
Entropically Constrained Parameter Estimation for

Hidden Markov Models

Graham Grindlay

grindlay@soe.ucsc.edu

June 11, 2004

Abstract

In this paper we examine alternative parameter updates for hidden
Markov models. The main focus will be on entropically constrained
updates where we attempt to maximize a log-likelihood subject to an
entropy-based constraint. In the case of the Joint-Entropy update [3],
this may take the form of a relative entropy which measures the dis-
tance between the current parameters and those which we are trying
to maximize. We will make the connection between the Joint-Entropy
update and the entropic maximum a posteriori (MAP) update [1] for
multinomials, deriving both updates as well as a hybrid of the two.
While we only consider discrete observation HMMs here, it should be
possible to derive similar updates for HMMs with Gaussian observa-
tions.

1 Notation & Preliminaries

Typically, we are given a set of data sequences Ω, where each sequence,
X ∈ Ω, is comprised of a set of observations such that X = {x1, x2, ..., xT }.
A discrete-observation HMM has a set of states, Q = {q1, q2, ..., qN}, a set
of observation symbols, O = {o1, o2, ..., oM}, a vector of priors, π, where
πi gives the probability of starting a state sequence in state qi, a transition
matrix, a, where ai,j gives the probability of transitioning from state qi to
state qj , and an observation matrix, b, where bi,k gives the probability of
observation ok when in state qi. Because the number of states and obser-
vation symbols are implicit in the probability matrices, an HMM, θ, can be
parameterized by: θ = {π, a, b}.
In the following sections we refer to the generic parameter, θi where

i ranges from 1 to the total number of parameters in the HMM (ie. the
number of entries in π, a, and b combined). We use subscripts to index
multi-dimentional parameters and superscripts to denote membership. For
example, qi refers to the i

th state, while qi refers to the state of which param-
eter i is a member and θi refers to the vector of probabilities (multinomial)
of which parameter i is a member.
We can think of an HMM as a probabilistic model which describes the

joint probability of a collection of random variables, {O1, ..., OT , Q1, ..., QT }.
For a given state sequence, S, we define nqi(S) to be the number of times
that state qi appears in sequence S and ni(X,S) to be the number of times
that parameter i is used in a state sequence, S, with data, X. It is im-
portant to keep in mind that this quantity does not depend on a particular
instance of θ. We also define several expectation terms. First, let n̂θi(X|θ) =
∑

S ni(X,S)P (S|X, θ) be the expected usage of parameter θi over all state
sequences, S, that produce, X, given the HMM with parameter set, θ. Note
that this quantity is efficiently calculated by the forward-backward algo-
rithm [2]. Second, let us also define n̂θi(θ) =

∑

X,S ni(X,S)P (S,X|θ) to
be the expected usage of θi, based on all possible state sequences, S, and
all possible observation sequences, X. Finally, let n̂qi(θ) = nqi(S)P (S|θ)
be the expected usage of state qi by an HMM with parameter set, θ. Note
that this quantity is also equal to

∑

j∈qi
n̂θj (θ). Because this quantity can

be expensive to calculate in practice, we could also use an approximation
based on the data available:

n̂qi(θ) ≈
1

|Ω|

∑

X∈Ω

∑

t

P (qt = i|X) (1)

where P (qt = i|X) is the probability of being in state qi at time t of

1

sequence X and is often called γi(t,X) in the speech literature. It can also
be efficiently calculated by using the forward-backward algorithm.

2 The Joint-Entropy Update

In the Joint-Entropy framework [3, 4], our goal is to re-estimate param-
eters by maximizing an objective function which is composed of a weighted
combination of log-likelihood and model divergence. Intuitively, we want to
find the set of parameters that best models the data while staying close to
our old parameter which encapsulate all that we have learned so far. We
can formulate this as follows:

U(θ̃) = LL(θ̃|Ω)−
1

η
∆(θ̃, θ) (2)

Because the log-likelihood depends on usage statistics, this equation can
be difficult to maximize. Therefore, we typically approximate with a Taylor
expansion around the log-likelihood of the current parameter estimates:

U(θ̃) =
(

LL(θ|Ω) + (θ̃ − θ)∇θ(LL(θ|Ω)
)

−
1

η
∆(θ̃, θ) (3)

