset selection algorithm

I NPUT: H; Np>np> K,

w={1,...,K} %start with all antennas sel ected ;

A ' = (H"H)™' %his is the only inverse conput ed;

FOR i=1: Np —np DO
find i* =argminic,tr (A7 hy(1 — hF A th,))hF A7Y);
A=A+ A (1 - R A h)hT A7, Ypdate inverse
H = H\h;~; % enove the col um

w = w \ i % enpve that antenna index fromthe
sel ected subset
END FOR

QUTPUT: w, Hw]=H and M®™ = HI A",

employs theV available transmit antennas. The BER is approximated by BER =
Q(\ﬂSNRk)), which is constant across the users because of the precoding opera-
tion. Fig. 3.15 illustrates the BER whe¥iy = 6, np = 4, K = 4 ando? = 1,

where the BER is averaged over 1000 different channel realizafioisseen that
antenna selection in MISO systems can bring an important performance eaprov
ment over systems without antenna selection. Note that the maximus Frobenius
norm antenna selection criterion (i.e., select the antennas that see tpedpest
gation channel in terms of power) is not a good approach in multiuser MySO s
tems. On the other hand, the suboptimal decremental selection algorithmeschiev
approximately the same performance as the optimal antenna selection (tee curv
overlap). Itis also seen that antenna selection achieves the samétyliasrthe

full system, where diversity is defined gs= —limp, . % and the
power loss is around 1.5dB. Therefore, antenna selection can beaseegood
alternative to boost the performance of this systems. Fig. 3.16 shows siailar r
sults forNy = 12, np = 6 and K = 6; and Fig. 3.17 fotN; = 6,np = 5 and

K = 5. Even with only one extra antenna element, the performance improvement
is considerably.

3.7 Conclusions

We have developed MIMO antenna selection algorithms based on varidos pe
mance criteria in situations where only noisy estimates of the channels are avail-
able. The proposed techniques are based on the discrete stochasiidrappon
algorithms found in the recent operations research literature, whichiagersese-
guence of antenna subsets where each new subset is obtained frpnevioels

one by taking a small step in a good direction towards the global optimizer. One
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Figure 3.15: bit error rate for different transmit antenna selection idhgos
(NT :G,HT :4,K:4).
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Figure 3.16: bit error rate for different transmit antenna selection ithgos
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Figure 3.17: bit error rate for different transmit antenna selection ithgos
(Np = 6,np =5, K = 5).

salient feature of the proposed approach is that no closed-fornessipn for the
objective function is needed and only an estimate of it is sufficient. Thexettre
algorithm is able to choose the antenna subset that minimize the bit, symbol or
frame error rate, under any MIMO techniques (e.g., BLAST, space-toding)

and any receiver detection methods.

We have also developed antenna selection algorithms for time-varyingrscena
ios where the optimal antenna subset is slowly varying. By employing the con-
stant or adaptive step-size discrete stochastic approximation algorithntisnéie
varying optimal antenna configuration can be closely tracked. We hawidpd
extensive simulation results to demonstrate the performance of these ne® MIM
antenna selection algorithms under various selection criteria.

Finally, we have presented very low complexity greedy antenna selection alg
rithms that can achieve nearly optimum performance in various MIMO carafigu
tions.
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Chapter 4

Design of minimum error rate
LAttice Space-Time (LAST)

codes

4.1 Introduction

Wireless communications using multiple transmit and receive antennas can in-
crease the multiplexing gain (i.e., throughput) and diversity gain (i.e., robsstn

in fading channels [136]. It has been shown in [136] that for angmgvumber of
antennas there is a fundamental tradeoff between these two gains. dikagsv
tablishes a framework to compare existing space-time systems against the optimal
multiplexing-diversity tradeoff curve. Pioneering works on space-tincéitec-

tures have focused on maximizing either the diversity gain [114, 115, driBle
multiplexing gain [42]. More recent contributions have proposed statearchi-
tectures that achieve simultaneously good diversity and multiplexing penficena
[58, 116] and other space-time architectures have been shown to athewp-

timal diversity-multiplexing tradeoff curve for some specific number of ardsenn
and code length [13, 27, 32, 43, 108, 134]. In particular, in [43] thbars propose
lattice space-time (LAST) codes that achieve the optimum diversity-multiplexing
tradeoff in delay-limited MIMO channels with the use of low complexity lattice
decoders in combination with a minimum mean square error generalized deci-
sion feedback equalizer (MMSE-GDFE) front-end. Unfortunately,diversity-
multiplexing tradeoff framework does not quantify the coding gain or eatw at
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the signal-to-noise (SNR) ratio of interest (notice that the tradeoff gisgmsptotic
results). That is, for two LAST code designs with the same tradeoff rdiffesrror
rate performance can be obtained at the SNR of interest.

Minimume-error rate high dimensional lattice codes have been extensively stud
ied for AWGN single-input single-output (SISO) channels when maximuntidike
hood (ML) decoding or lattice decoding are used [22]. In generalethedtice
codes have been obtained using algebraic number theoretic tools amdrasthe
optimal ML (or lattice) decoder. However, these lattice codes are nossace
ily optimal in the sense of minimum error rate for MIMO fading channels or for
other receiver structures. In this chapter, we propose to desigmicgheAST
codes under a minimum error-rate criterion by employing a stochastic dap@ox
tion technigue based on the well known Robbins-Monro algorithm [10Httoay
with unbiased gradient estimation. Stochastic optimization techniques focus on
problems where the objective function, in this case the error rate, isisoffic
complex so that it is not possible to obtain a closed-form analytical soluticoun
problem, we minimize the error rate function over a set of possible vectanyar
ters (i.e., possible generators of the LAST codebook) satisfying sonstraonts,
in this case the average power at the transmitter. An iterative algorithm iaised
step-by-step procedure) for moving from an initial guess to a final \aktds ex-
pected to be closer to the true optimum. This is in contrast to classical deterministic
search and optimization, where it is assumed that one has perfect infanralktiat
the objective function and derivatives and that this information is used¢ordime
the search direction in a deterministic manner at every step of the algorithm. Our
designs can be tailored to optimize the spherical LAST codes given a particu
SNR, channel statistics, and receiver scheme. We show that the desapdpre
is universal in the sense that it permits the design of LAST codes for araidge
of channel statistics, receiver structures or even for cooperatlysmg environ-
ments. Loosely speaking, the problem of finding a good LAST code foi®I
transmission can be seen as finding-dimensional constellation belonging to a
n-dimensional lattice such that the error rate is minimized given a specifivegcei
structure and channel statistics, subject to a maximum transmission power con
straint. Numerical results show that our codes generally outperform latiibes
that are designed for AWGN channels with optimal ML decoding when they ar
employed in MIMO fading channels.

The rest of the chapter is organized as follows. Section 4.2 introduces the
system model for LAST codes, codebook construction, and vario&sTLdetec-
tors. In Section 4.3 we discuss the LAST code design procedure andojhesed
stochastic optimization algorithm. In Section 4.4 some simulation results are pro-
vided. Section 4.5 extends the LAST design to a space-time cooperatharisce
while Section 4.6 concludes the chapter.
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4.2 System Model and LAST Codes

4.2 System Model and LAST Codes

In this section we review the MIMO communication system used in LAST code
transmission [43]. Consider thep-transmitn z-receive multiple-input multiple-
output (MIMO) channel with no channel state information (CSI) at thestratier

and perfect CSI at the receiver. The wireless channel is assumedqjualsistatic
and flat fading and can be represented byrax np matrix H¢ whose element
h; represents the complex gain of the channel betweerttheansmit antenna
and theith receive antenna and is assumed to remain fixed ferl,...,T. The
received signal can be expressed as

yi =/ = Hez{ + i, (4.1)
nrtr

where{z{ € C"* : ¢t = 1,...,T} is the transmitted signaly; € C"z : t =
1,...,T} is the received signafw§ € C"r : t = 1,...,T} denotes the channel
Gaussian noise, and with the power constrdift. Zthl |z¢2} < nr, the pa-
rameterp is the average SNR per receive antenna independent of the number of
transmit antennas. The entrieswf are independent and identically distributed
(i.i.d) circularly symmetric complex Gaussian variables with unit variance, i.e.,
wy; ~ N;(0,1). The equivalent real channel model corresponding &ymbol
intervals can be written as

y=Hzx+ w, (4.2)

wherez = [z7, ..., z1]T € C?"7T is a codeword belonging to a codebadkvith
zf = [R{zf}", S{=f}1]" (4.3)
w = [wl, ..., wh’ e C*rT with

w = [R{wi}", S{wi}' ] (4.4)

H=./L1s8
nr
The goal of this chapter is the design of the codeb6dk R>*77 with the con-

straint that the codewords € C belong to a lattice and satisfy the average power
constraint

and

R{H} —S{H}
S{H?} R{H} ] (4.5)

1
I > lzf* < Tnr. (4.6)
xeC
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Note that the rate of the code I8 = 7 log, |C| bit/s/Hz. Next we review some
lattice properties.

Basic Lattice Definitions : An n-dimensional lattice\ is defined by a set of
basis (column) vectorg,, ..., g,, in R™ [22]. The lattice is composed of all integral
combinations of the basis vectors, i.e.,

A={x=Gz:z€Z"} 4.7)

whereZ = {0,+1,+2,...}, and then x n generator matrbG is given byG =
91,99, - ,g,]. Note that the zero vector is always a lattice point &ds not
unique for a givenA. In the Euclidean space, the closest lattice point quantizer
Q(-) associated with\ is defined by

Qr)=x e A, if ||r—z|<|r—2, V&' eA (4.8)
The Voronoi cell ofA is the set of points itR™ closest to the zero codeword, i.e.,
Vo={r eR":Q(r) =0} (4.9)

The Voronoi cell associated with eaghe A is a shift of} by . The volume of
the Voronoi cell is given by (A) = 4/det(GT G).
LAST codebook construction Consider the dimension of the lattice generated
by G to ben = 2npT. A finite set of points in the:-dimensional lattice can be
used as codewords of a codebabkGiven a bit rateR bit/s/Hz, the codebook will
contain|C| = 27" lattice points. In particular, the codewords consist of all lattice
points inside a shaping regiaf. In spherical LAST codes, the shaping region
is a sphere, having in general the lowest possible energy. To find theewith
smallest total average power, we consider the codebook obtained uspiteee
centered at-u € R™ and the codeword coordinates are given by the Euclidean
difference between the center of the sphere and the lattice points. Tthe tde
is specified by the generator matii¥, the translation vectos, and the radius of
the sphere, i.e.,

C=A+u)NnS (4.10)

where the cardinality of the codebook (i.e., the rate) is a function of thegaflthe
sphere. If we form the intersection of the sphere of volui{&) with the lattice
of Voronoi volumeV (A) we could expect to obtain a code with ab®UtS)/V (A)
codewords. In fact, the valué(S)/V (A) is correct on average although it is clear
that there are some codes that have more and some that have less.ilit reasn
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[86] that at least one value af € R™ exists, such tha{A+u)NS| > V(S)/V(A).
Among all the possible choices fat, we are interested in the one that leads to a
code of the smallest average enel‘ﬁgyzwec |¢|2. Using the centroid, an itera-
tive algorithm is shown in [23] to find the translation veciowhich generates a
codebook with minimum energy. Hence, given a translation vector, thevoods

Figure 4.1: A 2-dimensional lattice (two basis vectgysandg,), translation vec-
tor, and spherical shaping region.

are obtained by takin| lattice points in the shifted latticA + w that are closer
to w as shown in Figure 4.1 for the hypothetical 2-dimensional éasemethod to
enumerate all the lattice points in a sphere is given in Appendix B. To spethe up
enumeration of all the lattice points inside the sphere centerad thie radius of
the sphere or the lattice generator should be scaled suci {5y V' (A) ~ |C| 2.
Once the codewords have been found, a second scaling fastould be applied
to guarantee the energy constraint at the transniitter, i.e.,

ﬂ—( MTIC] )1/2 (4.11)

Za:ec "B‘Z

and the translation vector and the generator are scalé@andju, respectively.

4.2.1 LAST detectors

Given the input-output relation in (4.2) the task of a LAST detector is to mcov
the transmitted codeword (or its corresponding integer coordinatesfrom the

YIn this chapter we use either or its integer coordinates to refer to each codeword, since for
any codeworde there is a univocal relatiom = Gz + u.
2The volume of an-dimensional sphere (hypersphere) of radiuand» even is computed as
an/2

V,, = V,\Vp™ whereV,{" is the volume of a sphere of radius 1 and is giver/gy = &
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received signal. Next we overview some LAST detectors, which are also outlined
in Fig. 4.2.

ML: Z=arg min y—Hu—HGz‘2

Gz+ueC

NAIVE: £ =arg min |y - Hu - HGz|
zeZ™"

MMSE GDFE : £ =arg min |Fy —Bu - BGz|’

MMSE-GDFE LRA linear: % = PQ((BGP)’I (Fy - FHu))

select codeword

Z tranlated x y closest z
—» lattice points > H —»@—» pointin  |——»
inside sphere lattice
x=Gz+u
w

All vectors have dimension 2n,T
Figure 4.2: Spherical LAST codes and different detectors.

Maximum likelihood decoding: The maximum likelihood detector (ML) is the
optimal receiver in terms of error rate. The ML detection rule is given by

z=arg min |y—- Hu- HGz|. (4.12)
Gz+uec

The minimization is performed over all possible codewords in the codeook
Note that the decoding regions are not identical due to the boundary obtiee
book and in fact some are not bounded. This breaks the symmetry of the lattic
structure in the decoding process, making the decoding process too gomple
MMSE-GDFE lattice decoder:In lattice decoding, the receiver is not aware of
the boundary of the codebook (e.g., the spherical shaping re&gyiemployed in
spherical LAST codes) and assumes that any point in the infinite lattice may be
transmitted, corresponding to infinite power and transmission rate. Forea giv
lattice, the lattice decoder will search for the lattice point that is nearest to the
received vector, whether or not this point liesSn This decoder is known as the
naive closest point in the lattice

z

arg min |y - Hu—- HGz|. (4.13)

z Ez2TnT

Note that this receiver should be distinguished from the nearest-codel@ooder,
which decodes to the nearest lattice point inskdeThe attractive symmetry and
periodic properties commonly associated with lattices allows low complexity algo-
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rithms to solve the closest point in the lattice problem expressed in (4.132]see
for an overview).

More recently, based on initial results presented in [35] it has beenrshow
[43] that a MMSE-GDFE front-end can further improve the performanitiee lat-
tice decoding algorithms in MIMO systems. Given uncorrelated inputs ané,nois
with mean zero and covariangethe feedforward (FF) and feedback (FB) MMSE-
GDFE matrices are denoted #yand B respectively. In particulad3 is obtained
from the Cholesky factorizatioB” B = Iory, + HTH and is upper triangular
with positive diagonal elements afief = HB~!. In this case, the MMSE-GDFE
closest point lattice decoder returns

z=arg min |Fy— Bu— BGz|, (4.14)

zez?Tnr

which essentially finds the point in the lattice generated®2i¥ that is closer to

the pointF'y — Bu.

MMSE-GDFE lattice-reduction-aided linear receiverA combination of the MMSE-
GDFE front-end and the lattice-reduction-aided (LRA) linear receiescdbed in
Section 2.5.4 can be used to simplify the detector. The LRA receiver makes a
change of basis such that the decision regions of the detectors are ad@os
more robust to noise. The change of basis is obtained via lattice reduction. C
sider the MMSE-GDFE matriceB and B. Applying the MMSE-GDFE front-end

and removing the translation vector gives

Yy =Fy— FHu=BGz+ Fw— [B- FH|Gz =BGz +n. (4.15)

n

Consider the lattice with generator matlG. If BG is a basis of the lattice,
BGP also is a basis of the same latticeRfand P~ have integer entries. The
aim of the LRA receiver is to find a change of baBlshat transforms the generator
into BG P to optimize the decision regions of the detector [133]. This problem is
known as the lattice reduction problem. The goal of lattice basis reductiomes, g

an arbitrary lattice basis, to obtain a basis of the shortest possible vebiairss,
vectors as close as possible to being mutually orthogonal. The simplest way to
reduce the basis is the LLL reduction algorithm [87]. Other types of redibases

are the Korkin-Zolotarev (KZ) basis [10, 73], the Minkowski basis fhE Seysen
basis [109], and hybrids [104], which have different reduction gatelhese bases
have, in general, slightly better properties, although the reduction is more time
consuming. The idea behind LRA linear receivers is to assume that thé wigsna
transmitted in the reduced basis, i#.,= BGP(Pflz) + n, to equalize in the
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new basis, which is more robust against noise enhancement, and thenthetu
decoded symbol to the original basis. That is,

2=PQ((BGP)'y) (4.16)

where the quantize®(-) rounds to the nearest integer.

