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ABSTRACT

In this paper we present a general probabilistic model suit-
able for transcribing single-channel audio recordings con-
taining multiple polyphonic sources. Our system requires
no prior knowledge of the instruments in the mixture, al-
though it can benefit from this information if available.
In contrast to many existing polyphonic transcription sys-
tems, our approach explicitly models the individual instru-
ments and is thereby able to assign detected notes to their
respective sources. We use a set of training instruments to
learn a model space which is then used during transcrip-
tion to constrain the properties of models fit to the target
mixture. In addition, we encourage model sparsity using a
simple approach related to tempering.

We evaluate our method on both recorded and synthe-
sized two-instrument mixtures, obtaining average frame-
level F-measures of up to 0.60 for synthesized audio and
0.53 for recorded audio. If knowledge of the instrument
types in the mixture is available, we can increase these
measures to 0.68 and 0.58, respectively, by initializing the
model with parameters from similar instruments.

1. INTRODUCTION

Transcribing a piece of music from audio to symbolic form
remains one of the most challenging problems in music in-
formation retrieval. Different variants of the problem can
be defined according to the number of instruments present
in the mixture and the degree of polyphony. Much research
has been conducted on the case where the recording con-
tains only a single (monophonic) instrument and reliable
approaches to pitch estimation in this case have been de-
veloped [3]. However, when polyphony is introduced the
problem becomes far more difficult as note harmonics of-
ten overlap and interfere with one another. Although there
are a number of note properties that are relevant to poly-
phonic transcription, to date most research has focused on
pitch, note onset time, and note offset time, while the prob-
lem of assigning notes to their source instruments has re-
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ceived substantially less attention. Determining the source
of a note is not only important in its own right, but it is
likely to improve overall transcription accuracy by helping
to reduce cross-source interference. In order to distinguish
between different instruments, we might wish to employ
instrument-specific models. However, in general, we do
not have access to the exact source models and so must es-
timate them directly from the mixture. This unsupervised
learning problem is particularly difficult when only a sin-
gle observation channel is available.

Non-negative Matrix Factorization (NMF) [8] has been
shown to be a useful approach to single-channel music
transcription [10]. The algorithm is typically applied to the
magnitude spectrum of the target mixture, V , for which it
yields a factorization V ≈ WH where W corresponds to
a set of spectral basis vectors and H corresponds to the set
of activation vectors over time. There are, however, several
issues that arise when using NMF for unsupervised tran-
scription. First, it is unclear how to determine the number
of basis vectors required. If we use too few, a single ba-
sis vector may be forced to represent multiple notes, while
if we use too many some basis vectors may have unclear
interpretations. Even if we manage to choose the correct
number of bases, we still face the problem of determining
the mapping between bases and pitches as the basis order
is typically arbitrary. Second, although this framework is
capable of separating notes from distinct instruments as in-
dividual columns of W (and corresponding rows of H),
there is no simple solution to the task of organizing these
individual columns into coherent blocks corresponding to
particular instruments.

Supervised transcription can be performed when W is
known a priori. In this case, we know the ordering of the
basis vectors and therefore how to partition H by source.
However, we do not usually have access to this informa-
tion and must therefore use some additional knowledge.
One approach, which has been explored in several recent
papers, is to impose constraints on the solution of W or its
equivalent. Virtanen and Klapuri use a source-filter model
to constrain the basis vectors to be formed from source
spectra and filter activations [13]. Vincent et. al impose
harmonicity constraints on the basis vectors by modeling
them as combinations of narrow-band spectra [12]. In prior
work, we proposed the Subspace NMF algorithm which
learns a model parameter subspace from training examples
and then constrains W to lie in this subspace [5].
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Figure 1. Illustration of the Probabilistic Eigeninstrument
Transcription (PET) system. First, a set of training instru-
ments are used to derive the eigeninstruments. These are
then used by the PET model to learn the probability dis-
tribution P (p, t|s), which is post-processed into source-
specific binary transcriptions, T1, T2, . . . , TS .