First, let us define the log-likelihood term. Given that we are considering
only discrete HMMs with multinomial parameter vectors, we can use our
above notation to define the complete-data likelihood for an observation

sequence, X and state sequence, S, as: P (X,S|θ) =
∏

i θ
ni(X,S)
i . This lets

us also define the likelihood of an observation sequence, X, by summing over

all possible state sequences, S: P (X|θ) =
∑

S

∏

i θ
ni(X,S)
i . In the batch case,

we define the log-likelihood as the average of the individual data sequence
log-likelihoods:

LL(θ|Ω) =
1

|Ω|

∑

X∈Ω

log(P (X|θ)) (4)

We take derivatives with respect to each parameter as follows:

∂

∂θi
P (X,S|θ) =

i−1
∏

j=1

θ
nθj (X,S)

j ni(X,S)θ
ni(X,S)−1
i

|qi|
∏

k=i+1

θ
nθk (X,S)

k

=
ni(X,S)

θi

∏

i

θ
ni(X,S)
i (5)

2

∂

∂θi
LL(θ|Ω) =

1

|Ω|

∑

X∈Ω

∑

S

∂
∂θi

P (X,S|θ)
∑

S P (X,S|θ)

=
1

|Ω|

∑

X∈Ω

∑

S

∂
∂θi

P (X,S|θ)

P (X|θ)

=
1

|Ω|

∑

X∈Ω

∑

S

ni(X,S)

θi

P (X,S|θ)

P (X|θ)

=
1

|Ω|

∑

X∈Ω

∑

S

ni(X,S)

θi
P (S|X, θ)

=

∑

X∈Ω n̂θi(X|θ)

|Ω|θi
(6)

Now we need to define an appropriate divergence function, ∆(θ̃, θ). In
the Joint-Entropy framework, we use a relative entropy between models.
For HMMs, this is a divergence between the distributions induced by two
HMMs over all possible observation sequences, X, and all possible hidden
state sequences, S:

∆(θ̃, θ) =
∑

X

(

∑

S

P (X,S|θ̃)

)

log

∑

S P (X,S|θ̃)
∑

S P (X,S|θ)
(7)

Using our previously defined notation and the log-sum inequality, we can
approximate the above by:

3

∆̂(θ̃, θ) =
∑

X,S

P (X,S|θ̃) log
P (X,S|θ̃)

P (X,S|θ)

=
∑

X,S

P (X,S|θ̃) log

∏

i θ̃i
ni(X,S)

∏

i θ
ni(X,S)
i

=
∑

X,S

P (X,S|θ̃)
∑

i

ni(X,S) log
θ̃i
θi

=
∑

i

∑

X,S

P (X,S|θ̃)ni(X,S) log
θ̃i
θi

=
∑

i

n̂θi(θ̃) log
θ̃i
θi

=
∑

i

n̂qi(θ̃)

(

θ̃i log
θ̃i
θi

)

(8)

=
∑

i

n̂qi(θ̃)
∑

j∈qi

θ̃j log
θ̃j
θj

(9)

The equality in (8) is justified by the property of absorbing HMMs that,
for any parameter θi ∈ θ, n̂θi(θ) = θin̂qi(θ).
Because (9) contains the expected state usage in the new parameters, θ̃,

this expression is very difficult to solve for. Therefore, we further approxi-
mate, by replacing the usage term, n̂qi(θ̃) with n̂qi(θ), yielding:

ˆ̂
∆(θ̃, θ) =

∑

i

n̂qi(θ)
∑

j∈qi

θ̃j log
θ̃j
θj

(10)

Taking derivatives, we get:

∂

∂θ̃i

ˆ̂
∆(θ̃, θ) = n̂qi(θ)

(

log
θ̃i
θi
+ 1

)

(11)

To obtain the updated parameters, we set the derivative of U(θ̃) to
0 and solve for θi. The derivative of U(θ̃) is readily formed by plugging
the derivatives of the log-likelihood and divergence function and adding a
Lagrangian term to constrain each of the parameter vectors to sum to 1.
This gives:

4

0 =
∂

∂θ̃i
LL(θ|Ω)−

1

η

∂

∂θ̃i
∆̂(θ̃, θ) +

∂

∂θ̃i
λθ̃i





|θ̃i|
∑

i

θ̃i − 1





=

∑

X∈Ω n̂θi(X|θ)

|Ω|θi
−
1

η
n̂qi(θ)

