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ABSTRACT. Let n random intervals Iy, ..., I, be chosen by selecting end-
points independently from the uniform distribution on [0, 1]. A packing is
a pairwise disjoint subset of the intervals; its wasted space is the Lebesgue
measure of the points of [0, 1] not covered by the packing.

In any set of intervals the packing with least wasted space is computa-
tionally easy to find; but its expected wasted space in the random case is
not obvious. We show that with high probability for large n, this “best”
packing has wasted space O(lﬂg:—”)

It turns out that if the endpoints 0 and 1 are identified, so that the
problem is now one of packing random arcs in a unit-circumference circle,
then optimal wasted space is reduced to O(1/n). Interestingly, there is
a striking difference between the sizes of the best packings: about logn
intervals in the unit interval case, but usually only one or two arcs in the
circle case.

1. INTRODUCTION

Let {I;} be a set of n intervals in [0,1], I; C [0,1],1 < i < n. A nonempty,
pairwise disjoint subset of {I;} is called a packing; its length is the sum of the
lengths of its intervals, and its wasted space (in [0, 1]) is one minus its length. The
problem of finding packings with minimum wasted space, a problem with important
applications to be mentioned later, can be solved in polynomial time. A simple way
to see this is to convert the problem to a well-known “easy” problem on graphs.
Let the vertices of a graph G be the intervals I; together with I, = [—00,0] and
I,y = [1,00]; if I; lies to the left of I} then an edge is directed from I; to I} of
length equal to the distance from I; to I;. Then finding a packing in {[;} with

minimum wasted space is equivalent to finding a shortest path in G from I, to I, ;.
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This paper studies the typical or average-case behavior of the wasted space for
an optimal packing taken from a set of n random intervals. A standard model

of random intervals is adopted: the endpointe



of the packing. Thereafter, interval [; is selected, i.e., added to the current partial
packing, if and only if it is disjoint from the intervals already selected from the
sequence I,...,I;_;. Coffman, Mallows, and Poonen [2] proved that E[N,] =
en® —1+o0(l)as n — oo, where a = @ and where ¢ & 1.84 is obtained from an
explicit, though complicated, formula. They also give precise asymptotics for the
distribution of the gap lengths between selected intervals.

Lipton and Tomkins [4] have examined combinatorial problems of online interval
packing; their competitive analysis computes worst-case bounds on the performance
of online algorithms relative to an optimal offline algorithm. In addition to prob-
lems on graphs and partial orders, there are a number of other cognate problems
relative to interval packing; these include problems of covering, parking, partition-
ing, and splitting. The connections are briefly discussed by Coffman, Mallows, and
Poonen (1994), who give many references. They also discuss the application of inter-
val packing problems to one-dimensional communication networks, an application
extended by Lipton and Tomkins (1994) to continuous media (see also Long and
Thakur [5]). In general terms, the intervals [; in such applications are time intervals
during which a resource is requested by some “customer”; the packing objective is
to maximize the number of requests satisfied, or to pack requests that maximize

resource utilization, under the constraint that satisfied requests be disjoint in time.

2. LOWER BOUND ON THE MINIMUM WASTED SPACE

Our model for this and the next section is a set {I1,...,I,} of n random intervals
formed as above, with endpoints chosen independently from the uniform distribution
on [0,1]. Tt will be useful to regard a packing henceforth as a sequence of intervals
from {Iy,...,I,} which are disjoint and ordered left to right in [0, 1].

Fix s > 0, and let X be the random variable that counts the number of such

packings with wasted space at most s. By definition of W,,, we have

(1) Pr(W, <s)=Pr(X>1) <EX,



so a lower bound for W,, that holds with high probability can be obtained by choos-
ing an s for which EX can be shown to approach zero.

Theorem 1. For any ¢ > 0,if s = (§ — ¢) log” n/n, then EX approaches zero as n
tends to infinity.

Combining the theorem with (1) yields

Corollary 1. As n — oo,

Pr (Wn > (% —€)log’ n/n) — 1.

In this section and the next, all real variables will be non-negative, and we write

/”'/x1+~~+xn:1 flee, ... 2p)

T
// f(xlv"' 7$n—171_$1 —“'—$n_1)d$1"'d$n_1 .
zi+Fe,_1 <1220

We will repeatedly need the value of the integral in the lemma below, which is

fo

proved easily by induction.