Recently, it has been shown [4, 9] that NMF is very
closely related to Probabilistic Latent Semantic Analysis
(PLSA) [6]. In this paper, we extend the Subspace NMF
algorithm to a probabilistic setting in which we explicitly
model the source probabilities, allow for multi-component
note models, and use sparsity constraints to improve sep-
aration and transcription accuracy. The new approach re-
quires no prior knowledge about the target mixture other
than the number of instruments present. If, however, in-
formation about the instrument types is available, it can be
used to seed the model and improve transcription accuracy.

Although we do not discuss the details here due to a
lack of space, we note that our system effectively performs
instrument-level source-separation as a part of the tran-
scription process: once the model parameters have been
solved for, individual sources can be reconstructed in a
straightforward manner.

2. METHOD

Our system is based on the assumption that a suitably-
normalized magnitude spectrogram, V , can be modeled
as a joint distribution over time and frequency, P (f, t).
This quantity can be factored into a frame probability P (t),
which can be computed directly from the observed data,
and a conditional distribution over frequency bins P (f |t);
spectrogram frames are treated as repeated draws from an
underlying random process characterized by P (f |t). We
can model this distribution with a mixture of latent factors
as follows:

P (f, t) = P (t)P (f |t) = P (t)
∑
z

P (f |z)P (z|t) (1)

Note that when there is only a single latent variable
z this is the same as the PLSA model and is effectively
identical to NMF. The latent variable framework, however,
makes it much more straightforward to introduce additional
parameters and constraints.

Suppose now that we wish to model a mixture of S in-
strument sources, where each source hasP possible pitches,
and each pitch is represented by a set of Z components.
We can extend the model described by (1) to accommo-
date these parameters as follows:

P̃ (f |t) =
∑
s,p,z

P (f |p, z, s)P (z|s, p, t)P (s|p, t)P (p|t)

(2)
where we have used the notation P̃ (f |t) to denote the fact
that our model reconstruction approximates the true dis-
tribution, P (f |t). Notice that we have chosen to factor
the distribution such that the source probability depends
on pitch and time. Intuitively, this may seem odd as we
might expect the generative process to first draw a source
and then a pitch conditioned on that source. The reason
for this factorization has to do with the type of sparsity
constraints that we wish to impose on the model. This is
discussed more fully in Section 2.2.2.

2.1 Instrument Models

P (f |p, z, s) represents the instrument models that we are
trying to fit to the data. However, as discussed in Section 1,
we usually don’t have access to the exact models that pro-
duced the mixture and a blind parameter search is highly
under-constrained. The solution proposed in [5], which we
extend here, is to model the instruments as mixtures of ba-
sis models or “eigeninstruments”. This approach is similar
in spirit to the eigenvoice technique used in speech recog-
nition [7].

Suppose that we have a set of instruments modelsM for
use in training. Each of these modelsMi ∈ M has FPZ
parameters, which we concatenate into a super-vector, mi.
These super-vectors are then stacked together into a matrix,
Θ, and NMF with some rank K is used to find Θ ≈ ΩC. 1

The set of coefficient vectors, C, is typically discarded at
this point, although it can be used to initialize the full tran-
scription system as well (see Section 3.4). The K basis
vectors in Ω represent the eigeninstruments. Each of these
vectors is reshaped to the F -by-P -by-Z model size to form
the eigeninstrument distribution, P̂ (f |p, z, k). Mixtures of
this distribution can now be used to model new instruments
as follows:

P (f |p, z, s) =
∑
k

P̂ (f |p, z, k)P (k|s) (3)

where P (k|s) represents an instrument-specific distribu-
tion over eigeninstruments. This model reduces the size of
the parameter space for each source instrument in the mix-
ture from FPZ, which is typically tens of thousands, to
K which is typically between 10 and 100. Of course the
quality of this parametrization depends on how well the
eigeninstrument basis spans the true instrument parameter
space, but assuming a sufficient variety of training instru-
ments are used, we can expect good coverage.

1 Some care has to be taken to ensure that the bases in Ω are properly
normalized so that each section of F entries sums to 1, but so long as
this requirement is met, any decomposition that yields non-negative basis
vectors can be used.