(

log
θ̃j
θj
− 1

)

+ λθ̃i

=

∑

X∈Ω n̂θi(X|θ)

n̂qi(θ)|Ω|θi
−
1

η
log

θ̃j
θj
+

λθ̃i

n̂qi(θ)
− 1

=

∑

X∈Ω n̂θi(X|θ)

n̂qi(θ)|Ω|θi
−
1

η
log

θ̃j
θj
+ λ′

θ̃i
(12)

where λ′
θ̃i
=

λ
θ̃i

n̂qi (θ)
− 1

Solving for θ̃i and replacing λ
′
θ̃i
with a normalizing term, we arrive at

the batch Joint-Entropy update:

θ̃i =
θi exp

(

η
n̂qi (θ)

∑

X∈Ω n̂θi(X|θ)

|Ω|θi

)

∑

j∈θi θj exp
(

η
n̂qj (θ)

∑

X∈Ω n̂θj(X|θ)

|Ω|θj

) (13)

Note that if we use the approximation to the state usage term, n̂qj (θ),
as given in (1), then this update is becomes the approximated Joint-Entropy

update.

3 The Entropic MAP Estimator

In the Joint-Entropy update, we would ideally like to solve for the pos-
terior with respect to the complete set of model parameters while using the
log-likelihood of the parameters for which we are trying to maximize. This
is an extremely difficult problem in the case of HMMs or other models where
we have latent variables and because of this, we were forced to use several
approximations in our update.
To see how we might be able to circumvent at least some of our approx-

imations, let us return to the objective. Looking back at U(θ̃), we see that
it can be interpreted as a log-posterior. Thus, the posterior can be viewed
using Bayes’ Rule as:

5

P (θ̃|ω) =
P (θ̃)L(θ̃|ω)

P (ω)
(14)

=
e
− 1
η
∆(θ̃,θ)

L(θ̃|ω)

P (ω)
(15)

∝ e
− 1
η
∆(θ̃,θ)

L(θ̃|ω) (16)

Since P (ω) does not depend on θ̃, we can safely discard it. The reason
why we have replaced Ω with ω is to reinforce the idea that we are now
interpreting the objective function in Bayesian terms and thus trying to
optimize θ̃ given the evidence, ω (which for our purposes, will represent
counts or parameter usage). Although this abstraction may seem purely
philosophical, it will prove useful in our discussion.
In order for this notion of evidence to be meaningful, we need an ap-

propriate definition for the log-likelihood. Recall that the EM algorithm
constructs a local lower bound to the log-likelihood by working to maximize
the expected complete-data log-likelihood (referred to as the Q function)
rather than trying to maximize the incomplete log-likelihood directly. In
this spirit, we define the expected complete log-likelihood as follows using
our notation defined above:

6

Q(θ̃, θ) = E
[

log(P (Ω, S|θ̃)) | Ω, θ
]

=
∑

S

log(P (Ω, S|θ̃))P (S|Ω, θ)

=
∑

S

1

|Ω|

∑

X∈Ω

log(P (X,S|θ̃))P (S|X, θ)

=
∑

S

1

|Ω|

∑

X∈Ω

log(
∏

i

θ̃
ni(X,S)
i)P (S|X, θ)

=
∑

S

1

|Ω|

∑

X∈Ω

∑

i

log(θ̃
ni(X,S)
i)P (S|X, θ)

=
∑

S

1

|Ω|

∑

X∈Ω

∑

i

ni(X,S) log(θ̃i)P (S|X, θ)

=
1

|Ω|

∑

X∈Ω

∑

i

log(θ̃i)
∑

S

ni(X,S)P (S|X, θ)

=
1

|Ω|

∑

X∈Ω

∑

i

log(θ̃i) n̂θi(X|θ)

=
1

|Ω|

∑

X∈Ω

∑

i

log(θ̃
n̂θi(X|θ)
i)

=
1

|Ω|

∑

X∈Ω

log(
∏

i

θ̃
n̂θi(X|θ)
i) (17)