Other receivers:Other receivers can be used to decode LAST codes for example
standard linear receivers (based either on MMSE of ZF) or nulling andadlation

in combination with lattice reduction and the MMSE-GDFE front-end.

4.3 Spherical LAST codes optimization

In this section we describe a systematic procedure for designing the minimom er
rate spherical LAST codes.

4.3.1 Lattice design in ANGN SISO channels and ML decoding

In ann-dimensional Euclidean space and for AWGN channels the lattice code de-
sign asks for the best arrangement of points in the space such thatgfeera
number of codewords, transmit power constraint, and noise statisticsradha-p
bility of error of the maximum likelihood decoder is minimized. In this situation,
there are a number of desirable properties that a code should satigfg:ra)mber

of code vectors should be large; b) the average energy (or altezlyatine peak
energy) should be small, that is, the regions of space defining the codle e as
nearly spherical as possible; ¢) the minimum distance between codevionas s
be large; mapping and demapping should be easily implemented; d) givebian ar
trary point in the space, it should be easy to find the closest codewbellaftice
design problem has been extensively studied in the literature and gooddatiies
have been found for different dimensions [22, 33, 86]. Howevaelass MIMO
communications do not signal over AWGN channels but over fading aisnmith
some known statistics. Moreover, the receiver is not necessarily thel@omp
decoder. It turns out that good lattice codes for AWGN SISO chanmeldviL
decoder are not necessarily good for MIMO fading channels. Inal@fing sec-
tions we propose a procedure to design error efficient lattices thatimredsfor

the specific receiver structure and MIMO channel statistics (i.e., whese thee
known a priori).
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4.3.2 Preliminaries concerning stochastic optimization iad problem

formulation

Note that the analytical expression for the error rate performance irofathe
detectors presented previously is intractable. Simulation-based optimizatisn tur
out to be powerful for this scenario [111]. In particular, we consaigrulation-
based algorithms where only noisy information about the objective functidn a
gradient can be obtained via the simulation.

Our goal is to compute the optimal lattice generator ma#iso as to minimize
the average block error rate probability denoted4&) (i.e., objective function)
with the following power constraint

min T(G), with ©={G: Y |Gz+ul’<MT} (4.17)

Geo
€ Gz+uec

where0® represents the set of lattice generators that satisfy the energy coretrain

the transmitter. The constraint is achieved through the scaling fadito(4.11).

Notice that we use eitharor Gz+wu to refer to the codewords. Denotéy, z, H, G)

as the empirical (i.e., noisy) block error rate for a given generator matrixans-

mitted coordinates, received signay, and channel matrifd, i.e.,v(y, z, H,G) =

1, if 2 = z (i.e., the decoded vector is equivalent to the transmitted vector) and 0

otherwise. Then the average block error rate is obtainéfl(iey) = E{~(y, z, H,G)}.
Since in general there is no closed form expression for the averagiedxier

rate Y(G) we propose to use a stochastic gradient algorithm to optimize it. The

aim of gradient estimation is to compute an unbiased estimate of the true gradi-

ent. Letg(G) denote an estimate &F ;Y (G). We consider the case in which

E{4(G)} = VY (G). The constrained Robbins-Monro (R-M) simulation-based

algorithm [101] is of the form

Gri1 = lo(Gr — arg(Gy)) (4.18)

whereG, is the solution after théth iteration,g(G,) is an estimate oV ¢ Y (G) |c=c, ,
{ax} is a decreasing step size sequence of positive real numbers sushthat, =

oo andd 72, a2 < oo, and the functiodlg projects each matri&, into the near-

est point in®. For the R-M algorithm to converge, the gradient estimate should
be unbiased. The step-size sequefigg is usually chosen as the harmonic series
ar = c¢/k, wherec is a positive scalar. The R-M algorithm will converge with
probability one to a local stationary point @i G) [78].
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4.3 Spherical LAST codes optimization

4.3.3 Lattice Design via Stochastic Approximation based on @adient

Estimation

Consider again the LAST system model
y=H(Gz+u)+w. (4.19)

The average block error rate is obtained bByG) = E{+(y,z, H,G)}, where

~v(y, z, H, G) is the empirical block error-rate giveHl , G, andz. We can write,
T(G) = E((y,2,H,G))

= [ [ [ 1wz Gty 2 HIG)ayazir, @420

wherep(y, z, H|G) is the joint probability density function (pdf) ¢y, z, H) for

a givenG. Note that the empirical block error rat¢-) cannot usually be given in
closed form and it also depends on the structure of the receiverefbiner (4.20)
cannot be evaluated analytically. The design goal is to solve the minimization
problemmin T o (G), where the constrairth guarantees the average power of
the codewords. Note that

T(G) = EZEHEy|z,H,G{’Y(y7z7H7G)}7 (421)
where
Ey.nciv(y =, H,G)} Z/v(va,H,G)p(y\z,H, G)dy. (4.22)

For a given channel realizatioRl, codewordz, and lattice generataH, y in
(4.19) is Gaussian with meadd Gz + Hwu and covariance matri%IgMT, specif-
ically

p(ylz, H,G) = 7 "™ exp —(y—HGz—Hu*)T(y—HGz—Hu*)}. (4.23)

On the other handy ;Y (G) cannot be computed analytically, and therefore the
constrained R-M iterative optimization algorithm in (4.18) is not straightfodwar
to apply. Fortunately, the parametéf$G) andV Y (G) can be estimated. The
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4.3 Spherical LAST codes optimization

gradient of Y (G) with respect taG for a givenG is given as

VGT(G) = EZEH [VGEy\Z,H,G{’}/(vaaHaG)}}
= EZEH/VG{’Y(sz?HvG)p(yZ7H>G)}dy

— .8 [ { (Verlw. = H.G)) plylz H.G)
0
+ .= H.G)(Vep(ylz H.G)) jdy

= EZEH/y(y,z,H, G)Vep(ylz, H,G)dy (4.24)

where in (4.24), due to the discrete naturezaf Z™ and the definition ofy(-), we
have applied that with probability one we have [127]

Ver(y, 2z, H,G)| = 0. (4.25)

Property (4.25) follows using that far € Z™ and sufficiently smalb we have
vy, z, H,G+ 6G) = ~(y, 2, H,G), see [127]. Then, we can rewrite (4.24) as

va(y"za H7 G)
p(ylz, H,G)
Vlogp(y|Z,H,G)
= EZEHEy\z,H,G |:7(y7 z, H, G)VG' Ing(y|Z7 H, G) : (426)

VeY(G) = E.En / Ay, = H, G) p(y|z H.G)dy

We need to comput® ¢ logp(y|z, H,G), wheny = H(Gz + u) + w and
p(y|z, H,G) is given in (4.23). Notice that computindq logp(y|z, H, G) is
equivalent to computing the gradient 6f-) with respect toG, where we define
f(-) as the exponent of (4.23) given by

f(G) = —(y— HGz—- Hu")'(y— HGz — Hu")
= —yly+29THGz +2y"Hu* — 2" HTHGz
—uwTHTHuw - 2"GTHTHG>= . (4.27)
v(G)
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4.3 Spherical LAST codes optimization

The (n, )th entry of the gradient of(G) defined in (4.27) can be computed as

ov(G) _ lim v(G + Seqel) —v(G)
oG nl - 6—0 1)
I 2zTele£HTHGz6 + zTelegdHTHenelTéz
= lim
6—0 1)
= 2zTeleZ:HTHGz (4.28)

wheree,, is the2 M T vector with a one in the-th position and zeros elsewhere.
Therefore,

[ag‘g‘)] =2y  Hene| z—2u" H Heyel z—2z"eje, H' HGz. (4.29)
n,l

)

4.3.4 The algorithm

Assume that at théth iteration the current lattice generatorGs,. Perform the
following steps during the next iteration to generétg, ;.
Step 1- Composition method to generate mixture sample:

1. DrawL coordinate vectors, ..., z, uniformly from the set of possible co-
ordinates that generate the codebook.

2. SimulateL observationg,, ..., y;, where eacly, is generated according to
the system mode);, = H,;,(Gyz; + ui) + w;, i=1,..., L.

3. Using the given decoding algorithm, deceddased on the observatiops
and the channel valull;,7 = 1, ..., L. Compute the empirical block error
ratey(y,, z;, H;, G).

Step 2- Score function method for gradient estimation: Use (4.26), generate

1

L
9(Gy) = Zv(yi,zi,Hi,Gk)[Velogp(yi\zi,Hi,G)\G:Gk, (4.30)
=1

|

where the gradient is given in (4.29)
Step 3- Update new lattice generator matii;, : Generate

Gi+1 = le(Gy — arg(Gr)), (4.31)

whereay, = ¢/k for some positive constant For a given lattice generator matrix
G, the projection functiorilg is defined as a scaling factgr and translation

100



4.4 Simulation results

vector (1) SO the power constraint in (4.17) is satisfied with equality. Note that
the gradient estimator is unbiased for any intefgbut the variance decreases for
larger values of..

Implementation aspects of the algorithm

There are some practical issues about the algorithm which are worth megtion

1. At each iteration of the algorithm the projectifiig)(-) proceeds as follows:
(1) Enumerate thé| lattice points closer te-u (e.g., using the procedure
given in Appendix B); (2) scale the generator maifixusing 5 in (4.11)
to satisfy (4.17). In our implementation we have assumeg 0 and the
translation vector has been updated after the last iteration.

2. The speed of convergence of the algorithm is highly dependent tingon
choice of the step-size, = ¢/k. The value ofc needs to be large enough
so the step-size does not decrease too fast before moving to the vicinity of
the optimal generator matrix. On the other hand, it should be small to make
the solutions stable as soon as possiblego&dvale of ¢ can be obtained
heuristically comparing the initial Frobenius norm@fand the Frobenius
norm of the estimated gradient.

3. It can be proved that the gradient estimator is unbiased and its vadance
cays with the number of samplésn Step 1 of the algorithm. Hence, alarger
number of samples can provide a better estimator of the gradient although
it will slow the simulation. Instead of increasing the number of samples
a different possibility is to use the same step-size value over multiple itera-
tions, i.e..ar, = ¢/[(k/p)], wherep is the number of iterations for which the
step-size remains constant.

4.4 Simulation results

In this section, we provide multiple examples to show the performance of the new
LAST codes obtained by the design procedure described in the preséatisn.

We will see that the codes optimized for a particular SNR work acceptablysove
wide range of SNR values of interest.

LAST code design with MMSE-GDFE lattice decodeConsider firsthy = ng =
T = 2 andR = 4 bit/s/Hz (i.e., a codebook with 256 codewords, and dimension
n = 8). In the first iteration of the algorithm we use a random initial gu@gs
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4.4 Simulation results

properly scaled to satisf@). The code is designed fgr = 16dB. We assume
MMSE-GDFE lattice decoding. The code optimized for this scenario is giyeh b

0.6115 0.7220 0.1828 0.0047 0.4083 0.2432 0.3809 0.5912
0.2330 0.0415 —0.6020 0.2606 0.3728 —0.8860 —0.4119 0.2633
0.5702 —0.2313 —0.4036 0.4560  0.2410  0.1998  0.4884 —0.7502
0.5638 —0.4284 0.2143  0.5062 —0.2804 0.4311 —0.6880 0.3297
—0.4046  0.1748 —0.0495 0.0595 0.8929 0.5190 —0.5679 —0.2452 .
0.1475 0.8923 0.0621 0.1454 —0.5027 —-0.0977 —0.4464 —0.5875
—0.2845 —0.0036 0.8151  0.7903  0.2233 —0.4233 0.2114 —0.0767
0.5586 —0.2500 0.6112 —0.6839 0.3271 —0.3490 —0.2370 —0.3855
(4.32)
The block error rate convergence of the algorithm is shown in Fig. 4.tged
over 88 random initial lattice generators. The number of samples in the atgorith
was set td. = 17000. Itis seen that during the first iterations the algorithm rapidly
moves towards a lattice generator with low block error rate. Next, for casgrar
purposes we report the block error rate performance using the LA8S&book
obtained with thes-dimensional generator matrix given in El Gamal et. al [43]
that we denote as GCD, and also for the LAST codebook obtained fro@dbset
lattice Eg given in [23], which is known to be good for most purposes in AWGN
SISO channels. In Fig. 4.4 itis seen that in excess of a SNR of 12dBptinmined
code obtains better performance than the other LAST codes.

Now considems = ng = 2 andT = 3. We select the rate a8 = 4 bit/s/Hz
(i.e., a codebook with 4096 codewords, and dimensien12). Fig. 4.5 illustrates
the block error rate performance. For comparison purposes wet tibgoresults
of a LAST code obtained using construction*422, 43] and we also show the
outage error probability. It is seen that the new LAST code have slighttgrbe
performance than the code obtained via construction A.

LAST code design with MMSE-GDFE lattice-reduction-aided linear receiver
We consider the MMSE-GDFE lattice-reduction-aided linear receiver mith=

T = 2andng = 3. Fig. 4.6 shows the performance results of different LAST
codes with MMSE-GDFE LRA linear receivers. It is seen that the newecod
slightly outperforms the other implemented codes.

LAST code design with MMSE-GDFE lattice decoder in spatially correlated

3Notice that multiple generator matric& can obtain the same codebook or same error rate
results, e.g., unitary transformations @ or equivalent lattices through lattice reduction, mirroring,
etc.

“The author would like to thank M.O. Damen for providing the lattice genemft@onstruction
A.
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4.4 Simulation results
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Figure 4.3: Convergence of the algorithm: average of the block erroardiéer-
ent iteration indices.
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Figure 4.4: Block error rates of LAST codes with = np = T = 2, rateR =
4bit/s/Hz with MMSE-GDFE lattice decoder.
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Figure 4.5: Block error rates of LAST codes with = nrp =2, T = 3, rateR =
4bit/s/Hz and MMSE-GDFE lattice decoder.
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Figure 4.6: Block error rates of LAST codes with= np = 2, ng = 3, rateR =
4bit/s/Hz and MMSE-GDFE LRA linear decoder (designed for SNRdB).
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4.4 Simulation results

channel: We consider & x 2 MIMO channel with equal spatial correlation at
both the transmitter and the receiver. We consider a urban scenario withrmed
correlated spatial channel represented by the covariance matrix

1 0.88 —0.37

R, =R; = .
0.88 + 0.3t 1

(4.33)

andHY = Ri/QHfuthtT/Q, with HY, , being a2 x 2 uncorrelated matrix with

i.i.d. N.(0,1) entries. Note that the new codes are optimized specifically for this
correlation scenario (this is achieved using the correlated MIMO chamr&kep

1.2 of the algorithm). The convergence of the algorithm is shown in Fig 4.€. Th
block error rate performance is shown in Fig. 4.8. It is seen that the nee c
outperform the lattice codes obtained with either of the other generator nsatrice
considered.

195

185 ml

180 ml

170 : nl

165 ml

number of counted errors

155 ml

150 - ml

145 I I I I I
0 10 20 30 40 50 60

iteration number

Figure 4.7: Convergence of the algorithm: average of the block erroardiéer-
ent iteration indices with correlated channels.
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4.5 LAST codes with cooperative relays
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Figure 4.8: Block error rates of LAST codes with = np = T = 2, rateR =
4bit/s/Hz with MMSE-GDFE lattice decoder and spatial correlation (code dedig
for SNR=20dB) .

4.5 LAST codes with cooperative relays

Next we consider LAST codes with cooperative relaying [81] where ndides
assist the active node in the communication of the LAST codewordsG =z + wu.

For the purpose of demonstrating the flexibility of our method and its application in
this scenario we only consider a simple cooperative strategy. In partiodamly
consider the design of the LAST code for a predetermined cooperaiategy and
power allocation, and we claim that for this particular fixed cooperatiatesy,

the LAST codes obtained are block error optimal.

We consider a 2-hop relay network using amplify and forward relay siode
This relaying technique allows a lower power consumption at the relayingsnod
because there is no need to consume power for decoding [56]. All tdendre
equipped with single antenna transmitters and receivers. Without losaerfadity
we only consider the amplify and forward relaying protocol in which thec®ter-
minal S communicates simultaneously with one refayand destination terminal
D over the first time slot. In the second time slBtand.S simultaneously commu-
nicate with.D [96]. We consider perfect synchronization and perfect chanatd s
information at the receivers. The channel betw&egind R is also known by the
destinationD. Two consecutive time slots are shown in Fig. 4.9. For simplicity

106



4.5 LAST codes with cooperative relays

we assign equivalent power fand R. We remark that a joint optimization of the
assigned powers and code design can be formulated, complicating thatideri
of the gradient required in the algorithm described in Section 4.3.4.

PHASE | PHASE I

e

Figure 4.9: Cooperative scenario.