2.2 Transcription Model

We are now ready to present the full transcription model
proposed in this paper, which we refer to as Probabilistic
Eigeninstrument Transcription (PET) and is illustrated in
Figure 1. Combining the probabilistic model in (2) and the
eigeninstrument model in (3), we arrive at the following:

P̃ (f |t) =
∑

s,p,z,k

P̂ (f |p, z, k)P (k|s)P (z|s, p, t)P (s|p, t)P (p|t)

(4)
Once we have solved for the model parameters, we cal-

culate the joint distribution over pitch and time conditional
on source:

P (p, t|s) =
P (s|p, t)P (p|t)P (t)∑
p,t P (s|p, t)P (p|t)P (t)

(5)

This distribution represents the transcription of source
s, but still needs to be post-processed to a binary pianoroll
representation so that it can be compared with ground truth
data. This is done using a simple threshold γ (see Sec-
tion 3.3). We refer to the final pianoroll transcription of
source s as Ts.

2.2.1 Update Equations

We solve for the parameters in (4) using the Expectation-
Maximization algorithm. This involves iterating between
two update steps until convergence. In the first (expecta-
tion) step, we calculate the posterior distribution over the
hidden variables s, p, z, and k, for each time-frequency
point given the current estimates of the model parameters:

P (s, p, z, k|f, t) = P̂ (f |p, z, k)P (k|s)P (z|s, p, t)P (s|p, t)P (p|t)
P̃ (f |t)

(6)
In the second (maximization) step, we use this poste-

rior to maximize the expected log-likelihood of the model
given the data:

L =
∑
f,t

Vf,t log
(
P (t)P̃ (f |t)

)
(7)

where Vf,t are values from our original spectrogram. This
results in the following update equations:

P (k|s) =

∑
f,t,z P (s, p, z, k|f, t)Vf,t∑
f,k,t,z P (s, p, z, k|f, t)Vf,t

(8)

P (z|s, p, t) =

∑
f,k P (s, p, z, k|f, t)Vf,t∑
f,k,z P (s, p, z, k|f, t)Vf,t

(9)

P (s|p, t) =

∑
f,k,z P (s, p, z, k|f, t)Vf,t∑
f,k,s,z P (s, p, z, k|f, t)Vf,t

(10)

P (p|t) =

∑
f,k,s,z P (s, p, z, k|f, t)Vf,t∑
f,k,p,s,z P (s, p, z, k|f, t)Vf,t

(11)

2.2.2 Sparsity

The update equations given in Section 2.2.1 represent a
maximum-likelihood solution to the model. However, in
practice it can be advantageous to introduce additional con-
straints. The idea of parameter sparsity has proved to be
useful for a number of audio-related tasks [1, 11]. For
multi-instrument transcription, there are several ways in
which it might make sense to constrain the model solu-
tion in this way. First, it is reasonable to expect that if
pitch p is active at time t, then only a small fraction of the
instrument sources are responsible for it. This belief can
be encoded in the form of a sparsity prior on the distribu-
tion P (s|p, t). Similarly, we generally expect that only a
few pitches are active in each time frame, which implies a
sparsity constraint on P (p|t).

One way of encouraging sparsity in probabilistic mod-
els is through the use of the entropic prior [2]. This tech-
nique uses an exponentiated negative-entropy term as a
prior on parameter distributions. Although it can yield
good results, the solution to the maximization step is com-
plicated, as it involves solving a system of transcendental
equations. As an alternative, we have found that simply
modifying the maximization steps in (10) and (11) as fol-
lows gives good results:

P (s|p, t) =

[∑
f,k,z P (s, p, z, k|f, t)Vf,t

]α
∑
s

[∑
f,k,z P (s, p, z, k|f, t)Vf,t

]α (12)

P (p|t) =

[∑
f,k,s,z P (s, p, z, k|f, t)Vf,t

]β
∑
p

[∑
f,k,s,z P (s, p, z, k|f, t)Vf,t

]β (13)

When α and β are less than 1, this is closely related to
the Tempered EM algorithm used in PLSA [6]. However, it
is clear that when α and β are greater than 1, the P (s|p, t)
and P (p|t) distributions are “sharpened”, thus decreasing
their entropies and encouraging sparsity.