Lemma 1. If aq,...,a, are non-negative integers, n > 2, then

la,! !

arlas!---a,!
// $<111$S2,,,x;11n_ n .
et T, =1 (a1 +as+---+a,+n—1)!

Proof of Theorem 1. Let X, denote the random variable which counts the number
of packings using k intervals, with wasted space at most s, so

(2) X=>X;.

E>1

Let p;, be the probability that a sequence of & random intervals, chosen without

replacement from {I;,...,I,}, forms a packing with wasted space at most s. Then
(3) EXy=nn—-1)---(n—k+ 1)py .

Next we compute p;. The probability that the chosen intervals are disjoint and
in left to right order is 2F/(2k)!, the factor of 2% arising from the fact that the

endpoints of each single interval are automatically ordered correctly. (See Figure

1)
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wasted space

Ficure 1. A 3-interval packing with lengths and gaps labelled

Suppose now that the chosen intervals are disjoint and in the correct order. Then
their lengths by, ..., b, and gaps ay,...,a,,1 are the coordinates of a random vector
chosen uniformly from the simplex

k+1 k

(4) Z(ZZ‘I- b]:17 amb]ZO?
i=1 ji=1

since the a; and b; depend linearly on the ie%dpoin%%f éche intervals. This simplex
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fo k(1 —a)~'da
[ ab(1—a)=tde

Thus

28 et —a)lda
(2k)! [lak(1 - a)b-tdz
Combining (2), (3), and (5) yields

(5) Py =

EX = én(n —1) - (n—k+1)- (22k)l . §01 zkﬁ : gk:Zz

St 2k fo atda

n

& (2k) Rk = 1)(2k)!
ok pk gh+1

- Zk' (k= Dk +1)

E>1
2n5
! AL

E>1

2k
M < 2k
sg Qk (smce(k)_Q )

k>1

IN

(by Lemma 1)

IN

IN

< s-exp((8ns)t/?) .

When s = (1 — ¢)log® n/n, this becomes

1log”n

8
1 )

< 3 (n_E log” n)

EX < -exp((1 — 8¢)'/*log n)

for 0 < ¢ < 1— (1 —8€)'/2. Since this tends to zero as n — 00, the theorem is

proved. [

3. UPPER BOUND ON THE MINIMUM WASTED SPACE

Fix t > 0. We shall say that subintervals .J;,...,J; of [0, 1] form a good packing
of an interval [, 5] C [0, 1] if they are disjoint subintervals of [a, 3], they are in left
to right order, the gaps between the intervals are of size between ¢/2 and ¢, and the

distance from « to the first interval and the distance from the last interval to 3 are
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both less than or equal to t. A good packing has wasted space at most (k 4 1)t.
The reason for the rather contrived definition is that it will be easier to prove the
existence of good packings (in Theorem 2 below) than the existence of arbitrary
packings with wasted space at most (k4 1)t.

Now suppose [Iy,...,I, are random subintervals of [0,1]. Fix an integer k& > 1
(which may depend on n). Let Y be the random variable that counts the number of
k-tuples of intervals chosen from these n which define a good packing of [0, 1]. We
will show that EY — oo as n — oo for t = clogn/n and appropriate k. However,
this is not enough to conclude that Pr(Y = 0) — 0.

One normally expects the second moment method (see e.g. [1]) to come to the

rescue in this sort of situation. From Chebyshev’s inequality, we have

_ o*(Y)
Pr(Y =0) < EYY

and therefore if we could show that the variance of Y vanishes relative to (EY)?, we

would have the desired result, giving an upper bound complementary to the lower
bound of Corollary 1. Tt turns out, however, that o?(Y)/(EY)? is bounded away
from 0 for fixed ¢. Hence we are forced to conduct a more thorough analysis of

the second moment, estimating its dependence on ¢, in order to prove that EW,, =

O(log” n/n).

Let Q,,(2) denote the probability that a random m-tuple of subintervals of [0, 1]
defines a good packing of a pre-specified interval of length z. The following lemma
will be used in the estimation of @,,(2).