ConsiderT intervals in the original MIMO case with co-located antennas,
which translates iff, = T'ny time intervals in the cooperative case. For example,
to mimic the performance of ar = T = 2 LAST code, cooperative relaying
requiresi, = 4 symbol intervals. Notice that due to the symmetry and periodicity
of the lattice in then-dimensional space and the spherical carving regipih can
be observed that the LAST codeword coordinates are uniformly distdfauntaind
the sphereS (spherical uniform random vector). The power of each coordinate
can be determined from this marginal density. The components of a splyerica
uniform vector are clearly identically distributed and the variance on omgoe
nent isr?/(n + 2), wherer is the radius of the.-dimensional sphere [82, p.665].
Using a discrete uniform distribution instead of a continuous uniform distoibu
and considering the total available power, the marginal density of eacwood
component satisfie8{|z;|?} = 1/2,i = 1,...,n.

We considercheaprelays, which in a particular time slot can only operate as
receivers or transmitters. Among tié channel uses, we assign/2 channel
uses to the relay to operate as a transmitter’&nd channel uses to operate as a
receiver. During the first time slot the complex signals received at thendden
and the relay are given by

Yp1 = Phsp(r1+jra) +np,
Yra = +Phsr(1+j22) +nRy, (4.34)

where the random variablésg, , andhgj, are the unit-power complex gains be-
tween source and destination, and source and relay, respectivebondfeler that
the noise at the destination and the relay is distributefthgs,, ng .} ~ Ne(0, 1).
The received signal at the relay is normalized to have unit averagerpbwaie
E{ly%,1*} = Vo + 1. The relay forwards it to the destination during the sec-
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4.5 LAST codes with cooperative relays

ond time slot — notice that in the second time slot, the source also transmits. The
received signal ab during the second interval is given by

c le c
Yp2 = +Phspl(as +]x4)+\/_hRD\/—

. \ PP . /
= \/ﬁhCSD(xi‘I +]£C4) + \/m %Dh%R(ml +«7x2) + #hRDn%,l + ncD,Q

- C
D2

where it follows thatif, , ~ N.(0,1 + plhRDl ). To keep the variance of the noise
equal in the first and second time slot we normalize the received signagdhe

second slot byv = /1 + ”“;ff‘ ). The equivalent Real input-output relation

during the first two time slots (phase | and Il) can be written as

g = 3z 4 p O (4.35)
wherey(!) =R{yp1}S{vp 1t éR{ Yhats \9{ YD, N 2 = [z, 20, 23, 24] 7,
and
VPIR{hGp} —vp3{hsp} 0 0
VPS{hSp} VPR{hsp} 0 0

%\/ pSRJrlm{hSRhRD} - 1 p+1\’{hSRhRD} ?m{hfw} __\‘{h p}
SV S{hsrhtn)  y ATRSRhRpY  TS{hsp)  PR{MSp)
(4.36)
To mimic a LAST code of lengtll” (i.e., 7. = 2T'), we write the same model
for @ ¢ = 2,...,T (i.e., time intervals3, ..., 27.) and we can finally write the
equivalent MIMO system

y=Hzxz+n (4.37)

wherex = [T DT = [y, ..., 2,7 = Gz4u,y = [yV7, ...,y DT,
H = Iy ® H is the equivalent x n MIMO channel, andr conditioned on the
channelH is circularly symmetric complex Gaussian noise wikn|H} = 0
and E{nn'|H} = 1I. Note that multiplexing gain is absent, since time is ex-
panded to create a virtual MIMO channel thereby negating any multipleximg ga
Here the purpose is to obtain diversity gain.

With this system model, we still have

p(ylz, H,.G) =1 ™ exp |- (y—HGz—Hu")' (y—HGz—Hu")| (4.38)
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and thus the algorithm described in Section 4.4.3 to design the genérabbr
LAST codes is applicable.

45.1 Simulation results

We consider rateR =4bit/s/Hz and the length of the code = 2, i.e., T, = 4
time intervals are required to transmit each LAST codeword. The LAST ode
designed fop = 22dB. Fig. 4.10 illustrates the block error rate for the new LAST
codes and we also present the performance of the LAST codes obteitheithe
GCD lattice and the Gosset lattice. It is seen that our LAST code gives #ie be
performance.

T T T T
- : Coop LAST: MMSE GDFE: GCD
—— : Coop LAST: MMSE GDFE: Gosset |]
—©— : Coop LAST: MMSE GDFE: Opt

10 ¢ T

102k =

block error rate

107k

10 12 14 16 18 20 22 24 26 28
P (dB)

Figure 4.10: Cooperative resulté & 2, R = 4bit/s/Hz).

4.6 Conclusions

In this chapter we have proposed a systematic method for designing minimum
block error rate spherical lattice space-time codes taking into accounétbetalr
architecture and the channel statistics. The design method has beentshmsvn
universal in the sense that can be applied to optimize the LAST codes fiolea w
range of receivers schemes, channel statistics, or even coopering.
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Chapter 5

MIMO Precoding

5.1 Introduction

Multiuser detection techniques are considered powerful for interfersappres-
sion in CDMA systems, especially in uplinks, where the base-station redeige

the knowledge of all users’ spreading sequences and channe| atadex has the
opportunity to perform sophisticated signal processing [123]. In thventioks,
however, the mobile receiver typically only has the knowledge of its oweesiing
sequence and channel state. Although adaptive linear multiuser detesithuar (
training-based or blind) can be employed for such scenario, the pefme can

be limited due to the limited power available at the detector for signal processing.
On the other hand, precoding schemes for downlink CDMA effectivelystex

the signal processing for interference suppression from the mob#é&/ezdo the
base-station transmitter. This approach is feasible if the base-stationtcaates

the downlink channels of all users (e.g., in time-division duplex (TDD) syst¢he
base station can exploit channel reciprocity if the time difference betwglarku

and downlink transmission is shorter than the channel coherence time,roaalte
tively the use of channel prediction techniques [31]). In [37] a pdetwp method

has been proposed which is essentially an implementation of the RAKE receive
at the transmitter. Hence this approach does not attempt to mitigate the multiple-
access interference (MAI). Recently, different linear precodingrigies have
been proposed to combat MAI and inter-chip interference but withonsider-

ing inter-symbol interference (ISI) [126]. If ISI is present then tbhenplexity of
these techniques becomes prohibitive since the dimension of the matrix filter is
proportional to the data frame length multiplied by the number of users (i.e., block
processing) [126]. More recently, bit-wise linear precoding methods baen
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proposed to reduce the precoding complexity in the presence of ISI [45]

Downlink CDMA is a special case of a broadcast channels. There das b
significant recent interest in characterizing the capacity of broadbasinels. In
particular, it has been shown that when the interference is non-caukseilyn
to the transmitter and unknown to the receiver, the capacity is the same as if the
interference were not present — a result known as “dirty paper gadifhese
results were originally proved for Gaussian channels [24], and hese general-
ized to other types of causal interference [19, 21, 34]. Severalipasuboptimal
implementations of dirty paper coding have been proposed, e.g., for digital s
scriber line (DSL) systems [47] and for multi-antenna systems [130]. €l'tmas
plementations use successive interference cancellation combined with Tamlins
Harashima (TH) precoding [57, 121].

In this chapter, we first obtain the capacity regions of a downlink CDMA sys-
tem employing either multiuser detection (i.e., receiver processing) or girgro
(transmitter processing). Itis seen that these two approaches provitie sapac-
ity regions, suggesting that precoding can potentially achieve similar peafare
to that offered by multiuser detection. This motivates the development diqgabc
precoding solutions for downlink TDD-CDMA systems.

Then we consider linear precoders with very simple receivers, i.e., didgc
matched-filter to th@wn spreading sequence is required and therefore CSl is not
required. We propose several bit-wise and chip-wise linear presadat cor-
responding power control algorithms to meet certain performance critietiee a
receiver. We also consider the performance comparisons betweendieeading
and linear MUD. The comparison metric is the total required power at the-trans
mitter to achieve a minimum QoS requirement at each of the receivers. Our re-
sults show that linear precoding offers similar performance to linear MUD ist mo
cases; but in some specific cases, linear precoding is more effectireoikr, the
proposed linear precoding techniques with only a matched-filter (to thadipce
sequence) at the receiver can outperform the linear precoder witliK& Receiver
(i.e., with CSI at the receiver) proposed in [126]. These results motiliatase of
linear precoding techniques in the downlink of TDD-CDMA systems. Among the
advantages of using precoding we have:

e Receiver terminals are simply a fixed matched-filter corresponding to the
own spreading sequence. This translates into a power consumption reduc-
tion and a decrease in price of the terminals since they do not have torperfor
sophisticated signal processing for channel estimation and interfemgitice
igation. Note that variations in channel conditions and the number of active
users in the network do not affect the receiver operations.

¢ A reduced amount of control data is required in the precoding solutio@. Th
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reason is that in MUD, every user requires to know the own chanrabnsg

plus the spreading sequences and the CSI of all other active users in the
network. Moreover, mobile units do not need to be informed when users ar
added to (or removed from) the network.

e Power control is easy to implement with precoding since the transmitter has
information about the quality of each link and it does not require extra feed
back information. Note that MUD requires a feedback link to find the power
loading value assigned to each user.

e User scheduling based on the knowledge of CSI can be implemented jointly
with linear precoding to increase the system throughput.

In the final part of the chapter we consider nonlinear precoding teabsiq
based on TH-precoding, which offer superior performance cordperdinear
precoding. We extend the precoding method in [39] to systems with ISI. We
also propose a new chip-wise precoding scheme that combines spraadiigi-
precoding operations. The main difference between our solution andtsell-
tion in [39, 130] is that our non-linear precoder does not require CBleamobile
receiver and yet the performance is similar (note that in the TH precodiotian
in [39, 130] each user implements a RAKE receiver and therefore C&djisred).
Furthermore, efficient algorithms for multiuser power loading and cancelatio
dering are developed. Implementation of the proposed TH-precodimgashin
time-varying channels based on channel prediction is also addressed.

The remainder of this chapter is organized as follows. In Section 5.2, we ob
tain and compare the capacity regions of multiuser detection and precodirg in th
downlink of CDMA systems. In Section 5.3 we briefly summarize two well-known
linear MUD methods and we propose several forms of linear precodihgitpees.

We also present simulation comparisons between linear MUD and lineardsreco
ing. In Section 5.4, we develop new TH-precoding schemes for downlpiR-T
CDMA systems over multipath channels. Power loading and cancellatiorniragder
are also addressed. Simulation results under both perfectly knowneathaamd
predicted channels are also presented. In Section 5.5 we discussngulezdy
user scheduling algorithms based on our precoding schemes. FinaligrSe6é
concludes the chapter.
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5.2 Downlink Capacity Regions of Multiuser Detection and
Precoding

In time-division duplexing (TDD) systems, the uplink channel and the doknlin
channel for each individual user is the same. Hence the base statiasedhe
uplink channel information to perform preprocessing for the downlirkktaereby
transfer sophisticated signal processing from the receiver end toahentitter
end, i.e., to replace multiuser detection (receiver processing) by pnecichns-
mitter processing). In this section, we present and compare the capatilts ref
precoding and multiuser detection in the downlink of a CDMA system. These two
approaches for downlink CDMA are illustrated schematically in Fig. 5.1. Nate th
this is a special case of the MIMO broadcast channel for which rgmeagtessive
developments [19, 16, 124, 125, 135] have lead to the final solution t@ffecity
region for the general broadcast channel [128]. Consider ehsgnous CDMA
system withK users signalling over a real-valued AWGN channel. fieandsy

be the channel gain and the spreading signature cof-theuser, respectively. De-
noteS = [s1, -+, Sk|. ThenR = ST S istheK x K cross-correlation matrix of
the spreading waveforms of all users.

Mobile Unit 1
Channel S; Joint  ——> x,
> f ] Detection
1
X, —% encoder }—»‘ s, }*W ’S—z‘—V (MUD)
Mobile Unit 2
X, —% encoder }—»‘ s, :
Channel Joint
f . Detection
Mobile Unit 1

Channel .
1
A ]
Joint

: Precoder Mobile Unit 2

Channel :
f — S, detection —» X,
2

Figure 5.1: Schematic illustration of MUD and Precoding in downlink CDMA
systems.
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5.2 Downlink Capacity Regions of Multiuser Detection and Precoding

5.2.1 Multiuser Detection

Assume that the users are ordered according to their path gains o thafo >

- > fx. The received signal at thke-th mobile receiver is given by, =
T Zle z¢8¢+mny, wheren, ~ N(0, I). Note that in this case symbols from dif-
ferent users:y, - - -,z are independently encoded. Denate= [z, --- ,zx]’.
A sufficient statistic fore is the output of a bank of matched-filters [123],

A
Y = [Sfrkz, 5Tk - ,s}}rk] = frRx + vy, (5.1)

with E{v,vl} = R. Thek-th user then makes a decision on its own dathased
ony;. Denotep,, as thek-th column of R and

k—1

A
Q. = R+ Pipwoi, (5.2)
/=1

wherePy 2 E{x?}. DenotePr 2 S°K | P, as the total transmit power. We have
the following result regarding an outer bound on the rate region.

Proposition 2 Consider the channel model (5.1) and suppose that each user’s data

is encoded independently. Then the multiuser rate tiRle. . . , Rx) must satisfy
1 2 TAH-1 _

for someP;, k = 1,..., K, satisfyingP, > 0 and>_x_, P, = Pr.

Proof: Definey), = y,./fx. Then we can rewrite the following equivalent model
to (5.1):

y) = Rx +v), and y), =y} + v}, k=2,.. K, (5.4)

where thev}, - - - , v/, are independent, zero-mean Gaussian vectorsidngv,” } =
(f,;2 — f,;fl) R. The model (5.4) is the same as the aligned degraded broadcast
channel (ADBC) model in [128]. The difference is that here eaglis encoded
independentlyThis corresponds to the model in [128] wiBy zero except for the

i-th diagonal element anfl a diagonal matrix. It can be checked that the proof
still applies with these restrictions, and we therefore get a rate given §2)Hg)
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5.2 Downlink Capacity Regions of Multiuser Detection and Precoding

in [128], which here becomes

1 det (25:1 Puipep] + i, E{vjv," )
Ry < Slog k-1 k T
det (2521 Pupop] + i1 E{vjv) )

- 2
_ 1y det (Qx + fEPrprPL)
& det Qk: '

(5.5)

Let F', be a Cholesky factor a@,, i.e., F,.FL = Q,. Then

det (Qi + Pufippi) = det [Fk <I + (VPSF o) (\/kakalpk)T> Fﬂ

= (14 PufipiQ; ' py) det Qy, (5.6)

where in (5.6) we used the following identifyt(AB) = det(BA) = det(A) det(B),
anddet (I + aa”) = a”a + 1 wherea is a vector. Substituting (5.6) into (5.5)
we obtain (5.3).