3. EVALUATION

3.1 Data

Two data sets were used in our experiments, one contain-
ing both synthesized and recorded audio and the other con-
taining just synthesized audio. There are 15 tracks, 3256
notes, and 18843 frames in total. The specific properties of
the data sets are summarized in Table 1. All tracks had two
instrument sources, although the actual instruments varied.
For the synthetic tracks, the MIDI versions were synthe-
sized at an 8kHz sampling rate using timidity and the SGM
V2.01 soundfont. A 1024-point STFT with 96ms window
and 24ms hop was then taken and the magnitude spectro-
gram retained.

The first data set is based on a subset of the woodwind
data supplied for the MIREX Multiple Fundamental Fre-
quency Estimation and Tracking task. 2 The first 21 sec-

2 http://www.music-ir.org/mirex/2009/index.
php/Multiple_Fundamental_Frequency_Estimation_&_
Tracking



Type # Tracks # Notes # Frames
Woodwind S/R 6 1266 5424
Bach S 3 724 7995

Table 1. Summary of the two data sets used. S and R
denote synthesized and recorded, respectively.

onds from the bassoon, clarinet, oboe, and flute tracks were
manually transcribed. These instrument tracks were then
combined in all 6 possible pairings. It is important to note
that this data is taken from the MIREX development set
and that the primary test data is not publicly available. In
addition, most authors of other transcription systems do
not report results on the development data, making com-
parisons difficult.

The second data set is comprised of three pieces by J.S.
Bach arranged as duets. The pieces are: Herz und Mund
und Tat und Leben (BWV 147) for acoustic bass and pic-
colo, Ich steh mit einem Fuß im Grabe (BWV 156) for tuba
and piano, and roughly the first half of Wachet auf, ruft uns
die Stimme (BWV 140) for cello and flute. We chose in-
struments that were, for the most part, different from those
used in the woodwind data set while also trying to keep the
instrumentation as appropriate as possible.

3.2 Instrument Models

We used a set of 33 instruments of varying types to de-
rive our instrument model. This included a roughly equal
proportion of keyboard, plucked string, bowed, and wind
instruments. The instrument models were generated with
timidity, but in order to keep the tests with synthesized au-
dio as fair as possible, a different soundfont (Papelmedia
Final SF2 XXL) was used. 3 Each instrument model con-
sisted of 58 pitches (C2-A6#), which were built as follows:
notes of duration 1s were synthesized at an 8kHz sampling
rate, using velocities 40, 80, and 100. A 1024-point STFT
was taken of each, and the magnitude spectra were aver-
aged across velocities to make the model more robust to
differences in loudness. The models were then normal-
ized so that the frequency components (spectrogram rows)
summed to 1 for each pitch. Next, NMF with rank Z (the
desired number of components per pitch) was run on this
result with H initialized to a heavy main diagonal struc-
ture. This encouraged the ordering of the bases to be “left-
to-right”.

One potential issue with this approach has to do with
the differences in the natural playing ranges of the instru-
ments. For example, a violin generally cannot play below
G3, although our model includes notes below this. There-
fore, we masked out (i.e. set to 0) the parameters of the
notes outside the playing range of each instrument used in
training. Then, as described in Section 2.1, the instrument
models were stacked into super vector form and NMF with
a rank of K = 30 (chosen empirically) was run to find the
instrument bases, Ω. These bases were then unstacked to
form the eigeninstruments, P̂ (f |p, z, k).

3 http://www.papelmedia.de/english/index.htm
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Figure 2. Example PET (β = 2) output distribution
P (p, t|s) and ground truth data for the bassoon-clarinet
mixture from the recorded woodwind data set.

In preliminary experiments, we did not find a significant
advantage to values of Z > 1 and so the full set of exper-
iments presented below was carried out with only a single
component per pitch.