Lemma 2. Let (21,29,...,%4,¥1,%2,--.,Ys) be a point chosen randomly and uni-
formly from the (@ 4+ b — 1)-dimensional simplex where z;,y; > 0 and

Tt ottty ot =1,

Let P, (r) denote the probability that, for such a point,

(1) 21,2, <,

(2) r/2<z;<rforalli,2<i<a-1,and

(3) y; > r for all j.
Then

Pop(r) <227 (a+b—1)/(b- 1),

with equality up to a factor of 14+ O((a + b)?r).
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Proof. For fixed b, the (b— 1)-dimensional volume of the simplex z; + 294+ -+ 2, =
¢, z; > 0, is proportional to ¢’~'. For fixed (21,...,2,), the y;’s must satisfy
Y14+ +y =1—(z;4+---+2,), but the space measured by P, ;(r) consists of y;’s
where y; =r+ 2z, z; > 0,and 2+ -+ 2 =1— (21 4+ -+ 2,4+ br), s0

P,y(r)

[ 1= (0 44 2a b)) - da,
1+ Fra<l, 2,... , @e_127/2, ;<1

// [1_(wl_l_..._l_xa)]b_ldxl...dwa
14 Fr.<1

// 1

Toyoo\Ta—127[2, &;<r

// [1_(wl_l_..._l_xa)]b_ldxl...dwa
w1t tra <1

r2.(r/2)*2
(8) = = 1)!5(2_: T (by Lemma 1)

(6)

(9) = 227r*(a+b-1)1/(b—1).

Moreover, if (a + b)r < 1, we may drop the restriction 2, + --- 4+ z, < 1 from the

range of integration in the numerator of (6), and substitute
M—(z1 4+ Fa,+0r)]" " =1-0((a+b)r),

since xq,...,2, < 1. Then we get equality up to a factor of 1 + O((a + b)*r). O
Lemma 3. Form > 1,and 0 < 2 < 1,
Qm(z) < 20" (m — 1)

When 2 = 1, equality holds up to a factor of 1+ O(m?t).

Proof. The probability that the m random subintervals of [0, 1] lie inside the pre-
specified interval I of length z is the probability that 2m independent random
numbers in [0,1] (the interval endpoints) lie in T, which is 2?™. The probability
that the 2m numbers are in order, and hence define a collection of m disjoint

intervals in order, is 2™/(2m)! as in Section 2 above. The probability that m
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random subintervals of [0, 1] define a good packing of I, given that they lie in I,
are disjoint, and are in order, is exactly Pp 41 ,,(t/2), since the distribution of the
lengths of the intervals divided by z (which we call y;,..., ¥, ) and the lengths of
the gaps divided by  (which we call z,...,2,41) are distributed exactly as in the
definition of P. To see this, note that a linear transformation takes the space of
possible (z1,...,&my1,Y1,--.,Ym) to the space of possible endpoints of intervals,
and P gives the probability that such a (2m + 1)-tuple will correspond to a good
packing. Thus

Qm(z) = 27/@2m)!- 2™ - Py m(t/2)
< 27/(2m)l 2?27 ()M (2m)  (m - 1)!

= 2" 2™ (m - 1),

with equality up to a factor of 1 + O((m 4 (m + 1))*(t/z)) = 1 + O(m?), when
z=1. J

Corollary 2.

EY = [1 4+ O(k* + k2 /n)] - 204541 /(% — 1)1 .

Proof. The number of k-tuples of distinct intervals from the n randomly chosen

ones is
n(n—1)-(n—k+1)=[1-=0(k/n)]"n* =[1 - O(k*/n)]n* ,
and each k-tuple is a good packing with probability Qx(1), so by Lemma 3,

EY

[1— O(k2/n)]n* - [1 + O(k2)] - 205+ J(k — 1)!
= [1+ O(K* + k2/n)] - 2055+ (k — 1)1 .

O

Corollary 3. If £ = [logn], and ¢ = clogn/n, for some constant ¢ > 1, then
FY — o0 as n — oo.
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Proof. From the previous corollary, we get

logEY = klog(nt)+logt— (klogk — k) + O(1)
> klog(ck) —logn — klogk + k + O(1)
= kloge+ O(1)

—  OQ.