The rate in Proposition 2 is achievable with a multiuser detector that performs
serial interference cancellation on weak users and linear MMSE irtedersup-
pression on strong users. In particular, usesan decode the data intended for
usersk + 1,..., K as uselk receives the same signal but with higher SNR. Sup-
pose that usek has decoded usets+ 1, ..., K. It then subtracts the signals of
these users frorg,, in (5.1) to obtain

K
e = y—fe Y pee
(=k+1

k

= fr Y peme+ vk
=1

k-1

= fupi+ fr > Pete + vk (5.7)
=1

It now applies a linear MMSE filter og,,. Note that the covariance matrix of the
noise and interference is given 16y, in (5.2). The linear MMSE filter output is
given by

i =t Uy, With 1 = f1.Q; " py. (5.8)
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5.2 Downlink Capacity Regions of Multiuser Detection and Precoding

This gives a rate

_ 2
P Q' py)” Puf?
PL Qs pi

1
R, = §log <1+(

1 _
= Slog(1+PfiriQ;'pr) - (5.9)

When K = 2, denotep = p12 = p2,1. The above rate region can be easily
evaluated as

1

Ry = Jlog(1+Pif}), (5.10)
1 L+ Piff(1—p%)

Ry = =log|1 P,

2 20g<+ T+ PLJ? 5 fo
1 Py f3

= Zlog|(1 1—-p2—"22 |\ Ppf2). 5.11

2og<+< p1+P1f22> 2f2> (5.11)

5.2.2 Precoding

In systems employing precoding, each downlink user simply applies afilter ethtch
to its own spreading sequence. The output of this matched-filter is given, by
fkpfa: + v, wherex is the precoded vector. Stacking the output of the matched-
filters of all users in a single vector, we then obtain the downlink precodgmabk
model:y = ARx + v, whereA = diag(fi, ..., fx) and E{vv’} = I. This is
similar to a multiple-antenna broadcast channel [19]. However, note ¢hnatthe
power of the transmitted signal i3 {wTRac}. Therefore the power constraint is
E{z"Rx} < Pr, which is different than [19]. This is easily fixed: &t be the
Cholesky factor ofR, i.e., FFT = R. Defineu = FTz. Thenu should satisfy
the power constraint {u”u} < Pr, and we can write the received signal as

y = ARF Tu+v = AFu+w. (5.12)
This is the same as the model in [19] for a broadcast channel Aviimtennas at
the base station and one antenna at each terminal,ﬂﬂié AF. In[19] Costa’s

“dirty-paper coding” was suggested, and very recently in [128] it sfasvn that
this scheme actually gives the capacity region. Hence the results in [19]tapp

116



5.2 Downlink Capacity Regions of Multiuser Detection and Precoding

the current problem and the following rate is achievable [124]

1 det (T+R] (S0, 20) )
Ry = Slog
det (I +h! (Zﬁikﬂ Ee) hk)

: (5.13)

whereX'q, ..., X'k are positive semidefinite matrices satisfytmg(z,f:1 2k> <
Pr and h{ is the k-th row of H. The capacity region, as proven in [128], is
the convex union over all matrice¥', ..., Xk and all orderings of the users.
Unfortunately, except for the two-user case solved in [19] no cldsed-solution
for the capacity region has been found. For the casf& of 2, we can obtain
explicit expressions for the capacity region. In [19] it was proventtietapacity
region is given by

Ry

aclPT
I 1 5.14
Og< * 1—|—q(1—a)01PT) ’ ( )

Ry < log (1 (1 — a)qPT), 0<g<1,0<a<1 (5.15)
wherec; 2 hThy, cs 2 |det(H)|?/c1, c3 2 |hTho|?/2, and

2
p— <@+ 21 - q>) . (5.16)

We can obtain a more explicit expression as follows. First set equality id)(5.1
and solve for, to obtain

2f _ 1 — ey Pp
_ _ 5.17
1 (1— a)er Pr(1 — 2F1) ®.17)

Then substitute (5.17) into (5.16) and in (5.15) with equality, and solve foom

R — (), to obtain the unique solution

—C%PT + 21 C%CgPT — 22 co —c1c3 + 2311 co + 21 ci1c3
a = .(5.18)
(0103 + 281 02)2R1 aPr
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Substituting (5.18) into (5.14) and (5.15) we obtain

Ry

IN

log (1 + 1 Pr), (5.19)
C%CgPT +c1c3 + 2t (c1caPr +co —cie3 — 022R1) 20)
612R1 )

RQ < log (1 +

Now substituting (5.19) with equality into (5.20), and using the definitions; of
andH 2 AF, after some straightforward but tedious simplifications, we obtain

1

R < 51og(1+Plff), (5.21)
1 P f?

Ry < Zlog(l+(1-p*—=2o ) Paf5). 5.22

o< o (14 (1= ) s 522

If we swap the order of the users we get another region, and the tgtahris the
convex closure of these two regions.

5.2.3 Comparisons

We next provide some numerical results comparing the downlink CDMA dgpac
regions for multiuser detection (MUD) and precoding with= 2. First we notice

that the two capacity expressions (5.10)-(5.11) and (5.21)-(5.22)eayesimilar.
Figure 5.2 shows typical rate regions, one for high SNR and one for NR.S
There are two curves for the precoding case because of the deyggnole user
ordering (the capacity region is the convex union) and one curve foMtbB
case. Itis seen that the regions are quite similar. The maximum sum rate is slightly
larger for MUD; whereas the maximum equal rate (if&.,= R5) is slightly larger

for precoding. This turns out to be general, as the following numerisaltseshow.
Figure 5.3 shows the sum rate as a functiorf:gff; andp € [0, 1] with f; fixed. It

is seen that the sum rate for MUD is consistently better, but only slightly. Similar
observation can be made for maximum equal rate in Fig. 5.4. In summary inis see
that precoding can potentially provide similar capacity as MUD, which motivates
the development of practical transmitter precoding techniques as an titerioa
MUD to reduce the complexity of the mobile receiver. In the following sectiomes,
propose suboptimal approaches to “dirty-paper coding” based om [ineeoding

and the Tomlinson-Harashima (TH) precoding technique in multipath channels.
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SNR=20dB, f2=0.5, p=0.9
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Figure 5.2: Comparisons of rate regions for MUD and precoders iith 2.
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Figure 5.3: Sum rate for precoding and MUD as a functiop afhd f5/ f; (almost
equal, so the two surfaces are nearly indistinguishable); and difieresioveen
sum rates for precoding and MUR{;ccoding — Rvup). The SNR is 20dB for

user 1.
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Figure 5.4: Equal rate for precoding and MUD as a functiopafd f>/ f; (almost
equal, so the two surfaces are nearly indistinguishable); and difieresioveen
equal rates for precoding and MUR {;ccoding — Rvup). The SNR is 20dB for
user 1.
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5.3 Linear Precoding versus Linear Multiuser Detection

5.3.1 Linear MUD Methods

Transmitter

loading
Tx
Spreadin = i
Downlink bit streams | A= ] P S = 9 [p=SAb ps W Signal
- T i
b =[bg,....byl diag[Ay,..., Al (S8 ] ->|
| n, Mobile Unit 1
| Channel ; Q{j r,=D,SAb Joint Detection ~
. [ > b
| A (MUD) 1
CSI f, + spreading
| sequences
| Spees S
| >
n Mobile Unit K
K
» | Channel - * r¢=D,SAb Joint Detection N
o fy TNV o (MUD) > by
CsSI f, + spreading
sequences
Spreenr Sk

Figure 5.5: Downlink MUD.

We consider al{-user discrete-time synchronous multipath CDMA system.
Defineby[i] from a constellationd as the symbol of thé-th user transmitted dur-
ing the i-th symbol interval withE{|b[i]|>} = 1 andbfi] = [b[i], ..., bx[i]]".
Denote N as the spreading factor ang = [sj 1, ..., sk7N]T as the normalized
spreading waveform of the-th user. Then, the signal transmitted from the base
station during the-th symbol interval can be written a$i| = S Ab[i], whereS =
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5.3 Linear Precoding versus Linear Multiuser Detection

[s1, 892, ..., SK| IS the matrix of spreading waveforms; ald= diag(Ay, ..., Ax)
contains the user signal amplitudes. The vegt@f is passed through a parallel-
to-serial converter and transmitted over the multipath channel. The pattsdaay
assumed to be an integral number of chip periods. Denote the multipath channel
seen by the:-th user asf;, = [fi.1, fr.2, ...,fk,L}T, whereL is the number of re-
solvable paths and; is the complex fading gain corresponding to thié path

of the k-th user. We assume that < N. At the k-th user’s receiver, th&/ x 1
received signal duringv consecutive chip intervals correspondinghtd is given

by

fei 0 o o0
Tk[Z] =D.S Ab[z]+nk[z] with Dy = fk,L fk,l ,
L0 o fur o fen Ly

(5.23)
wherery[i] = [rg1[i], ..., r.n[i]]” is the received signak[i] ~ M. (0,021 y)
is the complex white Gaussian noise vector atittb receiver, andd, = D S.
Notice that we have assumed that ISI can be ignored either by being teedrma
by inserting a guard interval. At thleth receiver, a linear detector to recuperate
the signalb,[i] can be represented by ai-dimensional vectotw;, ¢ CV, which
is correlated with the received signeji] in (5.23) to obtainzy[i] = wir]i],
and thek-th mobile unit makes a decisidn|i] = Q(z;]i]), whereQ rounds to the
closest point in the constellation.

Linear Decorrelating Detector:The decorrelating detector completely eliminates
the multiuser interference (MUI) and interchip interference (ICl), aettgense of
enhancing the noise. The linear decorrelating detector foriuisegiven by [123]

wy, = H{'e, = Hy(H['H}) ey, (5.24)

wheree;, denotes d-dimensional vector with all entries zeros, except forikéa
entry, which is 1. The output of this detector is given by

2

A
2i] = wilrili] = Apbli] + wing[i] = SINR;, = Wu]:k\!? (5.25)

where SINR is the signal-to-interference-plus-noise ratio for thth user. Sup-
pose that the QoS requirement for uses such that SINR > ., wherey, is the
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5.3 Linear Precoding versus Linear Multiuser Detection

minimum acceptable SINR value for user Hence we havel? = o2 ||lwyl?.
And the total required transmit power is given by

K K
Pr=>Y A; =) o*wef(S"TDID.S) e (5.26)
k=1 k=1

Linear MMSE Detector: The linear MMSE detector for uséris given by [123]

wy = argwmiEN E{|bli] — wilr[i]|*} = Ag(H A’HY + 0°Iy) ' H ey,
kE
(5.27)
The SINR for this detector is given by

Afllwi! H ey ||?

SINR, = .
ik Adlwi! Hyej||2 + 02 ||wy |2

(5.28)

We seek to minimize the total powétr such that SINR > ~,. The iterative
power control algorithm for linear MMSE MUD proposed in [122] can keeaded
to the downlink scenario. At thew(- 1)-th iteration, the MMSE filterwy (n+1) is
constructed using the current power matfixn). Then, the power matrid (n+1)
is updated using the new filter coefficienig (n + 1).

Algorithm 6 Power control algorithm for linear MMSE MUD in the downlink
| NPUT: Hp, v, 0°.
FOR n=0,1,2,... DO
FOR k=1,2,.... K DO

wi(n+1) = (HpA*(n)H' +0°I)"' Ap(n)H ey
) S 2wl 0+ DH ey + % (w! (4 Dwy(n + 1))
|lwy (n+1)H ey
END FOR;
END FOR;

QUTPUT: assigned powers A; and linear MVBE filters
W, k:1,...,K.

5.3.2 Linear Precoding Schemes

In this section we consider different approaches to implement linear gireco
assuming that the transmitter has perfect CSI.
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Bit-wise Linear Precoding
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Figure 5.6: Downlink linear precoding.

We assume that each mobile unit employs only a filter matched towits
spreading sequence, and it does not need to know other usellseequences
or to estimate the channel. Denote the symbol by symbol bit-wise precoding
operation asc[i] = M,Ab[i], wherex[i] is the precoded symbol vector and
M, € CK*K is the bit-wise linear precoding matrix. Then, after spreading the
precoded data, the signal transmitted from the base station durirgtirsymbol
interval can be written ap[i] = Sx[i] = SM,Abli]. The vectorpl[i] is passed
through a parallel-to-serial converter and transmitted through the chamhe
signal received by thg-th user is then given by

’l“k[l] = DkSMbAb[Z] + nk[z], (529)
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where Dy, is given in (5.23). Then the corresponding matched fidters applied
to 7, [¢]. Stacking the outputs of th& matched-filters we obtain

strq]i] siD.S stin[i]
silryli s'D,S siingli
il s e | 2 (530
sty i) siDgS stnkl[i]
Yli] H, vI[i]

Thek-th receiver makes a decisiop]i] = Q(y;[i]). Therefore the precoder design
problem involves designing the precoding mathik, such thaty:] is as close to
b[i] as possible.

Bit-wise Linear MMSE PrecoderAssuming that the spreading sequences are nor-
malized, the linear MMSE precoder chooses the precoding m&fijxo minimize

E{||b—y|*}, andis given by [126M, = SH, ', with § =

Pr
\/tr(SH;lAQH;HSH) '
Note that such a linear MMSE precoder also zero-forces the intederdhthe
constraint is the minimum SINR at each receiygy we obtain the unconstrained
precoding solutiomV, = Hb‘l. Thus we have SINR= ;‘—E; and the power as-
signed to thek-th user becomed? = o2v;. Then the total power required at the
transmitter becomeBr = E{||SM,Ab[i]||>} = tr(SM,A>M [ §H).

Bit-wise Wiener PrecoderThe bit-wise Wiener precoder is proposed in [69, 70]
as the matrixf;, and constang that minimizeE {||b[i] — 3~ y[i]|*}, subject to
E{||M,Ab[i]||*} = Pr. Given the total transmit powe?r, the Wiener precoder
is given by

M, =p3J 'H}, (5.31)

with

B= Lr and J = HIH +K—021 (5.32)
“\w (J2H A’H,) I |

Optimal Transmit Spreading SequenceBesides optimizing the precoding matrix
M, for a given channel realization, we can also optimize the transmit spreading
sequences. Denotg, ..., sk as the fixed spreading sequences used at the mobile
units (i.e., the matched -filters) a@dl, ..., s as the optimized spreading sequences
used at the transmitter. Denae= [31, ..., 5x]. Similarly to (5.30), the received

126



5.3 Linear Precoding versus Linear Multiuser Detection

signal can be written as

strq]i] s D, stin[i]
stlryli siD - stinsli
el e e | 2 sa)
sty [i] siiD stn i)
4 ————
Yli] H. l[i]

Following [99], it can be easily shown that the linear MMSE precoding matrix is
given by M, = (H.S)~! (for details see Appendix C), and? = o%y;, k =
1,..., K. Next we show that for any given propagation chanbel ..., D, orig-

inal spreading sequencé&s and minimum SINR requirements, we can explicitly
find the optimal spreading matri€ € CV*X such that the total transmit power
Pr is minimized. Assume that thE x N matrix H . has rankK, whereN > K.
Define the SVDH, = U 2.V, whereU, is aK x K unitary matrix,V is
anN x N unitary matrix and®. is a K x N diagonal matrix withX.]; ; = A
being the positive square root of tiwh eigenvalue o . H .

Proposition 3 Giventhe channel®+, ..., Dk, the receiver matched-filtess, . . ., sg,
and the target SINRy, ..., vk of all users, by optimizing the transmit spreading
matrix S used in the bit-wise linear MMSE precoder, the minimum achievable

transmit power is given by

K
Pi= min t(SM,A’MS") =" A2\ 72, (5.34)

SeCcNxK k=1

whereAi = 0%y, k = 1,..., K are the assigned powers. One solution to the
optimization problem in (5.34) (i.e., the optimal transmit spreading matrix) isrgiv
by theN x K matrix§" = HY.

Proof: Note thatM;, = (H.S)~! and therefore the transmitted vector is given
by p[i] = SM,Ab[i] = S(H.S)~'Ab[i]. Denote the SVDs oH . and S by
H.=U,x.VH andS = U;Z;VY, respectively. Then the total transmit power
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. . ~ ~\ N ~H
pPr = EBE{p"[i|pli]} = tx(S(H.S) ' A*(H.8) "§")
= w(U:Z:VEU. . ViUu;z; v AU 2. viu;z vy siyl)
———
T
= (S VIV, T WUl AU 177 viv sl

= (BT AT X)) = grAZ2rir), (5.35)

whereT = 3. V U;:X;isaK x K matrix; 2 = EHE isaK x K diagonal
matrix; and we used the fact thelt;, U ., V. andV ; are unitary.

ConsidelT expressed in terms of the matrices obtained with the thin SVD [65],
T = cs?, wheres!” ands!") are thek -th leading submatrix oE. and
3;, respectively; and = V(t)HU(t) isaK x K matrix (whereV'") andU
denote the matrices consisting of the fikStolumns ofU ; andV ., respectively).
Denoting{v, 1, ..., v¢ k } and{us 1, ..., us k' } as the firstk’ columns ofV. and
U, respectively, we haviC|;; = (v, us;),4,j = 1,..., K. Next we show that
the eigenvalues of’ denoted a®;, i = 1, .., K, always satisfy¢;| < 1.

Denote{e, ..., ex } as the orthogonal basis of tii&-dimensional space. Then
thel-th component of th€” transform of thej-th basis is given bie; = [Ce;]; =
[Cli; = (ver,us;), where(-,-) denotes the inner product. Hentte;.H2 =
Zfil [(vey, us,;)|*. Notice that sincd/ . andU; € SU(V) (i.e., special unitary
group), ther 2 U ; also belongs to the SW); and therefore th&, norm of each
column vector of theV x N matrix VU ; equals to one, i.e}1 | |(ve, us ;)| =
1,j =1,..,N.SinceN > K, we have|e|* = S/ [(ves,us )| < 1,5 =
1,..., K. This is, theL, norm of the transformation bg' of every basis vector is
always less or equal to 1. Every vector in tRiedimensional space can be written
as a linear combination of the basis and therefore(¥heansform applied to any
vector reduces the norm. In particular, it reduces the norm of the eigtarg of
C'. Therefore, we conclude that the eigenvalue€'dfatisfy|¢;| < 1, Vi.