3.3 Metrics

We evaluate our method using precision (P), recall (R),
and F-measure (F) on both the frame and note levels. Note
that each reported metric is an average over sources. In ad-
dition, because the order of the sources in P (p, t|s) is arbi-
trary, we compute sets of metrics for all possible permuta-
tions (two in our experiments since there are two sources)
and report the set with the best frame-level F-measure.



When computing the note-level metrics, we consider a
note onset to be correct if it falls within +/- 50ms of the
ground truth onset. At present, we don’t consider offsets
for the note-level evaluation, although this information is
reflected in the frame-level metrics.

The threshold γ used to convert P (p, t|s) to a binary
pianoroll was determined empirically for each algorithm
variant and each data set. This was done by computing
the threshold that maximized the average frame-level F-
measure across tracks in the data set.

3.4 Experiments

We evaluated several variations of our algorithm so as to
explore the effects of sparsity and to assess the perfor-
mance of the eigeninstrument model. For each of the three
data sets, we computed the frame and note metrics using
the three variants of the PET model: PET without spar-
sity, PET with sparsity on the instruments given the pitches
P (s|p, t) (α = 2), and PET with sparsity on the pitches at
a given time P (p|t) (β = 2). In these cases, all parame-
ters were initialized randomly and the algorithm was run
for 100 iterations.

Although we are primarily interested in blind transcrip-
tion (i.e. no prior knowledge of the instruments present
in the mixture), it is interesting to examine cases where
more information is available as these can provide upper-
bounds on performance. First, consider the case where we
know the instrument types present in the mixture. For the
synthetic data, we have access not only to the instrument
types, but also to the oracle models for these instruments.
In this case we hold P (f |p, s, z) fixed and solve the ba-
sic model given in (2). The same can be done with the
recorded data, except that we don’t have oracle models for
these recordings. Instead, we can just use the appropriate
instrument models from the training setM as approxima-
tions. This case, which we refer to as “fixed” in the experi-
mental results, represents a semi-supervised version of the
PET system.

We might also consider using the instrument modelsM
that we used in eigeninstrument training in order to initial-
ize the PET model in the hope that the system will be able
to further optimize their settings. We can do this by taking
the appropriate eigeninstrument coefficient vectors cs and
using them to initialize P (k|s). Intuitively, we are trying
to start the PET model in the correct “neighborhood” of
eigeninstrument space. These results are denoted “init”.

Finally, as a baseline comparison, we consider generic
NMF-based transcription (with generalized KL divergence
as a cost function) where the instrument models (submatri-
ces of W ) have been initialized with a generic model de-
fined as the average of the instrument models in the train-
ing set.

3.5 Results

The results of our approach are summarized in Tables 2–4.
As a general observation, we can see that the sparsity fac-
tors have helped improve model performance in almost all
cases, although different data sets benefit in different ways.

Frame Note
P R F P R F

PET 0.56 0.64 0.56 0.42 0.73 0.51
PETα=2 0.60 0.61 0.60 0.46 0.73 0.56
PETβ=2 0.57 0.64 0.56 0.51 0.79 0.58
PETinit 0.71 0.68 0.68 0.64 0.86 0.71
PEToracle 0.84 0.84 0.84 0.82 0.93 0.87
NMF 0.34 0.48 0.39 0.19 0.59 0.29

Table 2. Results for the synthetic woodwind data set. All
values are averages across sources and tracks.

Frame Note
P R F P R F

PET 0.52 0.52 0.50 0.41 0.73 0.50
PETα=2 0.49 0.57 0.51 0.41 0.78 0.51
PETβ=2 0.58 0.53 0.53 0.46 0.72 0.55
PETinit 0.60 0.60 0.58 0.48 0.82 0.58
PETfixed 0.57 0.58 0.55 0.45 0.77 0.54
NMF 0.35 0.55 0.42 0.27 0.77 0.38

Table 3. Results for the recorded woodwind data set. All
values are averages across sources and tracks.