O

Theorem 2. The probability that among Iy,..., I, there exist k = [logn] inter-
vals that form a good packing with maximum allowed gap size t = clogn/n for
some constant ¢ > 0, is at least 1 — 28/¢ for sufficiently large n.

Corollary 4. If ¢ is any positive constant,
Pr(W, < clog® n/n) >1-28/c

for sufficiently large n.

Proof. Indeed, the theorem guarantees with probability at least 1 — 28/¢ the ex-
istence of a packing with [logn| + 1 gaps each of size at most clogn, and such a
packing has total wasted space at most ¢(log” n + logn)/n. This is slightly weaker
than what is needed, but it can be checked that the proof of the theorem goes
through with 28 replaced by 27.999 and this strengthening is enough to imply the
result. Alternatively, it can be checked that the proof of the theorem still goes

through if the number of intervals to be used in the packing is one less. [

Proof of Theorem 2. In order to bound Pr(Y = 0), we need to compute E(Y?) and
compare it to (EY)? Now E(Y?) counts ordered pairs of k-interval good packings
(P1,Py) taken from the same random n subintervals of [0, 1]. We will classify such
pairs according to the pattern of intervals they share.

First there are the pairs in which the two packings share no intervals. The
expected number of these is the number of (2k)-tuples of intervals chosen from the

n intervals, times the probability that the first &k intervals and the last k intervals
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of a (2k)-tuple each form a good packing, which is

(10) n(n—1)--(n—2k+1)-Qu(1)” < [n(n—1)--(n—k+1)-Qu(1)]"
- (EY)

by the proof of Corollary 2.

shared regions

|<—>|<7 unshared region 4«>|<—|

FiGure 2. A pair of packings, with u =2, v = 1

For the other pairs of packings, there will be alternating regions of shared and
unshared intervals, as in Figure 2, for example. Let u be the number of regions of
shared intervals, and » the number of unshared regions, for a particular configura-
tion. (Then |u — v| < 1). Let a; denote the number of intervals used in the i-th
shared region, and let b;, ¢; denote the number of intervals used in the j-th unshared
region by P; and P,, respectively. Let £ = a; + ...+ a, denote the total number of

shared intervals. Then

(11) bi+...+by=c1+...+c, =k —{,

and the total number of intervals used in both packings is 2k — (.

Now fix the order of shared and unshared regions, u, v, and all the a;, b;, and

R
¢; (hence ( as well). We call this a configuration. Let p be the probability that a
(2k — ()-tuple of random subintervals of [0, 1] forms a pair of good packings in this
configuration, with the first k intervals in order forming P;, and the last k£ — £ in

order being the remaining intervals (counted by the ¢;’s).
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In order to bound p, consider the probability P that when 2k — £ random subin-
tervals of [0,1] and u + v — 1 random numbers ay, ..., a,4,—1 in [0, 1] are chosen,
that the intervals in order form a pair of packings as above, and that the «; in order
demarcate the shared and unshared regions. Given that the intervals form a pair of
packings as above, the conditional probability that ay,...,ayu4,_1 demarcate the
u + v regions is at least (¢/2)“t"~! since the gap between the last interval of a
region and the first interval of the next region (in either packing) is at least ¢/2 (by
definition of a good packing), giving each «a; a range of length at least ¢/2 in which
it may lie. These ranges are disjoint (and in order), since each region has length
at least ¢ (because the definition of good packing requires that any interval in the

region has length at least ¢). Hence

(12) P> p- (12,

On the other hand, for fixed «y,...,qu4y_1, the probability that 2k — ¢ random
intervals form a pair of good packings of the specified configuration with regions
demarcated by the a; is at most the probability that the intervals of each packing
with each region form a good packing (with the right number of intervals), which
is the product of all Q,,(x;) and @Qy,(y;)Q.,(y;) where z; is the difference of a’s
giving the length of the i-th shared region, and where y; is similarly the length of
the j-th unshared region. Hence P is bounded by a multiple integral over the a’s

of a product of @ functions in their differences, which after a change of variables to



the z; and y; becomes

(13)