SubstitutingT ! = [£”]-1c~![={]-1 and the eigenvalue decomposition
of C = WeW ! (where® = diag(¢1,. .., ¢x)) in (5.35) we obtain

Pr = tr(AZx2T'T *H)—tr(A2C*1C*H2;2):tr(AQszs*lqs*Hz;?)
K

= ZAz Aol 2>ZA?A“2- (5.36)

Denote the thin SVD o8 = UPEPV Y. Finally, with §* = H¥, the thin

S S

SVD decomposition becomes™ = ( P S”H)H: WsOAgOH e,
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Ul = v, Thereforec = VIV#U = I, andC has unit eigenvalues.
Hence we have equality in (5.36) asd = H! is an optimal spreading matrix
for linear MMSE precoding. |

Remark: There are many other forms of the optimal spreading mafrisuch
thatC = Vﬁt)HUét) has unit eigenvalues. Specifically, we need to construct an
N x N matrix U; that rotates the firsk’ columns vectors oV .. in the samek -
dimensional subspace and keep invariantthe K -dimensional subspace spanned
by the N — K remaining vectors. Consider first the real case. The constraints on
the K first columns ofU; are: (a)>1, [(ver, us))? = 1,5 = 1,.., K. [K
equations.] (bYusi,vem) =0,i=1,..., Kim=K+1,.. ,N.[K-(N - K)
equations.] (CXus;, uz;j) = 6ij, 0,5 = 1,.., K. [(K—1)+ (K —2)+ ...+
(K—K+1)+ (K - K) = K*— $K(K +1) equations.] To construdf ;, there
are N K variables in thek first columns ofU ;. After subtracting the number of
constraints, we havgk? — K)/2 degrees of freedom, which is nothing more than
the dimension of the Q) (i.e., orthogonal group) as expected. In the complex
case, there ar2N K variables in the firsi& columns ofU; and it can be shown
that the solution generalizes (&2 — 1) degrees of freedom that is the number of
free parameters of the SH(. To summarize, to construct the optimal spreading
matrix with SVD decompositios = UngVf, we only have to find the unitary
matrix U ; satisfying the above constraints on itsfirst column vectors (i.e., range

of S). Moreover, there arék — 1) degrees of freedom to select it.

Chip-wise Linear Precoding

loading
. . x=M Ab
Downlink bit streams o A= c P/S »
b=[b,...bJ diag[A,,..., Al

CSI +
spreading
sequences

Figure 5.7: Downlink chipwise linear precoding.

In chip-wise precoding, we do not explicitly use any spreading matrix at the
transmitter. This is, the precoder tak€ssymbols and outputs the spread vector of
length N. Hence the spreading and precoding operations are effectively cechbin
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5.3 Linear Precoding versus Linear Multiuser Detection

The received signal at thgh receiver is given by
rili] = D AM  bli] + ngli], (5.37)
where M. € CV*K is the chip-wise precoding matrix. At each receikerthe

matched-filters;, is applied tory[i]. By stacking the outputs of alk” matched-
filters we obtain

sty [i] s D, stn]i]
stlryli siD stinsli
sralil | s D g | 2] (5.38)
sty ki) sIDg stingli]
Yli] H. i)

Differently from the bit-wise system model, here the channel mdfixis not a
square matrix but has dimensidgh x N with N > K.

Chip-wise MMSE Precoding:Using an argument similar to [99] and given in
Appendix C, the linear MMSE chip-wise precoder is given by

M.=H!=HYH.H?) (5.39)

It is easily seen that the SINR for each user is given by

AZ
SINR, = —F, k=1,.., K. (5.40)
g

As before, if we assume that the required SINR for usisry,, the required power
assigned to thé-th user becomeﬁz = 02,. Due to the precoding matrix, the
required total transmit power becomes

Pr=tr(HIA’H") = tr(A*(H H)™). (5.41)
Remark:Note that under a fixed transmit power budget the linear MMSE pre-

coder is given byM . = 3H with 5 = \/PT/tr(AQ(HCHf)—l) and SINR, =
(BAR)?
o

Proposition 4 The above chip-wise linear MMSE precoding method is equivalent
to the bit-wise linear MMSE precoding method with the optimal spreading matrix
at the transmitterS” .
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5.3 Linear Precoding versus Linear Multiuser Detection

Proof: Using the SVD ofH,. = U .X.VZ, the total transmit power required in
the linear MMSE chip-wise precoder is given by

Pr = tw(HIAZH?) = (V.2 U AU, 2]V

A2N\2 (5.42)

17,

MN I

= tr(A’%;?) =
1

<.
I

Hence the transmit power with the chip-wise linear MMSE precoder is eqtiato
minimum transmit power in the bit-wise solution given in (5.34). |

Remark:The above result shows that it is not necessary to optimize the spreading
operation at the transmitter. That is, by applying the simple chip-wise pregodin
operation we can obtain the optimal performance.

Chip-wise Wiener PrecodingThe Wiener precoder given in (5.31) can be used
in our chip-wise scheme by subsitutidd, by H., resulting in the precoding
matrix M, € CV*K, Next we propose a power loading algorithm that can be
applied to both the bit-wise and chip-wise Wiener precoders. Considergia s
model (5.38). Defings = H .M .. Then we can writey;[i] = AxGrrbili] +
Zilil#k A;Gp;bilt] + vi[i], k = 1,..., K. In the Wiener precodeM . is not the
pseudo-inverse aoff . and therefor&= is not a diagonal matrix. Hence, for a fixed
loading matrixA, the received SINR is given by

AN G l?
K .
02 + 30 ik A7 G2

SINR;, = (5.43)

To achieve the target SINF, for each usek, we need to find the optimal powers
Az,k = 1,..., K. Now, different from the linear MMSE precoding, the power
allocation problem is coupled with the problem of finding the optimal precoding
matrix. Following the ideas of [122] we propose the following iterative algorith

to solve the joint problem. In the algorithm we first fix the power loading values
A(n) to find the precoding matrix and then, based on the precoding matrix, the
power loading values are updated. Simulations show that the algorithmrgesve

in about two or three iterations.

5.3.3 Simulation Results

Chip-wise precoding vs. bit-wise precoding)e first compare the bit-wise linear
MMSE precoding (without optimizing the spreading sequences at the trangmitte
with the chip-wise linear MMSE precoding. We assume that the target SIKR pe
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5.3 Linear Precoding versus Linear Multiuser Detection

Algorithm 7 Power control algorithm for Wiener precoder
I NPUT: H. 02 and v, k=1,.., K;
FOR n=1,2,... DO
D(n+1)=HIH.+ £751y

Pr(n
Bln+1) = \/t r (J‘Q(n+1)I({)fA2(n)HC)
M. (n+1)=pn+1)J Yn+1)HE,
Gn+1)=H:M_.n+1),
FOR2 Rk Dg’i ik 20| Gri(nt)|2 402
Ax(n+ 1) = == '
END;

Pr(n +1) = E{||[M/n + 1)A(n + 1)b||?} = tr (M.(n + 1)A%(n +
M2 (n +1));
END FOR;
OQUTPUT: precoding matrix M.(n + 1), and assigned
powers A(n+1)

user is constant for all users;, = 10dB, &k = 1,..., K. We consider random
codes and Gold codes with spreading gain= 31 and the total number of users

K = 15. We assume that each mobile user experiences an independent multipath
channelf, = [fr1, .., fr..]* with L = 3 resolvable paths, and the transmitter has
perfect CSl of all users. The path gains are generated accordjfipg to N (0, %).

The results are averaged over 1000 different channel realizafidvescumulative
distribution function (CDF) of the required power at the transmitter to actlilteve
minimum SINR at the receivers is shown in Fig. 5.8. Itis seen that undeeiéses
multipath, the suboptimal bit-wise solution incurs a large performance degnadatio

Chip-wise precoding with matched-filter vs. bit-wise precoding with RAKE re-
ceiver: The bit-wise linear MMSE precoding with a RAKE receiver was proposed
in [126]. The difference with the linear MMSE precoder considered irSietion

3.1 is that the receiver must also estimate the channel and apply a RAK&erece
consequently, increasing the number of pilot symbols and the complexity of the
receiver. We discuss this method only for comparison since we see@&dimgc
solutions with simple receivers with no receiver CSI. The RAKE receregr be
implemented with a matched filter using the effective spreading sequence é.e., th
k-th effective spreading sequencsjs= f, xs;) instead of the original spreading
sequence. With our notation, theth effective spreading sequence is given by the
convolutions, = D.Se;, = Dys;, where we have limited the convolution 10

chip samples. Then, with the RAKE receiver the system model can be written a
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Gold/random sequences - K =15, N = 31
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Figure 5.8: Chip-wise precoding vs. bit-wise precoding: CDF of theiredu
power Pr at the transmitter to achievg, = 10dB, Vk. Spreading gainv = 31,

K = 15 users.
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Gold/random sequences - K =22, N =31
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Figure 5.9: Chip-wise precoding with matched-filter vs. bit-wise precodiitly w
RAKE receiver: CDF of the required powét; at the transmitter to achievg =

13dB, Vk. Spreading gaiivV = 31, K = 22 users.
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Gold/random sequences - K =15, N =31
1 T T T T T

MMSE MUD - Gold
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0.8 Decorr-MUD - Gold
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0.7r prec - rand

Wiener prec — Gold
Decorr MUD - rand 7

“MMSE MUD - rand

CDF
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: MMSE precoding - Gold
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: Wiener precoding - Gold 7
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: MMSE precoding - random
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total transmit power P_ (dB) to achieve QoS = 13dB

Figure 5.10: Linear precoding vs. linear MUD: CDF of the required poftie at
the transmitter to achievg, = 13dB, Vk. Spreading gaiv = 31, K = 15 users.

s{{D{{rl[i] s{{D{{Dls s{{D{Inl[i]
stgrg[i] S{JDngS M, Abli] + sﬁquIng [i] (5.44)
. = . b . A9
s Dy i) sEDEIDyS s D n i)
Ylil H, vIi]

It is easily seen that the linear MMSE precoding solution still yidldg = Hb‘l,
whereH,, is defined in (5.44). The signal to noise ratio for usés

Af

SINR: = 2Dyl

k=1,... K, (5.45)

and the required power to achieve an SINR valubecomesi? = o2y sf D F.sy,.
Therefore, the total transmitted power is given by

Pr = E{||SH, ' Ab[i]|*} = tr(SH, ' A>H, ' §7). (5.46)
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5.3 Linear Precoding versus Linear Multiuser Detection

Notice that the Wiener precoding solution can also be applied to the system in
(5.44).

Next we compare the chip-wise linear MMSE precoder given in Section 5.3.2
(which is equivalent to the optimal bit-wise linear MMSE precoder) with thevabo
bit-wise precoder with a RAKE receiver. The results are shown in Fig.\Bi¢h
Gold sequences the RAKE receiver brings less than 0.5dB gain ongaveoa-
pared with the simple chip-wise precoder with matched-filter receiver. Nate th
the performance of a communication system is dominated by the outage events.
Given an outage probability,,:, we define the corresponding outage powWgy;
aspour = Pr{Pr > P,,;}. Itis seen that although on average the RAKE re-
ceiver is slightly better, it is more prone to outage. For instance, considbein
plot the 5% outage probability for which the chip-wise precoder requiresna
34.5 dB whereas the RAKE receiver requires around 35.5dB. Whesidgring
the 1% outage probability, this effect is more pronounced and the RAKd&tvesc
requires 5 dB more than the chip-wise precoder to achieve the samenpanfog.

This effect will be more clear in the BER simulation results [cf. Fig. 12 and Fig.
13]. Interestingly, the performance of the precoder with RAKE receaiezays
considerably when random sequences are used. Thereforejphaish precoder

is not only simpler (and it makes the receiver simpler since no CSl is recaiitad
receiver) but it also has excellent performance. From the above siarutasults

we can conclude that: (a) The original bit-wise precoder with the matcheddilte
the receiver is far from optimal in multipath channels; (b) The bit-wise mteco
with RAKE receiver makes the mobile units more complex and does not bring
much improvements with Gold sequences and it can be very detrimental with ran-
dom spreading sequences; (c) Therefore the proposed chip-teseding method
offers both low complexity and high performance.

Linear precoding vs. linear MUD —total transmit powerNext we compare linear
MUD with linear precoding assuming the same simulations parameters. We com-
pare the CDF of the required total power at the transmitter to achieve a target
SINR v = 13dB, Vk, in each of the four following schemes: (a) linear decorre-
lating MUD [cf. Eq.(5.26)]; (b) linear MMSE MUD [cf. Alg. 6]; (c) chip-ige
linear MMSE precoder, [cf. Eq.(5.41)]; and (d) chip-wise Wienercpoer [cf.

Alg. 7]. Simulations are performed for spreading gain= 31, with Gold and ran-
dom spreading sequences. Fig. 5.10 shows the resultgiithl5 users and Fig.
5.11 shows the results witkn = 27 users. It is seen that with Gold codes, MUD
is slightly better (although only 0.5dB of difference with linear precoding whe
15 users are considered), whereas with random codes linear prgtadely out-
performs MUD. Notice that the Wiener precoder is slightly better than the MMSE
precoder. It is also seen that the total power required in the precodintions
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Gold/random sequences — K =27, N = 31
T =

— —_—
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MMSE MUD - Gold
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Figure 5.11: Linear precoding vs. linear MUD: CDF of the required pofte at
the transmitter to achieve, = 10dB, Vk. Spreading gaiV = 31, K = 27 users.

is almost independent of the chosen spreading sequences andrihesilafoutage
event is less likely to occur. Although the linear MMSE MUD solution seems to be
quite effective with Gold codes, we recall that it is unlikely to be implemented in
the downlinks of most wireless systems due to the amount of required feeitba
formation to implement perfect power control and other issues discusSatiion

1. Also notice that the linear decorrelator offers very poor performambeavily
loaded systems, which does not occur to the linear MMSE linear precoder.

Linear precoding vs. linear MUD — BER performancefig. 5.12 and Fig. 5.13
show the BER performance of the various linear MUD and linear precadat-
ods. The results are averaged over 100 channel realization and @B&iation

is employed. Recall that the linear MMSE precoder is equivalent to thentities
counterpart of the decorrelator. For the decorrelating MUD we congiedect
power loading to achieve the same SNR across the users. It is seen tlhia¢dne
MMSE precoder with RAKE only performs slightly better with Gold sequences
in the very low SNR region. In all the other cases, the chip-wise linear MMSE
precoder obtains much better results. On the other hand, the chip-wiseEMMS
precoder obtains much better results than the decorrelating MUD, espenially
heavily loaded systems. These results are due to the outage events ofdhe de
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Random sequences (MUD with power loading), N = 31
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Figure 5.12: Linear precoding vs. linear MUD: BER performance withdozam
spreading sequences. Spreading géia- 31, K = 15 and K = 27 users.

Gold sequences (MUD with power loading), N = 31
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Figure 5.13: Linear precoding vs. linear MUD: BER performance with Gold
spreading sequences. Spreading géis- 31, K = 15 and K = 27 users.
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5.4 TH Precoding in Downlink CDMA

relating MUD observed in Fig. 5.10 and Fig. 5.11. Again, it is seen that the
BER performance of the chip-wise precoding solution is almost indepéntigre
chosen spreading sequence.

5.4 TH Precoding in Downlink CDMA

In this section we consider nonlinear precoding solutions based on Tddqing
that outperform linear precoding.

5.4.1 Downlink CDMA System Model with ISI

We consider d-user discrete-time downlink CDMA system signaling over mul-
tipath channels. Denotk,[i] € A as the information symbol of the-th user
transmitted during the-th symbol interval, whered is a finite constellation set;
andbli] = [b1]i],...,bx]i]]”. Denote the symbol by symbol precoding operation
asx[i| = ¥(bli],...,b[i — v + 1]), wherex]i] is the K x 1 precoded symbol vec-
tor based onv information symbol vectors. Denof€ as the spreading factor and
Sk =[Sk, skn]T as the spreading waveform of tketh user. Then the signal
transmitted from the base station during thh symbol interval can be written
aspli| = Sz[i], whereS = [si, s9,..., SK]. The vectorp[i] is passed through
a parallel-to-serial converter and transmitted over the wireless chanhelpdth
delays are assumed to be integral multiples of the chip interval. Denote the multi-
path channel seen by tlieth user asf;, = [fx 1, fr.2, - fk,L]T, whereL is the
number of resolvable paths arf@; is the complex fading gain corresponding to
thel-th path of thek-th user. We assume that< N so that the delay spread is at
most one symbol interval.

Different from the previous section, here we also consider intersyimbet
ference (ISI). Denote.[i] as theN x 1 received signal vector by thieth user
during thei-th symbol interval (i.e.N consecutive chip intervals). Then

ri[i] = DpSz[i] + D Sx[i — 1] + ngli], (5.47)

whereny[i] ~ N, (0,021y) is the complex white Gaussian noise vector at the
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k-th receiver, and

fex 0 e 0 0 - fer - Jr2

Dy, = fea fea 0T ., andDj = | | -
R : 0 T
0 o fer o Sl yaw 0 ... (542) .