To keep our notation consistent, from now on we will now refer to Q(θ̃, θ)
as L̂L(θ̃|Ω). We can now easily take derivatives of L̂L(θ̃|Ω) with respect to
the target parameter, θ̃i:

∂

∂θi
L̂L(θ̃|Ω) =

1

|Ω|

∑

X∈Ω





∂

∂θ̃i

∏

i θ̃
n̂θi(X|θ)
i

∏

i θ̃
n̂θi(X|θ)
i





=
1

|Ω|

∑

X∈Ω

(

n̂θi(X|θ)
∏

i θ̃
n̂θi(X|θ)
i

θ̃i
∏

i θ̃
n̂θi(X|θ)
i

)

=
1

|Ω|

∑

X∈Ω

(

n̂θi(X|θ)

θ̃i

)

=

∑

X∈Ω n̂θi(X|θ)

|Ω|θ̃i
(18)

7

Note that we have arrived at a form very similar to that of (6), only
now we have θ̃i in the denominator as opposed to θi. To make the following
derivations more clear, we collect what corresponds to the evidence terms
in (18) into a single variable, ωi:

ωi =

∑

X∈Ω n̂θi(X|θ)

|Ω|
(19)

With this definition of evidence we have achieved a powerful result: the
log-likelihood depends only on the evidence term rather than the data and
hidden variables. In the case of HMMs, this effectively decouples the model
parameters meaning that we can decompose the model into a set of inde-
pendent multinomial distributions and solve each independently.

3.1 A Relative Entropy MAP estimator (REMAP) for Multi-
nomials

It is possible to find MAP solutions to θ̃ for a multinomial distribution
given some evidence, ω. Brand provides such a solution in [1] but using
an entropy constraint on the new model parameters rather than a relative
entropy between the new and old parameters. In his solution, the goal is
to bias parameter estimation towards sparse, simple models (ie. minimum
entropy). It is worth noting that this minimum entropy bias comes as a
special case of the relative entropy bias when we use the uniform distribution
instead of the old parameters. We will develop the relative-entropy MAP
estimator here.
Let us begin our derivation, by considering the likelihood function for a

multinomial: P (ω|θ) =
∏

i θ
ωi
i . Now consider the relative entropy. In the

multinomial MAP estimate, we can use an exact relative entropy between
new and old distributions; there is no need to approximate as in the HMM

case. Therefore, the relative entropy is: ∆(θ̃, θ) =
∑

i θ̃i log
θ̃i
θi
and our prior

becomes: P (θ̃) = exp
(

− 1
η

∑

i θ̃i log
θ̃i
θi

)

which we can rewrite as: P (θ̃) =

∏

i

(

θ̃i
θi

)−

(

θ̃i
η

)

.

8

Now consider the posterior:

P (θ̃|ω) ∝ L(θ̃|ω) P (θ̃)

=
∏

i

θ̃ ωi
i

∏

i

(

θ̃i
θi

)−

(

θ̃i
η

)

=
∏

i

θ̃ ωi
i

(

θ̃i
θi

)−

(

θ̃i
η

)

(20)

To solve for parameter θ̃i, we add Lagrange multiplier to ensure that
each multinomial sums to 1, take derivatives of the log-posterior, set to 0,
and solve:

0 =
∂

∂θ̃i






log







∏

i

θ̃ ωi
i

(

θ̃i
θi

)−

(

θ̃i
η

)






+ λ

(

∑

i

θ̃i − 1

)







=
∂

∂θ̃i







∑

i

log






θ̃ ωi
i

(

θ̃i
θi

)−

(

θ̃i
η

)






+ λ

(

∑

i

θ̃i − 1

)







=
∂

∂θ̃i







∑

i






log
(

θ̃ ωi
i

)

+ log







(

θ̃i
θi

)−

(

θ̃i
η

)












+ λ

(

∑

i

θ̃i − 1

)







=
∂

∂θ̃i

[

∑

i

(

ωi log θ̃i −
θ̃i
η
log

θ̃i
θi

)

+ λ

(

∑

i

θ̃i − 1

)]

=
ωi

θ̃i
−
1

η
log

θ̃i
θi
−
1

η
+ λ (21)

We can easily solve (21) for λ:

λ = −
ωi

θ̃i
+
1

η
log

(

θ̃i
θi

)

+
1

η
(22)