P

since

IN

IN

IN

/ / HQ HQb 3/] cj y])
zitFrutyi+o Y. =1
[ st g
it Tatyr ooty =150 (a; — 1)' i=1 (b; — 1)' (¢j — 1)'
(by Lemma 3)
gut2v D, (et DY (b +cj+2>/ / ai-1 bite;—2
St = H H
ITi- y(a; —1)! Hj:l(bj - 1)-(Cj - 1)-
A=t T (0 = D!, (b + ¢ — 2)!
[T (@i = D2 (b5 — Doy = D (22 @i + 305240 +¢5 — 1) = 1)!
(by Lemma 1)
bt —2
2u+2vt2k—ﬁ+u+2v J J _ _ _ l
U( b )/(Qk (—v—1)
j=1 7
bt —2
2u+2vt2k—ﬁ+u+2v J 7 . L+v—1 _ '
("% %) o2,
j=1
(2k=2)! = (2k-2)2k-=3)---2k—-(—v)-(2k—(—v—1)!

< @2E)YFTN 2k —L—v =1

Combining (12) and (13) yields

v (b 4 =2
p- (t/2)u+v—1 S 2u+2vt2k—ﬁ+u+2v H ( J I—)I_ C] ) ) . (2k)£+v_1/(2k _ 2)|

(14)

j=1

3
IN

Q2utdv—1y2k—ttut1 H (b T = 2) (2K (2K = 2)L

ji=1

13

Now the number of (2k — ()-tuples is n(n — 1)---(n — (2k — £) + 1) < -4
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combining this with the bound for pin (14), the expected number of pairs of packings
of the specified configuration coming from all (2k —()-tuples of intervals chosen from
{lL,...,1,} is at most

bty —2
1 22u+3v—1 2k—£t2k—ﬁ+v+1 J 7 . Qk‘ L+v—1 Qk‘ -9 '
(15) n IT(" )77 ) rre=yes -2,

ji=1
and this divided by (EY)? is, by Corollary 2, at most
(16)
b+, —2 2k — 2
1 th kZ . 22u+3v—3 t —Ztv—l J 7 . Qk‘ L+v—1 .
1+ O(K' + & /)] (nt) H( @_1)< ) /(h4)

ji=1
Let N, denote the expected number of pairs of packings of any configuration in

which the number of unshared regions is v, so
(17) E(Y?) = iNv.
v=0
First of all, Ny counts the number of pairs of identical packings, so
(18) Ny =EY.

The configurations in which » = 1 are those with a; shared intervals on the left and
ay shared intervals on the right, and with each packing having by = ¢; = k— (a1 +a2)
intervals in the middle unshared region, or those which are similar except that one
or both of the shared regions is empty. The expected number of pairings with
v=1,0=01is at most (EY)? by (10). For £ > 1, the number of such configurations
with ¢ intervals shared is £ + 1 (the number of ways to write { as a; + ay with
ap,a; > 0), and from (16), the expected number of pairs of good packings in a

particular configuration, divided by (EY)27 is at most
[1+ Okt + & /n)] - 2 (nt)~* (bl W 2) - (2kY'/ (2: _12)

< [1+ O(k + k*/n)] - (8k/nt)" ,

since u < £ and by, ¢; < k implies

b1+C1—2 < 2k —2
by — 1 “\k-1)"
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SO

(19) NJ/J(EY) < 1+ i(ﬁ + 1) - [1+ O(k*t + k*/n)] - (8K /nt)*

=1

= 14+ [14+ Okt +k*/n)]-[(1 - 8k/nt)~? — 1],
provided we assume
(20) 8k/nt < 1.

(Later we will specify more precise values for k and t.)

Now for fixed v > 2, there are 4 ways in which the regions at the ends of a
configuration can be shared or unshared, and at most k£ possibilities for each of «;,
b; and ¢;; hence the number of configurations is at most 4k“*?”. Moreover u < v+1,
so the number of configurations for fixed v is at most 4&*'**. From (16), the expected
number of pairs of good packings in a particular one of these configurations, divided

by (EY)?, is at most
S (b ey —2 2k — 2
2 2 L 92u+3v-3 —Lau—1 J 7 . L+v—1
(14 O(k°t + k%/n)] -2 (nt)~"t j|:|1( b -1 ) (2k) /(k—l)

[1 + O(th + kZ/n)] . 22(v+1)+3v—Bkv—l(Qk/nt)Ztv—l H;:l 2bj+0j—2 . 22+v—1
S 22k—2/k

2
(since ( m) > 2% /(m + 1), as is easily proved by induction)
m

< [+ Ok 4+ K2 /n)] - 270 gy =gyt L 2h—2t=2v  gldv=1  92=2k
(by (11) and (20))

= [+ 0kt +k*/n)]- 27 F" k!