At the k-th mobile receiver, a matched-filter is applied to the received sigyléal
with this user’s signature waveform, i.gx[i] = s r[i]. By stacking the matched-
filter output from all users into a single vector we have

s{{rl[z’] s{{Dls stlS s{inl[i]
sHp,i siD,S siD,S stnsli
el _ e DeS | 1D g | (s
sty ki) sIDgkS sIDgkS stn i)
~ —_——
Yli] H H vli]

A different situation is when instead of applying a fixed matched filter, theivec
implements a RAKE receiver as proposed in [39]. The main differencetigtith
receiver must also estimate the channel to apply the RAKE receiveegoestly,
increasing the number of pilot symbols and the complexity of the receiver. We
discuss this method only for comparison since we seek precoding solutitims w
simple receivers without receiver CSI. The RAKE receiver can be impieed
with a matched filter using the normalized effective spreading sequencdhge.,
k-th effective spreading sequencsjs= f i) instead of the original spreading
sequence. With our notation, the normaliZeth effective spreading sequence is
given by the convolutios; = kask, where we have limited the convolu-
tion to N chip samples.

The problem of the precoder design is to choose an appropriate prgdodc-
tion ¥(-) so that the output vectay[i| of the matched-filters is as close as possible
to the transmitted data vectbyi].

5.4.2 Bit-wise Multiuser TH Precoding

If the ISI term Hz[i — 1] were not present in (5.49) (this is the case when a guard
interval is inserted between consecutive symbols as considered in se&jpthen

the TH precoding scheme in [130] for multiple-input multiple-output (MIMO3-sy
tems can be directly applied here. In such a case the TH precoder carisists
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Figure 5.14: Bit-wise TH-precoded downlink CDMA system over multipatmeha
nels.
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feedforward (FF) filter matri¥’ and a feedback (FB) filter matripC — I'), which
are obtained in the following way. Denote the LQ factorization of the mdiFias
H = WF!, whereF is unitary andW is lower triangular. The purpose of the
FF matrix F' is to convert the interference into a causal form without increasing the
transmit power. This permits the cancellation of the causal interferenceg tingn
FB filter matrix(C — I). For the interference cancellation to be possitlejeeds
to be monic lower triangular. To obtai, decompos@V = G~ 'C whereG is
the diagonal matrix that makes monic, i.e.,G = diag(w; j, ..., wy') Where
w;,; denotes the-th diagonal element i Denotez[i] as the output of the FB
filter. Then we havex[i| = b[i| — (C — I)x[i], and consequently, the equivalent
FB operation igt[i] = C~'b[i]. Thus, the input data symbasi] are first passed
through the FB filteC~! and then through the FF filtdr, i.e.,x[i] = FC~'b[i],
followed by spreading (cf. Fig. 5.14).

Feedback and Modulo OperationsDue to the lower triangular structure of the
matrix C, the output of the FB filtefi, k = 1, ..., K, is successively generated
from the input data symbols;[i] € 4, and the previous output of the FB filter,
Fli), 0 =1, ...k — 1, asz4[i] = bgi] — S4=1 ersdieli], k= 1,..., K. To prevent

an increase in transmit power, a modulo operation with respettisapplied. For
example, forM -QAM constellations, the modulo operation corresponds to adding
integer multiples oR+/M to the real and the imaginary partsigfi], so that the
resulting output signal falls in the range @f. Then the output of the FB filter
becomes

ZRli] = bli] + dili] chm k=1,..K, (5.50)

wheredy[i] € {2v/M(d; + jdg)|dr,dg € Z}. Thatis, instead of feeding back
bi[i], the symbolsu;[i] = by[i] + di[i] are passed through—!. If the receiver
applies the same modulo operation, then the effect is cancelled.

Cascade of OperationsAt the k-th user’s receiver, a matched-filteg, a scalar
operationg,, = G[k, k| = w, & 1 and the same modulo operation as applied at the
transmitter are applied to the received signgdl]. Therefore, without considering
the modulo operation, the end-to-end operation fofalisers is given by

z[i] = G (HFC~'b[i] + v[i]) = b[i] + Gli]. (5.51)

and thek-th user makes a decision éR[i] based on the decision statistig]:].
Note that the scalar gaing, k = 1,..., K, can be either estimated at the mobile
receiver (automatic gain control) or broadcast by the base station.

TH-Precoding with 1SI: Consider now (5.49) without dropping the ISI term. In
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Figure 5.15: Chip-wise TH-precoded downlink CDMA system over multipath
channels.

addition to the FF and FB filters discussed above based on the decomposition
H = G~'CF!, another FB filter is employed to cancel the ISI teFfix[i — 1].
Suppose that the previously precoded symijol- 1] is first filtered by a filteV’

and then substracted from the current data syrbfiglas shown in Fig. 5.14. To

find the matrixV" that minimizes the mean-square error (MSE) consider the error
signal at the decision device

eli] = (GHFC*l(b[i} — Vali — 1)) + Gvli] + GHz[i — 1]) “b[i]. (5.52)

zli]

By the orthogonality principleE{ez'} =0, which leads t{GH-GHFC~'V) =
0,i.e.,V = G H. Hence the end-to-end cascade of operations is given by

g 1 H 1 q = . = . .
2l = G (G'cr(F, ¢ (bli]- GH=li—1])) + Hali — 1] +v[i])
x channel FF cancel, FB cancel ISI IST channel
= bli] + Gli], (5.53)

where the modulo operation is not included for clarity. The transmitter argexc
diagram for the bit-wise TH-precoded downlink CDMA system is shown in Fig
5.14.
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5.4.3 Chip-wise Multiuser TH Precoding

In a similar manner to the chip-wise linear precoder scheme in Section 5.3.2, we
next propose a chip-wise TH precoding scheme that effectively comipireeod-
ing and spreading. The diagram for this scheme is shown in Fig. 5.15. déis s
that the precoder takes as input thex 1 symbol vectorsh[i| and produces as
output theN x 1 chip vectorpli| that is transmitted through the channel. At the
k-th user’s receiver, th& x 1 received signal vector correspondingd@] is given
by

7i[i] = Dypli] + Dypli — 1] + ng[i]. (5.54)

At each receivek, the matched-filtesy, is applied tor [i]. By stacking the outputs
of all K matched-filters we obtain

strq]i] s Dy st Dy stin[i]
Ho. [ H H Hop [:
85 roli s Doy s Doy Ss5 nolt
bl P | P g | ™Y sss)
sty il siiD siDy stn i)
yTﬂ H H vJi]

Note that different to Section 5.4.2, heFg is not a square matrix but has dimen-
sionK x N with N > K. Similarly as before, to apply TH-precoding we perform
the LQ decomposition ol = W F = G~'CF. The decomposition is easily
obtained applying the Gram-Schmidt orthogonalization procedure on theabw
H, where the resulting orthonormal vectors form the columng'af dimension
N x K with FH¥ F = I . The Gram-Schmidt coefficients define thiex K lower
triangular matrixW. The diagonal matrbG = diag(w 1, ..., w ;) converts
W into the monic lower triangular matri€'. In this way, F' andC — I are the
FF and FB filter matrices respectively, and the FB maWiix= G H cancels the
inter-symbol interference, as shown in Fig. 5.15. Fhih diagonal element i
corresponds to the scalar gain applied atithth user’s receiver.

5.4.4 Power Loading and Ordering

Power Loading

It is seen from (5.51) that the noise at each user’s receiver is amiifide cor-
responding diagonal element 6f = diag(wy |, ..., wy'y) resulting in different
SNR (hence BER) performance among users. Power loading can beyeghplo
to enforce the same performance across users. That is, the symbal bigkcte
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first multiplied by a diagonal matri¥d = diag(A;,--- , Ax) with A2 denoting

the power assigned to uskr The modulo operation for each user then needs to
take the loading value into account since the distance between the constellation
points is scaled by it. Given the total transmit powgr, we then need to solve for
Ay, Ag suchthaly | A7 = Pr, andAw? , = n,Vk. The solution is

—2
w
Az:%PT, kzl,...,K, and n=
> k1 W k

_r 5.56
>t wii 55
The base station can broadcast the common constantyéusl mobile receivers
and then the receivers can adjust their respeatiyg to obtain the requiredi,
value in the modulo operator. Therefore, the loading operation only exthe
transmission of a constant valyeeommon to all mobile users.

Assuming thatZ{|b,[i]|>} = 1, then the bit error probability of each user can
be well approximated by. = aQ (/n/c2 ) , wherea accounts for the increase
in number of nearest neighbors due to the modulo operation (e.g., in QRSEK)
[57, 121]. Note that as in traditional TH-precoding witi-QAM constellations,
TH-precoding in ISI channels enhances the transmit power by a fa‘qﬁ)ﬁo%
[57, 121].

We next show that when orthogonal spreading sequences are echpleye
whenSTS = I, then we havew,ﬁ’,l < w,ic,l fork = 1,..., K, and therefore
n® < nl9) where the superscriptgandc denote bit-wise and chip-wise precoders,
respectively. First, comparing (5.49) and (5.55) we h&l®) = H(9S. Let
UK i1, ..., un be(N — K) orthonormal vectors i+ 2 RM\span(S). Define the
unitary matrixS’ = [s1, .., Si, Wi 11, ..., un] = [S,U] and let

X = [H® HOU] = HYS' (5.57)

Since$’ is a unitary transformation, the rows X and H(®) maintain the norm
and the angles. Therefore, if théx (IV — K') block matrix H .U has any non-zero
row (i.e., the projection of the rows df . ontospan(U) is non-zero), the norm

of the corresponding row it ® will be smaller than inH(©). Now consider
the LQ factorizationH(©) = W () F(©H  obtained using Gram-Schmidt on the
rows of H®), i.e., {h{""}/|. Each valuew{’} can be obtained as follows. As-
sume that at thé-th step of the Gram-Schmidt algorithm the orthonormal vectors

()., £ (i.e., firstk columns inF(*)) have been obtained froni”, ..., A\,
and denotéf,_; = span{fP, vy f;c_)l}. Then, by simple inspection of the struc-

ture of the LQ factorizations®) is the norm offi) = projulil{hl(:)} where
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Ut | =RN\U 4 andfff) - }',(:)/w,(;,)g. Thatis
c ¢ : ¢ =(©)
wl) = |h — projy,_ (RO = 171 (5.58)

On the other hand, the diagonal elementsViBt” are similarly obtained from
[H® 0 n_k]. Then, using (5.57) and (5.58) we obtain

w®) = w), — [projy {FL}, (5.59)

;E;b;),C < w,(f,){ Note that whenN = K and orthogonal spreading
(c)

sequences are employe#d, is unitary andw,(f’;€ = w,;; for all k£, and hence
n® = p(© [cf. Fig. 9].
On the other hand, when the spreading sequefScage non-orthogonal, it is

nottrue thatw(") < w(*). However, we conjecture thaf?) < () still holds.

and hencew

User Ordering

We can optimize the system BER performance by optimizing the diagonal elements
of the matrixW such that the common SNR of all usergs maximized. Notice
that W is obtained from the LQ decomposition #f. The LQ decomposition
is essentially the Gram-Schmidt orthogonalization of the rowddof The k-th
diagonal element oW is the length of the projection of thie-th row vector of
H onto the orthogonal complement of the space spanned by thékfirstl) row
vectors already orthogonalized. Different ordering in the orthogost#dia process
resulting in different diagonal values 8/, and hence different values gf Let

P be the set of thé(! possibleK x K row permutation matrices. Then for any
P € P, PH is a row-permuted version dif, which corresponds to a particular
ordering of theK users in TH-precoding. Denotey, ,(P) as thek-th diagonal
element of W resulting from the LQ decomposition d? H. Then the optimal
row permutation matrix is given by

K

Pr . _9
P, = arg max —=————-—— = arg min w, . (P). (5.60)
eP Yot Wi (P) Pe?’kZl ’

With the optimal permutatiod®,,;, the following modifications are needed at the
transmitter and receiver: (1) Perform the LQ decompositioPd$ = W F,
or H = PTG™'CF; (2) Apply GP at the receiver (i.e., apply the scalar gains
according to the optimal order); (3) The feedback matrix for removing $héé-
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comesV = GPH. With these modifications, the cascade of operations becomes

2fi] = GP(PTG*CFH( F C! (Ab[i]—GPﬂw[i—l]))
D e R e o —_———
rx channel FF cancel,FB cancel ISI
v Hazli—1] +v[i])
~——
ISI  channel
= Ab[i] + GPv[i]. (5.61)

Note that the matrice&, F' andC above are obtained frol® H.

Clearly an exhaustive search solution to (5.60) is computationally prohibitive
We next propose a suboptimal algorithm for an approximate solution to (&)
performs especially well in the chip-wise precoder wién> K. First note that
Hle w,%k is invariant to the permutation matri®. This result is easily proved
recalling thatP H = W F*  with orthonormal columns i, then

det(HH"Y) = det(PT)det(W)det(W")det(P) = [[;_ v}, (5.62)

We first consider the simplest case wikh = 2 users, therH contains two rows
denoted by:? andhl. Without loss of generality, assume thjéi, || < ||h;||. Next
we show that to maximize the objective function in (5.60), we should startiwjith
i.e., start by orthogonalizing the row with minimumy, ;.. Recall thatwy, ;, is the
length of the projection of thé-th row of H onto the orthogonal complement of
the subspace spanned by the previfus- 1) rows already orthogonalized. Then
we need to show that

1 1 1 1

+ < +
||h2”2 ||h1 _ hfhl h2||2 ||h1”2 ||h2 _ hf’h
[[Fuz||? [Fu|f?

(5.63)
hil?

From (5.62), the products of the denominators on both sides in (5.63jae. e
Therefore, (5.63) is equivalent to

hi h,
[[ha|?

hih,
[[ha|?

lh1 — h2”2 + Hh2”2 < |lh2 — h1H2 + Hh1H2 (5.64)

which yields

|hy'hi|> _ |hy hy]?

: (5.65)
|22 |12
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which is true by the assumption this || < ||h]|.

When K > 2, we adopt the greedy solution given in Algorithm 8 that at the
k-th iteration, orthogonalizes the row with minimua), ;. In other words, the
algorithm selects the row that is the closest to the subspace spanned dyshad-r
ready chosen. In the algorithm,, ; = ﬁfhj and©O; represents the subset of rows
already orthogonalized up to thieh step. Note that besides finding the ordering
P, the algorithm also provides the LQ decompositBi#l = W F, sinceW is
given by the GS coefficients;; and thei-th row of F' is given byh;. Clearly the
complexity of the above search algorithmd K?), which is significantly lower
than theO(K!) complexity of the exhaustive search method.

Algorithm 8 Greedy ordering and LQ decomposition
| NPUT: row vectors hf, . hL in H

P =Ogxi

ki = arg min;< g {[[h|};

hi = hy, /||l ||; P(L k1) =15 ©1 = {k1 };
FOR i=2:K

FOR EVERY jc {{1,..,K}\0; 1}
i—1 7
wj=h; =35 pp by

END FOR

ki = argming {|[u; | };

hi = up, /[lug,l; ©i ={0i-1} U{ki};
END FOR
QUTPUT: matrix P and LQ deconposition of PH.

5.4.5 Simulation Results
TH-Precoding with Perfect Channel Knowledge

We first provide simulation results to compare the BER performance of differe
precoding techniques. Each user employs a normalized Hadamard cesjuén
length N = 8 as its spreading signature. The number of usei® is= 3. All
users employ QPSK modulation. We assume that each mobile user expearnces
independent multipath channgl, = [fi 1, ..., fre.o]T with L = 3 resolvable paths
and the transmitter has perfect channel state information of all userspdakthe
gains are generated accordingftg ~ MN(0, %). For each data block, independent
channel realizations are simulated for each user and the results aageyever
1000 blocks.

Figure 5.16 shows the BER performance of the bit-wise TH-precodeopen
in Section 5.4.2 and the chip-wise TH-precoder proposed Section 5.4a8lirlgp
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—&- : linear precoder
—O— 1 bit-wise THP
—— : bit-wise THP + sub-opt ordering
—©— : bit-wise THP + opt ordering

107k —*— : chip-wise THP =
—< : chip-wise THP + sub-opt ordering ]
—— : chip-wise THP + opt ordering

107 L L I I I I I I
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Figure 5.16: BER performance of different precoding schemes iith 3 users,
spreading gairV = 8, number of pathd, = 3.
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Figure 5.17: BER performance of different precoding schemes iith 7 users,
spreading gairV = 8, number of pathd, = 3.
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0.9

: chip—wise no ord
: chip—wise opt ord
0.8 : chip—wise sub—opt ord -
: bit-wise no ord
: bit-wise opt ord
: bit-wise sub-opt ord

VHtdod

0.6 =

0.5 =

K, number of users

Figure 5.18: The received SNR valyeafter loading as a function of the number
of usersK, spreading gaiv = 8.

is employed in both schemes. For both methods, we consider the cases of no-
ordering, optimal ordering (i.e., exhaustive search) and the suboptiteltiog
method given in Algorithm 8. For comparison purposes, we also show tfarpe
mance of the linear block-wise precoding method given in [126]. In thedighe
solid lines correspond to the approximate BER formBla= aQ(\/n/c2), and
the symbol marks correspond to the simulated results. It is seen that th&écahaly
BER expression matches very well with simulation results. Both nonlinear TH-
precoders significantly outperform the linear precoder. Comparing ibé-and
chip-wise precoding schemes, the chip-wise precoder offers bettermpance.
Moreover, ordering has a significant effect on the bit-wise TH-ptecovhereas it
does not make a notable difference to the chip-wise TH-precodem(fali sumber
of usersK). Therefore, the chip-wise TH-precoder not only offers supgrerr
formance but is also computationally less complex since ordering is not eelquir
Furthermore, the greedy ordering algorithm provides performance tbahat of
the exhaustive search method.