Solving for θ̃i is a bit more tricky due to the mixed polynomial and
logarithmic terms. However, we can do so by making use of the Lambert W

9

function: W (y)eW (y) = y (see Figure 1). There are a variety of techniques
for efficient calculation of the W function. For details, see [1].
We will forgo the derivation of θ̃i in the interest of brevity and because

we provide a full derivation for the complete HMM case in the follow section
which is quite similar. The update for θ̃i is:

θ̃i =
ηωi

W
(

ηωi
θi
e1−ηλ

) (23)

This solution, along with (22) form a fix-point solution for λ and there-
fore θ̃i. We can iteratively update the current update’s estimate of θ̃ by first
solving for θ̃ given λ, normalizing θ̃, and then calculating λ given θ̃. Conver-
gence is fast (2-5 iterations). Brand [1] provides ideas for how to initialize
λ.

−0.5 0 0.5 1 1.5 2 2.5 3
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

w*exp(w)

w

Figure 1: This plot shows the real-valued branches of the Lambert W func-
tion. The W function is the multivalued inverse of w → wew and so we
can plot the real branches indirectly, by plotting w → wew with the axes
swapped.

10

3.1.1 Interpreting the Entropic Posterior

Brand [1] provides an interesting interpretation of the solution to the
log-posterior purely as an entropy minimization problem. In our framework,
there is a similar interpretation for (14):

−max
θ̃
log(P (θ̃|ω)) = min

θ̃
− log







∏

i

θ̃ ωi
i

(

θ̃i
θi

)−

(

θ̃i
η

)







= min
θ̃
−
∑

i

log






θ̃ ωi
i

(

θ̃i
θi

)−

(

θ̃i
η

)







= min
θ̃

−
∑

i

(

ωi log θ̃i −
θ̃i
η
log

θ̃i
θi

)

= min
θ̃
−
∑

i

(

ωi log θ̃i − ωi logωi + ωi logωi −
θ̃i
η
log

θ̃i
θi

)

= min
θ̃

(

∑

i

ωi log
ωi

θ̃i
−
∑

i

ωi logωi +
1

η

∑

i

θ̃i log
θ̃i
θi

)

= min
θ̃

(

∆(ω, θ̃) +H(ω) +
1

η
∆(θ̃, θ)

)

(24)

(25)

We can see that the posterior works to minimize a weighted sum of
entropies (H is the shannon entropy). 1

η
∆(θ̃, θ) keeps our new and old

parameters close while ∆(ω, θ̃) describes how much the evidence and model
parameters disagree. Because the evidence, ω, is derived from the expected
complete log-likelihood, which is in turn based on the model structure, H(ω)
can be thought of as a lower-bound on the code length necessary to describe
which of the data variations encoded by the model structure is actually
instantiated in the dataset.

3.2 The Joint-Entropy MAP (JEMAP) Estimator

Let us now return to the Joint-Entropy framework and see if we can
derive an entropic MAP estimator with respect to the full set of HMM

11

parameters. The difference between the multinomial case and the full model
case, is that we need to use our approximated HMM divergence (10).
We construct the derivatives of the log-posterior using (11) and (18),

add Lagrange multipliers, set to 0, and solve for θ̃i and λθ̃i :

0 =
∂

∂θi
L̂L(θ̃|Ω)−

∂

∂θ̃i

1

η
ˆ̂
∆(θ̃, θ) +

∂

∂θ̃i
λθ̃i





|θ̃i|
∑

i

θ̃i − 1





=
ωi

θ̃i
−
n̂qi(θ)

η
log

θ̃i
θi
−
n̂qi(θ)

η
+

∂

∂θ̃i
λθ̃i





|θ̃i|
∑

i

θ̃i − 1





=
ωi

θ̃i
−
n̂qi(θ)

η
log

θ̃i
θi
−
n̂qi(θ)

η
+ λθ̃i (26)

=
n̂qi(θ)

η

[

ηωi

n̂qi(θ)θ̃i
− log

θ̃i
θi
− 1 +

ηλθ̃i

n̂qi(θ)

]

= a

[

ωi

aθ̃i
− log

θ̃i
θi
− 1 +

λθ̃i

a

]

(27)

where a =
n̂
qi
(θ)

η
. We can easily solve for λθ̃i :

λθ̃i = −
ωi

θ̃i
+
n̂qi(θ)

η
log

θ̃i
θi
+
n̂qi(θ)

η
(28)

Now we show how to work backwards from the W function and arrive
at the bracketed expression in (27). During this derivation, we will drop
the subscripting on λθ̃i for the sake of clarity. Once we have derived an

expression for θ̃i we will return λ to its full form. To begin, note that the W
function can be re-written as: W (y)+ log(W (y)) = log(y). Now let y = em.