For the synthetic woodwind data set, sparsity on sources,
P (s|p, t), increased the average F-measure on the frame-
level, but at the note-level, sparsity on pitches, P (p|t), had
a larger impact. For the recorded woodwind data, sparsity
on P (p|t) benefited both frame and note-level F-measures
the most. With the Bach data, we see that encouraging
sparsity in P (p|t) was much more important than it was for
P (s|p, t) on both the frame and note-level. In fact, impos-
ing sparsity on P (s|p, t) seems to have actually hurt frame-
level performance relative to the non-sparse PET system.
This may be explained by the fact that the instrument parts
in the Bach pieces tend to be simultaneously active much
of the time.

As we would expect, the baseline NMF system per-
forms the worst in all test cases – not surprising given
the limited information and lack of constraints. Also un-
surprising is the fact that the oracle models are the top-
performers on the synthetic data sets. However, notice
that the randomly-initialized PET systems perform about

Frame Note
P R F P R F

PET 0.50 0.65 0.54 0.21 0.60 0.30
PETα=2 0.50 0.57 0.51 0.22 0.51 0.30
PETβ=2 0.55 0.66 0.59 0.24 0.65 0.34
PETinit 0.53 0.58 0.53 0.23 0.50 0.30
PEToracle 0.91 0.85 0.87 0.53 0.83 0.64
NMF 0.36 0.50 0.42 0.09 0.46 0.14

Table 4. Results for the synthetic Bach data set. All values
are averages across sources and tracks.



as well as the fixed model on recorded data. This im-
plies that the algorithm was able to discover appropriate
model parameters even in the blind case where it had no
information about the instrument types in the mixture. It
is also noteworthy that the best performing system for the
recorded data set is the initialized PET variant. This sug-
gests that, given good initializations, the algorithm was
able to further adapt the instrument model parameters to
improve the fit to the target mixture.

While the results on both woodwind data sets are rel-
atively consistent across frame and note levels, the Bach
data set exhibits a significant discrepancy between the two
metrics, with substantially lower note-level scores. This
is true even for the oracle model which achieves an aver-
age note-level F-measure of 0.64. There are two possible
explanations for this. First, recall that our determination
of both the optimal threshold γ as well as the order of the
sources in P (p, t|s) was based on the average frame-level
F-measure. We opted to use frame-level metrics for this
task as they are a stricter measure of transcription quality.
However, given that the performance is relatively consis-
tent for the woodwind data, it seems more likely that the
discrepancy is due to instrumentation. In particular, the al-
gorithms seem to have had difficulty with the soft onsets of
the cello part in Wachet auf, ruft uns die Stimme.

4. CONCLUSIONS

We have presented a probabilistic model for the challeng-
ing problem of multi-instrument polyphonic transcription.
Our method makes use of training instruments in order to
learn a model parameter subspace that constrains the solu-
tions of new models. Sparsity terms are also introduced to
help further constrain the solution. We have shown that
this approach can perform reasonably well in the blind
transcription setting where no knowledge other than the
number of instruments is assumed. In addition, knowl-
edge of the types of instruments in the mixture (informa-
tion which is relatively easy to obtain) was shown to im-
prove performance significantly over the basic model. Al-
though the experiments presented in this paper only con-
sider two-instrument mixtures, the PET model is general
and preliminary tests suggest that it can handle more com-
plex mixtures as well.

There are several areas in which the current system could
be improved. First, the thresholding technique that we
have used is extremely simple and results could probably
be improved significantly through the use of pitch depen-
dent thresholding or more sophisticated classification. Sec-
ond, and perhaps most importantly, although early experi-
ments did not show a benefit to using multiple components
for each pitch, it seems likely that the pitch models could
be enriched substantially. Many instruments have complex
time-varying structures within each note that would seem
to be important for recognition. We are currently explor-
ing ways to incorporate this type of information into our
system.

5. ACKNOWLEDGMENTS

This work was supported by the NSF grant IIS-0713334.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors.

6. REFERENCES

[1] S.A. Abdallah and M.D. Plumbley. Polyphonic music
transcription by non-negative sparse coding of power
spectra. In ISMIR, 2004.

[2] M. Brand. Structure learning in conditional probability
models via an entropic prior and parameter extinction.
Neural Computation, 11(5):1155–1182, 1999.
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