We repeat the simulations with the same parameters except that the number of
users is increased t§ = 7. Figure 5.17 shows that both TH-precoding schemes
perform very well even in such highly loaded systems. When the numhesen$
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is high, ordering brings a significant improvement for both bit-wise and-alige
precoders, although the complexity of the exhaustive search methodhésguo-
hibitive (i.e., it involves computind<! = 5040 LQ decompositions of x 7 matri-
ces). The suboptimal ordering algorithm performs especially well in thewlsp
precoder and it requires less than 7 LQ decompositions. Comparing Fgyahdl
Fig. 5.17, we observe that the performance difference between therévoders
is reduced as the number of users increases.

Next we illustraten in (5.56) obtained by the two TH-precoding solutions for
different number of users whdh= 3 andN = 8. For both methods we show the
value for cases of no-ordering, optimal ordering and suboptimal iogleaveraged
over 100 different channel realizations. In the simulations, we Keef¥ fixed
to unit. Figure 5.18 shows that as the difference betw€eand K is reduced, the
chip-wise solution decreases its performance, and eventually, Whenk, both
the bit-wise and the chip-wise solutions are equivalent. When the numbeers u
K is large, ordering improves the performance considerably. As mentiefeceh
the greedy ordering algorithm performs especially well whep- K.

BER comparison of precoding techniques with ISI, L =7, K=4and N =8
T

100 T T T T T T T
s
107E -y ; 4
3 8 ]
o)
r =2}
102 . : X o a : 1
3 o e 1
Q [ :
g g © ) il
5 —& : chip-wise + matched rx q
5 107°L | - : chip-wise + matched rx + opt ord % 4
2 f-| o~ : chip-wise + matched rx + subopt ord ; ; : : bl
[[| @ :bit-wise + RAKE rx : : : Y
r| v :bit-wise + RAKE rx + opt ord 1
['| O :bit-wise + RAKE rx + subopt ord
1074 E : : : : : : : : 3
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Figure 5.19: chip-wise TH precoding with fixed matched filter at the receive
bit-wise TH precoding with RAKE receiver. Spreading g&n= 8 andK = 4
users.

Next we compare our chip-wise TH-precoder proposed in Section 5.4i8hw
does not require CSI at the receiver, with the bit-wise TH-precodgpgsred in
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BER comparison of precoding techniques with ISI, L =3, K=7and N =8
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Figure 5.20: chip-wise TH precoding with fixed matched filter at the receise
bit-wise TH precoding with RAKE receiver. Spreading g&n= 8 andK = 7
users.
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[130], which implements a RAKE receiver at each mobile user (i.e., mobile user
must estimate the channel). The results are shown in Figure 5.19 and Figore 5
for K = 4 and K = 7, respectively. It is seen that the TH-precoder with a RAKE
receiver only performs slightly better in heavily loaded systems. For fesers,

our chip-wise TH precoder obtains better results. Therefore, thevadlsig-TH
precoder is not only simpler but it also has excellent performance.

TH-Precoding with Channel Prediction

A crucial assumption in the development of the precoding techniques indkie pr
ous section is that the transmitter has perfect knowledge about the multigath ch
nel states of all mobile users. In TDD wireless systems, the downlink channe
state information is available at the transmitter (which is estimated from the uplink
transmission) as long as the coherence time of the channel is larger than the time
difference between the uplink and downlink slots. On the other hand, tirfieids

ing channels, the channel state that has been estimated during an uplimaglot
have changed and the estimate may no longer be accurate for precodiagéxth
downlink slot. In this case, channel prediction techniques can be usatirtate

the future downlink channel state from the current and previous upliakimeel
estimates, by exploiting the second-order statistics of the fading charijeN$
sume that the complex Gaussian fading process of each channefipéthfol-

lows the Jakes’ model [68] with the maximum Doppler spréadhat is, we have
E{fk,i(tl)fk,i(t2)} = V%71J0(27de|t1 - t2|), k=1,...,K;i=1,...,L, where

Jo(+) is the zeroth-order Bessel function of the first kind.

Uplink Downlink Uplink Downlink
slot slot slot slot

?uaﬁ <> time

interval

Figure 5.21: Time division duplexing.

Assume that in the TDD system the uplink and downlink slots are separated
by T' seconds; and the base station estimates the multipath channel of each user
every uplink slot. We set the time of the latest channel estimation as the ref-
erencet = 0. Then the base station will estimate the channel state at times
t € {0,—2T,—4T,...}. We consider channel estimation based on pilot sym-
bols and the channel estimate has the fofm(t) = fi.i(t) + &i(t), where
Ek,i(t) ~ Nc(O,fy,f’i). We assume that the base station estimates the channel once
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per slot and these estimates will be used to predict the channel for dataljprg
in the next downlink slot.

10° T

: perfect channel estimation (genie aided)
: old noisy channel estimation
: channel prediction with regular sampling 6=1
: channel prediction with optimal sampling 6 =2 i

St

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Figure 5.22: BER performance of chip-wise TH-precoding in time-vargiman-
nels.

Assume that after the current channel estimate at tirse0 the base station
predicts each channel path at timewhich is called the prediction depth (e.g.,
7 = T whereT is the slot duration). The prediction is implemented using-th
order finite impulse response (FIR) filter

fk'L Zwkl fkl p2T) = wkH,i}k,ia (566)

wherewy, ; 2 [wy,(0), wy i(1), ..., wii(P)T, Fri = (s (0), fia(=2T), ..., fra(—P2T)]7.
The optimal filter that minimizes the mean square etta = E{|fr.i(1) —
fk,i(7)|2} is given bywy,;, = R,gﬂl.rk’i, where the entries oR;,; andr,; are
given respectively byR;, i1, = v; ;Jo(27 falp — ¢|2T) + 3 10p.q, @nd[ry ]y =
I/g’ijo(Qﬂ'fd(T +p2T)), p,gq=0,1,...,P.

In the prediction filter described above, we use estimates of the chanhel tha
have been sampled eve?y’ seconds. This sampling rate is in general much higher
than the required minimum Nyquist sampling rate equal to twice the Doppler fre-
guency?2f,. It has been shown in [31] that such oversampling could be unfaleorab
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when the order of the filteP is fixed. Assume that the base station is able to es-
timate the channel eveI" seconds. Define the optimal sampling period 28,
where/ is a positive integer. Then for fixed values of the prediction depth, noise
variance, Doppler frequency and filter order, we can compute the M8te qre-
diction filter (,.q for different integer values afand select the one that minimizes
Cpred- ON the other hand, it has been observed that when the system pasaaneter
fixed, (,req decreases with the order of the prediction filler However, after a
certain filter orderg,,..q saturates since the noise in the previous channel estimates
dominates in the MSE of the prediction error. Therefore, it is conveniesnadtu-

ate the MSE expression for different valuesfofand choose the shortest one that
gets(yreq Close to the saturation level.

As in the WCDMA TDD mode, we assume that the uplink and downlink are
time multiplexed into a carrier centered jat= 2GHz. The frame length is 10ms,
which is subdivided into 15 slots that can be allocated for either uplink ondow
link. Therefore the uplink and downlink transmission can be interleavedrstu
of T = 666.7us. As in Section 5.4.5, we considat = 8, L = 3andv;; = 1/L.

The fading process of each channel path is formed by samples of a atgti@mno-
mean complex Gaussian process with autocorrelation fundti@r f,;¢) [68] and

is generated according to the method described in [29]. We consider thoe-pe
mance of the chip-wise TH-precoding technique with loading and ordehivig.
assume that all the mobile users are moving at 36Km/h. The previous channel
estimates{fk,i(t), t = 0,-2T,...} are given by the true channel values corrupted
by complex Gaussian noise with variarr;%i = 0.001. Evaluating the MSE ex-
pression(,..q for different orders of the prediction filter we find that a very short
prediction filter with P = 2 obtains good results. Evaluatig,.q we find that
slightly better results can be obtained if the channel is sampleddwith2. We
evaluate the results over 10 different initial channel realizations. Far gaannel
realization, we consider 200 slots of length= 666us (i.e., 200 channel varia-
tions) and in each slot we send 1000 QPSK symbols per mobile user. Irsthitsre
we consider perfect channel estimation (genie aided), old channel gstimaec-
onds before, and channel prediction with the optimal samphng (2) and with
the regular samplingy(= 1). Figure 5.22 shows that the prediction algorithm gives
very good results even considering that all the users are moving=aB6Km/h
and the prediction is based on noisy channel estimates. Notice that wittegurtaih
prediction and only using old channel estimates, the performance wouldasec
considerably in these scenarios representing very high mobility.
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5.5 Downlink User Scheduling for Linear Precoding

Scheduling is a technigue to increase the utilization of the wireless medium. For
example, in the recently proposed multiuser opportunistic scheduling scB&ine [
the schedulers opportunistically exploit channel variations of multiple usess-

lect thebestset of users to transmit data subject to fairness (e.g., maximum de-
lay), QoS (e.g., minimum SNR), and resource constraints (e.g., maximum power
available at the transmitter) [84], to obtain a significant increase of totédrsys
throughput. In general the number of users that can be simultaneopggrsed

by the system is small and thus, there are a large humber of possible bset su
selections when the number of users in the system in large. Straightfomwvard
plementation of the user subset selection by simple exhaustive enumeréfiioa su
from high computational complexity.

In this section, we propose user subset selection algorithms that caruse na
rally implemented in precoded systems. We assume that the satisfaction that a use
receives in a system (i.e., the utilitiy) is a binary function that takes zero wdiea
the SINR is below a threshold and takes unit value when the SINR is above the
threshold. This is appropriate for voice or video-on-demand applicaitionkich
the SINR above a threshold will not provide additional benefit and thdrSiisH
low the threshold leads to unintelligible speech or video. In this section wéctestr
ourselves to the linear MMSE precoder. One important property of thevaisip
linear precoder is that in the channel mat#ik., each row depends only on the
spreading sequence and channel of one particular user (actuahyr@a in H .
is the effective spreading sequence, i.e., the convolution between theetha-
sponse and the spreading sequence of that particular user). Nadtettteabit-wise
solution this is not the case and each row depends on the spreadingseqiiall
the active users. This property will allow us to propose low-complexity #lyos
for the chip-wise precoder.

Maximum User Allocation — Optimal Solution

Our objective is to accommodate as many users as possible such that/figser
active, SINR, > ~, assuming that the base station is constrained to a maximum
power budgetP;. Recall that in the chip-wise solution, for a fixed power budget
Pr, the SINR for thek-th user is given by

B2 A7 Pr

SINR;, = , with 8= .
T2 o Y b \/u(A?(HcHgf)—l)

(5.67)

Since a same target SINR valyds assumed for all users, the users should have
the same transmit power and hence can assdme- 1,Vk. Therefore, the QoS
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constraintSINR,, > ~y translates into the following condition o .:

r(H HT)™) < % (5.68)
DenoteU as the total number of users in the netwofkas the user subset

selected, anf| as the number of users th(e.qg., selecting the first and third users
corresponds t@ = {1,3} and|f| = 2). The channel matrix corresponding to
the active users iy where Hy is the submatrix o . (where H. hasU rows)
obtained from the rows indicated h Let © be the set of all possible user subsets.
Therefore, the total number of possible user subse®lis= >"_, (}/). Denote
Q2 as the set of feasible user selection®in.e.,

Q={0cO:SINR,>~, Vkec O} ={0cO:tr(HH))™) < Pr/(c®y)}.

(5.69)
Then the optimization problem becomes findéhg 2 such thatf| is maximized.
This is a highly complex combinatorial problem since for each possible solution
in ©, a matrix pseudoinverse needs to be computed. Thus the total number of
complex multiplications required 7" (V) (k3 + Nk2).

Low Complexity Algorithms

Next we propose low-complexity algorithms that employ a greedy approaddto

or remove one user at atime. As mentioned before, in addition to being the optimal
linear precoder, the advantage of using the chip-wise linear precoditigpchis

that adding or removing one user corresponds to adding or removing &oro

the channel matrid . and the rest of the rows remain unchanged. Note that the
performance only depends on the selected users and not on the onddcinthe
users are selected. This is, for any reordering in ronE gf the required power is
equivalent. Any reordering of the rows can be expresselas- P H. where P

is a permutation matrix and hend& ! = PH. Therefore, tr((H’cH'CH)*l) =
tr(PHHIP?)™Y) =tr (H.HT)™Y).

Maximum Frobenius Norm Criterion: An intuitive and classical approach in user
allocation is to activate the users that see the best propagation chanmebpTw
proaches can be taken: incremental allocation and decremental allodatiie.
incremental allocation algorithm, the base station starts without selecting any use
At each step of the algorithm, it selects the user with maximum channel gain (i.e.,
maximum norm of the corresponding row of the chip-wise matrix). Then lge a
rithm checks if (5.68) holds. If it does, the corresponding user is @bocd his is
repeated until no more users can be allocated, i.e., until (5.68) no lonlgis; bo

|0] = min(U, N). On the other hand, the decremental algorithm starts by assum-
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5.5 Downlink User Scheduling for Linear Precoding

ing that all|#| = min(U, V) users with best channels are active. And it removes
one user at a time until (5.68) is satisfied. The removed user is the one with the
worst channel quality, i.e., with the lowest channel gain. Obviously if thmlbar

of active users is expected to be small, it is better to use the incremental aigorith
The main disadvantage of the user allocation approaches describesliakibat

for every new user added, the matrix inverse in (5.68) cannot bedeuse

Geometrical Criterion - Incremental Selection\We have already mentioned that
users with good channel qualities (i.e., large path gains) are in genelogm-
didates to be allocated. However, due to the precoding operation, a ma#grsenv
needs to be computed. Therefore, users with very large path gainsthutighly
correlated effective signature sequences (i.e., rows in the nHirizlose to paral-
lel) can have a very negative effect in the required power at the transriittere-
fore here we propose to select users based not only on the gainsbwtnathe
correlations (i.e., angles) between the respective effective signatmuersces.

Assume thatk'’ = || users have already been allocated, ¢4 with rows
hi,...,hk. Then we propose to select a new rbwfrom the(U — K') remaining
ones (i.e., users not allocated yet) such that the projection onto the ontilogo
complement of the already selected rows is maximum, i.e.,

max |7t ()|, i€ {non-selected usefs (5.70)

wherernt(h;) denotes the projection &; on spaihy, ..., hx ) and(-)* denotes
the orthogonal complement. We consider a greedy incremental apprblaelal-
gorithm starts by selecting one row with the maximum norm and at every iteration
the algorithm adds the row with the largest projection onto the orthogonalleemp
ment of the subspace spanned by the rows already selected. This setectibe
implemented with the help of the Gram-Schmidt procedure. At every step of the
algorithm, (5.68) needs to be checked to see if a new user can be allovate thg
total power budgePr. For every new user added, (5.68) requires a matrix inverse.
Next, we propose a method to compute the matrix inverse recursively.

Denote the LQ decomposition of & x N matrix asH = LQ whereL is
K x K lower left triangular andQ has dimensiok’ x N with QQ" = I'x. The
LQ decomposition can be obtained using Gram-Schmidt where the row véttors
Q,i.e..qq,...,q) are given by the recursion

i—1
hi — 7520 1ijd;
— ,
|hi — Z}:1 Niqu‘”

where the Gram-Schmidt coefficients form the lower triangular mdirend are

q; = hy/||h1||, and q; = for i=2,..,K, (5.71)
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5.5 Downlink User Scheduling for Linear Precoding

given by

i—1

pij = (hi,q;), j <1, and pi = ||h; — ZMiijH- (5.72)
=1

By simple inspection, we have thgk];; = 1,;, andp;; is the value required in
(5.70). Therefore, the LQ decomposition does not require any exinguations
if we use the greedy geometrical user allocation.

Assume that one knows the LQ decompositionFdf Then, (5.68) can be
evaluated using

tr (HH™)™") =t (LQQ"L™)™ ") = ||IL7'|3. (5.73)

Note that (5.73) can be computed recursively as follows. Assume thatwe h
computedL; *, of size(i — 1) x (i — 1). Then, after selecting the new user (i.e.,
add one row toH), the (i — 1)-th leading submatrix of; ' is given by L; "
available from the previous iteration and the last rovxLljnl is given by

L1 -
= —(ei = Y pili ), (5.74)
i o

which follows from the Gauss-Jordan elimination and the relationship betthieen
Gram-Schmidt coefficients and the triangular maftixHence (5.73) is computed
recursively as

L1 = L2 I+ 1213 (5.75)

Finally a low-complexity incremental selection algorithm for user allocation is
summarized in Algorithm 3. Clearly, the complexity is dominated by the com-
putation of all the Gram-Schmidt coefficients in s{gp) computed using (5.72),
which requiresZ‘f:‘1 N (U — )i complex multiplications. The total complexity of
the algorithm is upper bounded BYU |02 complex multiplications.