0 =W (em) + log(W (em))−m

=
z

z/W (em)
+ log(W (em))−m+ log z − log z

=
z

z/W (em)
+ log

(

W (em)

z

)

−m+ log z (29)

Now, let m = 1− λ
a
+log z− log θi. Substituting in for m and continuing,

we have:

12

0 =
z

z/W
(

e1−
λ
a
+log z−log θi

) + log





W
(

e1−
λ
a
+log z−log θi

)

z



− 1 +
λ

a
+ log θi

=
z

z/W
(

z
θi
e1−

λ
a

) + log





W
(

z
θi
e1−

λ
a

)

z



− 1 +
λ

a
+ log θi

=
z

z/W
(

z
θi
e1−

λ
a

) − log





z

θi W
(

z
θi
e1−

λ
a

)



− 1 +
λ

a

=
ωi
a

ωi
a
/W

(

ωi
aθi

e1−
λ
a

) − log





ωi
a

θi W
(

ωi
aθi

e1−
λ
a

)



− 1 +
λ

a
(30)

Where we have let z = ωi
a
. This implies that:

θ̃i =
ωi/a

W
(

ωi
aθi

e1−
λ
a

) (31)

Substituting (31) into (30), we get:

0 =
ωi/a

θ̃i
− log

(

θ̃i
θi

)

− 1 +
λ

a
(32)

Which is the derivative of the log-posterior (27) divided by the constant
a. Multiplying by a and returning the subscripts to λ:

0 = a

[

ωi/a

θ̃i
− log

(

θ̃i
θi

)

− 1 +
λ

a

]

=
ωi

θ̃i
− a log

(

θ̃i
θi

)

− a+ λ

=
ωi

θ̃i
−
n̂qi(θ)

η
log

(

θ̃i
θi

)

−
n̂qi(θ)

η
+ λθ̃i (33)

We have arrived back at (26) and therefore derived an expression for θ̃i.
Now we can substitute back in for ωi and a:

13

θ̃i =
ωi/a

W
(

ωi
aθi

e1−
λ
a

)

=

η
∑

X∈Ω n̂θi(X|θ)

|Ω|n̂
qi
(θ)

W
(

η
∑

X∈Ω n̂θi(X|θ)

θi|Ω|n̂qi (θ)
exp(1− ηλ

n̂
qi
(θ))
) (34)

0 20 40 60 80 100 120 140 160 180 200
−180

−170

−160

−150

−140

−130

−120

Iterations

Lo
g−

lik
el

ih
oo

d

EM
JE (eta = 1.2)
REMAP (eta = 1.2)

Figure 2: Log-likelihoods of the three different updates training on data
generated by a sparse model (approx. 60% zeroed-out parameters). Both
the data-generating model and the training models used 10 states and 10 ob-
servations symbols. The models were initialized randomly and then trained
on 10 examples of 50 observations each.

4 Experiments

In order to test how well our new algorithms performed, we devised three
sets of experiments. The first made use of synthetic data generated by a

14

0 20 40 60 80 100 120 140 160 180 200
−116

−114

−112

−110

−108

−106

−104

Iterations

Lo
g−

lik
el

ih
oo

d

EM
JE (eta = 1.2)
REMAP (eta = 1.2)

Figure 3: Log-likelihoods of the three different updates training on data
generated by a dense model (no zeroed-out parameters). Both the data-
generating model and the training models used 10 states and 10 observations
symbols. The models were initialized randomly and then trained on 10
examples of 50 observations each.

sparsely parameterized HMM. This source model was generated randomly,
but had approximately 60% of its parameters set to 0. The second set of
experiments also used synthetically generated data from a randomly param-
eterized HMM, but this time we allowed the model to remain dense. Finally,
we also conducted a set of experiments using speech data from the TIMIT
data set. In all three cases, we compared the batch version of the Joint-
Entropy update, the REMAP estimator, and EM. The JEMAP estimator
was left out of the experiments as we had difficulty getting stable updates
from it.
In figure 2 we see that in the sparse-model experiment, EM clearly per-

formed the worst. The REMAP estimator and the Joint-Entropy update
performed somewhat similarly. Although the REMAP estimator achieved a
slightly higher log-likelihood, the Joint-Entropy update was able to plateau
somewhat sooner than either REMAP or EM.