Simulation Results

Next we give some simulation results to illustrate the performance of the differe
user allocation algorithms when the chip-wise linear precoder is employed.

We first consider the average number of users that each algorithm isoable
allocate with respect to the total available power at the transmitter We set
~ = 12dB. We assume that each mobile user experiences an independent multipath
channelf;, = [fx1,.., fr.o]” with L = 3 resolvable paths and the transmitter
has perfect CSI of all users. The path gains are generated aggaodfip ; ~
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5.5 Downlink User Scheduling for Linear Precoding

Algorithm 9 Low-complexity user allocation based on geometrical criterion
I NPUT: all row vectors hq,... hy, v Ppr, o.
0=0; P.=0; %tart w thout any user selected
FOR i=1,2,...,
FOR EVERY j € {{1,..,U}\0} DO % every user not sel ected
yet

bj = hj = 3,01 1jpdy (€©)

END FOR

ki = argmaxj{bjij}; Qtuiser with max projection onto
ort hogonal conpl ement

q; = by, /||by,|| ; % he new Gram Schnidt vector

l;l = ul (e; — Zi;} ,ui’tlt_l); %ast rowin the new L'

P, = P, + o*|ll;'||?; %ower required if we allocate this
user k;

|F P < Pp

0=0Uk;; %llocate this user and continue
I F 0] = min(U, N) THEN BREAK; % inish the algorithm
ELSE
P. =P, _‘727||lz'_1”2;
BREAK; % finish the algorithm
END | F
END FOR
OQUTPUT: sel ected users 6, required power P, selected
submatrix Hy and H)=Q"L".

N(0, %). We consider random spreading sequences with spreading\gairs,
andU = 12 available users in the region. Fig. 5.23 illustrates the average number
of users allocated, i.€4| with respect taPy by different algorithms. Itis seen that
the low-complexity geometrical incremental algorithm achieves almost the optimal
performance. Note that for instance, withy = 26dB, the optimal algorithm
allocates around 7 users and it would requité_, ('?)(:® + Ni2) = 1931664
complex multiplications, whereas the complexity for the proposed low-complexity
algorithm is upper bounded by U|6|?> = 6144 complex multiplications. As the
number of users increases, the optimal solution becomes intractable.dhithse
under this scenario, the maximum Frobenius norm selection criterion indoss a

of between 2-4dB.

Next, to illustrate the effectiveness of the different algorithms, we conside
hypothetical scenario in whici’ users need to be allocated. Theusers are
chosen among th& available users in the network using either optimal selec-
tion, maximum gain selection, or low-complexity geometrical selection. We look
at the total power required at the transmitfér to obtainy = 12dB across the
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5.5 Downlink User Scheduling for Linear Precoding

Random Seq, U =12 and N =8
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Figure 5.23: Average number of users allocated with respect to the taiahtiia
power. Random codes, spreading gadin= 8, U = 12 available users in the
network, and target SINR = 12dB.
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Hadamard seq - Power required for QoS = 12dB, U=8,N=8

1 T T T T T D S B
SV -
0.9} e il
Vs
;
/r
0.8 ; il
.
4
P
,
o7k L7 il
.
13
0.6 N /f -
4
w /
0 05 S J
O 4
I
0.4 ; §
/
S
0.3 o : . il
: Optimal Algorithm
: Greedy Geometrical Algorithm
0.2 ./ =~ :Best quality channel 7
)/
0.1 s i
S
0 1 1 1 1 1 1 1 1 1
15 16 17 18 19 20 21 22 23 24 25 26

total power (dB) required to allocate 4 users
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Random seq — Power required for QoS = 12dB, U =16, N =8
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Figure 5.25: CDF of the required total power at the transmitter to allocate gte be
K = 4 users with target SINR per user= 12dB. Random codes, spreading gain
N =8, U = 16 available users.
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K selected users. Fig. 5.24 shows the results Wwith= 8 available users, and
Hadamard spreading sequences with= 8. It is seen that the geometrical algo-
rithm again achieves almost the optimal performance. Fig. 5.25 shows thtsres
with U = 16 available users, spreading gaih = 8 and K = 4. It is seen that

as the number of possible combinations increases, the maximum Frobemius nor
criterion incurs performance loss whereas the the geometrical algorithnoités g
robust. Note that witl/ = 16 and K = 4, the optimal algorithm would compute
(¥)(NK? + K?)= 349440 complex multiplications, whereas the low complexity
algorithm would require less thai? NU = 2048 complex multiplications.

5.6 Conclusions

In this chapter, we have first obtained the capacity results for downlind&£Bys-
tems employing either multiuser detection or transmitter precoding. It is seen from
numerical examples that these two techniques offer comparable capaiigse
However, multiuser detection at the downlink mobile receiver may not bdiprac
cal due to the requirement that each mobile receiver should have théddgmnof

all users’spreading sequences and channel states, as well as the dignitzidporo-
cessing capability of the mobile receiver. On the other hand, transmitterdingc

is an attractive solution for systems employing time-division multiplexing, where
uplink and downlink channels are reciprocal. Then we have comparquethe-
mance of linear precoding and linear MUD in the downlink of frequencycsele
tive TDD-CDMA systems. We have proposed different linear precodgfgemes
and our results reveal that in general precoding can outperform the coon-
plex MUD. Moreover, we have shown that the proposed chip-wise lINBAGE
precoding method is optimal in the sense that it requires the minimum total trans-
mitted power to meet a certain receiver QoS performance. Later, we eseé d
oped nonlinear multiuser precoding algorithms based on the Tomlinsonftitaeas
precoding technique. Our precoding algorithms effectively remove muétidas
terference, inter-chip interference and inter-symbol interferencesidalvnlink of
CDMA systems. The main property of the proposed algorithms is that theyecan b
implemented at either bit level or chip level, and they are considerably less co
plex compared with the block-wise linear precoders in the literature. Wediswe
proposed a suboptimal user ordering algorithm for power loading whichedr
optimizes the system performance. Channel prediction for precodirgjdmbeen
discussed. Simulations results have shown that the proposed precatingtees
offer excellent performance even in heavily loaded systems or time-gesggnar-

ios. These results strongly motivate the use of transmit precoding in thdidkwn
of TDD-CDMA systems due to the multiple advantages over MUD, including the
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5.6 Conclusions

simple implementation of power control and user scheduling, and the redo€tion
the power consumption and complexity at the mobile unit. Finally, in conjunction
with the precoding techniques we have proposed very low-complexityrapps-

tic user scheduling algorithms to maximize the utilization of the wireless resources.
Simulations results have shown that the proposed algorithms obtain nearly loptima
performance.
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Chapter 6

Conclusions and Future Work

This dissertation has considered communications through MIMO channalk wh
encompasses many different scenarios including multiple antenna systéms an
multiple-user communications.

For the multiple antenna scenarios presented in Chapter 3, we have delelop
adaptive antenna selection algorithms that converge to optimal solutiors drase
various performance criteria in situations where only noisy estimates of tre ch
nels are available. We have also developed antenna selection algorithtinsefor
varying channels where the optimal antenna subset will change onlyahad
Furthermore, we have considered new selection criteria which permipsoizd
algorithms to be developed that yield a considerable reduction in complexity with
only a small loss in performance.

Chapter 4 has proposed a systematic method to design LAttice Space-Time
(LAST) codes that minimize the error rate when the structure of the recaidthe
statistics of the channel are known a priori. It has been shown that&siT lcodes
outperform other LAST codes proposed in the literature and also thatABd L
code optimization method is flexible enough to be applied in different detector
schemes and for different channel statistics.

For the multiple user scenario, Chapter 5 has shown that precoding scheme
an effective technique for the downlink of TDD-CDMA systems. In patticuve
have considered precoding schemes with very simple receivers, i.mglmly a
fixed matched-filter corresponding to thenspreading sequence and without em-
ploying CSI. This translates into a power consumption reduction and astecie
cost of terminals since they do not have to perform sophisticated sigrad$sing
for channel estimation and interference mitigation. Note that variations imehan
conditions and the number of active users in the network do not affecétieéver
operations. Power control is also easy to implement with precoding sincasee b
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station has information about the quality of each link and so additional fekditra
formation from the terminals is not required in order to control the transmiepow
from the base station.

Future Work

The work presented in this thesis can be extended in many ways.

In Chapter 3, antenna selection algorithms to reduce the cost of multiple an-
tenna systems while improving the performance has been consideredrebiffe
antenna selection criteria (e.g., minimum error rate, maximum SNR, etc.) might
be required for each of the different space-time schemes proposedlitethture.
Moreover, fast selection algorithms for each of these criteria would habi
since they would permit antenna selection to be implemented in practical systems
when there are a large number of antenna subsets available.

In Chapter 4, a new systematic stochastic optimization method has been pre-
sented to minimize the error rate of LAST codes. This method departs from the
typical optimization approach to design space-time codes based on numiser the
retic tools. It is possible that our powerful optimization method and others em-
ploying a similar rationale could be used to optimize other codes that do not need
to be designed in real time (just like the LAST codes considered). On the othe
hand, in cooperative diversity scenarios we have assumed that tlez pssigned
to the source and to the cooperative relays is fixed. An interesting topéseérch
would be to incorporate the optimization of the power allocated to each node into
a joint optimization problem (i.e., optimize jointly the LAST code and the allo-
cated powers). Extensions to nodes with more than one antenna are alko wo
investigating.

In Chapter 5 we have proposed different precoding techniques irotkielitik
of CDMA systems when the base station has CSl of all the users. In this sitiatio
is natural to combine precoding, power control, and opportunistic sthgdwith
fairness in the form of cross-layer optimization. In multiuser opportunistiedal-
ing schemes, the schedulers opportunistically exploit the channel vasiaipe-
rienced by the multiple users. That is, the schedulers seledidsiset of users
to transmit data subject to fairness (e.g., maximum delay), QoS (e.g., minimum
SNR), and resource constraints (e.g., maximum power available at thenirans
ter), to obtain a significant increase in the total system throughput. A complete
framework and solution based on our precoding schemes needs to stgated.
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Appendix A

Unbiased estimate oflet(-) in
(3.30)

Obtain an estimate of

det <InT +LgH MH@]) (A.1)
nr
using
o[n,w] = det (InT + éﬁ?[n,w]ffﬂn,w]) , (A.2)

where the channel estimatkg, [n, w] andH [, w] are obtained from independent
training blocks. We consider the case in whikh; [n, w] and Hs[n, w] satisfy
(3.5).

Theorem 5 With ¢[n,w] computed according to (A.2), the estimate of the deter-
minant in (A.1) is unbiased.
Proof: For convenience define

Mlw] = I, +-2H"WHW,
nr
Min,w] = InT+n£IA{{{[n,w]IA{2[n,w] (A.3)
T

and denote the elements B [, w] asi; ;.
Consider (A.3). SinceH1[n,w] and Hs[n,w] are statistically independent
samples, clearl/|n, ] is an unbiased estimator 8 [w]. Now considerlet(M [n, w)]).
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From [65, p.8]

det(M[n,w]) = Z sign (o) H 1M (i) (A.4)
o =1

where the sum runs over ally! permutationsr of the ny items{1,...,np} and
sign(o) is +1 or —1. Omitting the sign, each term in the summation is of the form

1M1 6(1)M2,0(2) - Mong o (ng)- (A.5)

Thus, each term in the summation involves the product of elemenid fof, w]
from different rows and columns.

Next, due to the independence assumption in (3.5), it follows that for the matrix
M n,w], the elementsi; ; andsn, , are independent for # p and;j # ¢, i.e.,
elements ofVI [n, w] from distinct rows and columns are statistically independent.
Hencern, ; (1), 11,6(1), - Ming o (ny) re statistically independent with zero mean

which implies thatlet (M [n, w]) is an unbiased sample @t (M |w]) and satisfies
det(M[n,w]) = det(M|w]) + v[n, w] (A.6)

wherev|n,w] is a zero mean random variable. [ |
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Appendix B

Enumeration of all the lattice

points in a sphere

In this appendix we show how to enumerate the coordinates of all the points be
longing to an dimensional latticé= (i.e., defined by the basigy, ..., g, }) that

fall inside a sphereS of radiusr centered at-w. That is, enumerate all the
points (A + u) N S. Following the derivation and geometric meaning in [94]
let u be the optimal translation vector which can be written as a function of the
basis vector of the lattice, i.ey = v1g; + 1295 + ... + vng, € R" (where

n = 2MT), or in matrix formu = Gv (and thereforey = G~'u). If a lattice
pointx = 219, + ... + 2,9, € Aisinside the sphere of radiuscentered at-u,

it satisfies the sphere constrajpat + u|| < . The enumeration problem is to de-
termine all valid combinations of = [z, ..., z,,] € Z" under the sphere constraint
which can also be expressed in terms of the Gram-Schmidt vectors. Retaligh
Gram-Schmidt vectors can be obtained as

k—1
g = Gu— Y Hng;,
i=1

*T
g; 9k
P = Wa (B.1)
T

which can be expressed as

G" = UG
G = GU”, (B.2)
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where[U]; = 1,if k = 4, pp; if & > i, and0 otherwise. That ig, = g; +
S5 ! g . Denoteh = & +u = Gz +v] = G*U” [z +v]. And the constraint
|h||> < r? becomes

h|? = tr{[G*UT[z+u]] [G*UT[z—i—z/]]T}
= r{GTGU" [z + vz + ] U}

n n 2
= Z ( tki (2 + Vk)) Ak
k=1

=1

n n 2
= . (Zﬂkz‘(% + Vk)) lgi |l < r? (B.3)

i=1 \k=i

where in the last equation we have applied thgt = 0 if £ < 4. Recall that
wi; = 1,Vi. Start byi = n, i.e., (2, + vn)?|lgk||* < r?

.
g5l

’7_ T* _Vn—‘gzng"k\‘
gy

Note that there ar%fg@” + 1 possible choices of,,. For each of these choices,

we recursively do the same but updating a new radius (similarly to a treghyear
For example, with =n — 1

—vp <z < +L* — Uy (B.4)
g5l

and since;,, € Z

L an . (B.5)
gyl

n n 2
> ( > Gt ukmm-) gl < 12
i=n—1 \k=n-—1
[(Zn—1 + vn-1) + (20 + V) ttn 1] l|gnall < \/7”2 — (20 +vn)?gnl? .

Tn—1
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Thatis,fori=n—1,n—2,...,1,

n 2

> (2 + vk

k=i+1

Ty = 7"1'2+1 ”gfﬂﬂz

n

|(2i + vi)+( Z (2 +vi)pg,i )] <

k=i+1

L (B.6)
g7l

or making use of the granularity ef, we have

n n

{_H;ﬁ B < Z (2k +Vk),uk,i> - I/z‘—‘ <z < {ﬂl;ﬁ - ( Z (2 +Vk)uk,i> — ViJ i

k=i+1 k=i+1
(B.7)

Note that there ariﬁf” + 1 possible choices of;. One way to speed up the
enumeration by reducing the width of the stages of the tree (i.e., numbersiblgos

choices ot;) is to apply a preprocessing step applying lattice reduction to the rows
of G~ [38, 94]. Note that the lattice reduction change of basis also needs to be

applied to the translation vector.
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Appendix C

MMSE unconstrained linear

precoding solution

For both the chip-wise and bit-wise system models, the total received \eantor
be written as
y=HMb+ v, (C.D

where H € CK*N for the chip-wise solution andl € CX*X for the bit-wise
solution. We restrict ourselves to the chip-wise solution since the bit-wisé®olu
(square matrices) is a special case of it. When the mobile units are congtit@ine
the matched filter receiver, the MMSE optimization function becomes

J = BE{|lb-y|*} = B{|b - HMb — v|*}. (C.2)

Proposition 5 The choice oM € CV*X that minimizes/ is M = HY(HH™)~!,
Proof In a similar manner to [99] we offer the following proof by contradic-
tion. Suppose there exists a mati{ that results in a smalley than M =
HY(HH™)='. Then,

E{|lb— HMgb —|*} < E{|[v]*}. (C3)
The left hand side of (C.3) can be rewritten as

E{|b— HMyb —v|?} = E{bb} —2E{R[b" HMb]}
+E{b M HY HM b} + E{n v},
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which combined with (C.3) implies
E{b"b} — 2E{RBTHMb]} + E{b" MEH" HM b} <0 (C.4)

However, the left hand side of (C.4) is equal B ||b — H Mb||?} which can
never be less than zero, which leaves a contradiction. This completeotfelir
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