15

0 10 20 30 40 50 60 70 80 90 100
−700

−650

−600

−550

−500

−450

−400

−350

−300

Iterations

Lo
g−

lik
el

ih
oo

d

EM
JE (eta = 1.02)
Rel. Ent. MAP (eta = 0.8)

Figure 4: Log-likelihoods of the three different updates training on TIMIT
speech data. The data was composed of 20 examples of a male speaker
saying the word ’one’. Each utterance contained roughly 200 observations.
12 states and 32 observations symbols which represented discretized cepstral
coefficients, were used. The training models were initialized randomly.

Figure 3 shows the results from the dense-model experiment. Here we
can see that, while the REMAP estimator achieved a high log-likelihood
value fairly quickly, it hit a local minima which prevented it from doing as
well as the Joint-Entropy update. Both updates were clearly superior to
EM.
For the speech-data experiment, we found that the Joint-Entropy and

REMAP updates were somewhat more sensitive to their η values than in the
synthetic-data experiments. Interestingly, the REMAP estimator seemed
most stable with η < 1, while the Joint-Entropy update became unstable
with η > 1.01. Figure 4 shows the results from the speech-data experiment.
We can see that, although all three updates performed somewhat similarly,
the REMAP update was slightly better than the other two.
Finally, it should be noted, that evaluating theW function required some

overhead in our setup (Matlab uses the Maple kernel to evaluate it). While

16

a more efficient implementation would have certainly made a difference, this
computational overhead should be taken into consideration when evaluating
the results of the updates.

5 Conclusion and Ideas for Future Work

We have derived several entropy-based updates for hidden Markov mod-
els and their constituent distributions. The Joint-Entropy update [3] seeks
to find the best set of model parameters subject to the constraint that they
stay close to the current set. This update is with respect to the entire HMM
and approximates the log-likelihood of the new parameters with a first-order
Taylor expansion around that of the current set. The model divergence is
approximated using usage statistics from the current parameter settings.
The relative-entropy MAP estimator (REMAP) for multinomials uses

the expected complete-data log-likelihood to form an evidence term which,
in conjunction with the model divergence, can then be used to derive an
update using the LambertW function. This update can be used with HMMs
by updating each multinomial distribution in the model separately.
The Joint-Entropy MAP estimator (JEMAP) combines the evidence

term formed from the expected complete-data log-likelihood, with the ap-
proximate model divergence, to form a maximum a posteriori update with
respect to the complete HMM parameter set.
It should be a fairly easy matter to extend either the relative-entropy

MAP estimator or the full Joint-Entropy MAP estimator by adding addi-
tional constraints. One idea is to add a weighted negative-entropy term,
−αH(θ̃), to the log-posterior such that we constrain the updated parame-
ters to be both sparse and close to the previous set. This would effectively
fuse our current work with that of Brand [1].
As the focus of this paper has been on updates which converge quickly

and to a high log-likelihood value, no effort was made to compare other prop-
erties of the HMMs produced by the updates, such as generalization. This
would be an interesting area to explore in the future. Another open ended
question, is how to best set the weight parameter(s). Working out connec-
tions between variations in the tradeoff parameter and annealing techniques,
is another topic of future research.

17

References

[1] Matt Brand. Structure learning in conditional probability models via an

entropic prior and parameter extinction. Technical Report, MERL, 1998.

[2] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition. IEEE Proceedings, 1989.

[3] Yoram Singer and Manfred K. Warmuth. Training Algorithms for Hidden

Markov Models Using Entropy Based Distance Functions. 1996.

[4] Yoram Singer and Manfred K. Warmuth. Batch and On-line Parameter

Estimation of Gaussian Mixtures Based on the Joint Entropy. Advances
in Neural Information Processing Systems 11, 1998.

18