< [T+ O(K*t 4+ k*/n)] - 2%k 1.
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Thus
N,J(EY)? < 4k [14 Ok + k*/n)] - 2% ko
< [+ Okt + k2 /n)] - 222kt
(21) SONJEY)Y < [+ Okt +k/n)]-2"k"t/(1 — 2*k*)

= [14+ Okt + k*/n)] - O(k°t).

Substituting (18), (19) and (21) into (17) yields

(22)
E(YZ)/(EY)2 =1/EY +1+[1+ O(kzt + kz/n)] (1= 8k/nt)_2 14 O(k9t)] )

When we set k = [logn]| and t = clogn/n for some constant ¢ > 28 (the theorem

is trivial for ¢ < 28), and use Corollary 3, this becomes
E(Y")/(EY)? = (1+0(1)) (1 -2/c)””
as m — 0o. An easy calculation shows that
(1-8/¢)™ < 1+28/c

for ¢ > 28, so

E(Y*)/(EY)* < 1+ 28/c
provided n is sufficiently large. We now apply Chebyshev’s inequality to get

o’(Y) _ (EY?) - (EY)*

Pr(Y =0) < (FY )’ = (FY ) < 28/¢

and therefore
Pr(Y >0)>1-28/¢

for sufficiently large n. O

The bound 1 — 28/¢ of the theorem was chosen to simplify the presentation. A
more judicious choice of k leads to a tighter probability bound of the form 1 —

O(—=) in the theorem, and 1 — O(

cloge

—L—) in its corollary. This improvement is
clog?e¢

used in the proof of the following.

2

Theorem 3. As n — oo, E[W,] = 0 (1&‘5—")

n
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Proof. Corollary 1 implies that E[W,] = Q (1&‘5:—”) We will use

(23) E[IW,] = / Pr(W, > s)ds

to get an upper bound. We divide the range of integration into three regions, where

¢y > 0 is a constant to be chosen later:

colog®n colog’ n
0§5§0 & , 0108 §5§n_3/5, and n™3% < s< 1.
n n

In the first region we simply use

(24) Pr(W, > s) <1,

which is enough to get
colog?n/n ,

(25) / Pr(W, > s)ds = O(log"n/n) .
0

For the second region, we borrow results from the proof of Theorem 2. The

method there (in particular, (22) and Chebyshev’s inequality) implies that

(26)  Pr(W, > (k+ 1))
< Pr(Y =0)

< %Jr [1+0 <k2t+ %2)] . [(1_ %)_2 _ 1—|—O(k9t)]
0

_ % + [1+ 0 (k2t+ %2)] : [ (%) + O(kgt)]

provided k/nt is sufficiently small. Take

3logn log” n/n
67

k41

k=1 ], t=

log ¢

for some ¢, ¢ < ¢ < 712/5’/10g2 n. If ¢q is sufficiently large, then for ¢ in this range

k 1
i = (o)
nt clog” ¢
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is sufficiently small, O(k*t) and O(k?/n) are O(1), and O(k°t) is at most O(clog'® n/n).
Moreover, by Corollary 2, for ¢ sufficiently large,

logEY = Fklog(nt)+ logt — (kloghk — k) + O(1)

> klog(nt/k) —logn+ k + O(1)

> kloge—logn+ O(1)

> (2logn/logc)loge —logn + O(1)
> logn+ O(1).

Thus 1/EY = O(1/n) and (26) becomes

10
(27) Pr (Wanlogzn/n) :O(l_|_ 12 _I_Clog n) '
n - clog ¢ n

Hence

n—3/5
(28) / Pr(W, > s)ds

s=colog?n/n

n?/5/log?n 1 1 cloglo n
- - d(clog’
/c:cu O("—I_clogzc—l_ n ) (clog™n/n)

_ 0 n=3/5 g n?/s 2loglon log” n
log”n log”n n n

_ O(logzn) ‘
n

For the third region, we show that there exists a 3 > 0 such that

(29) Pr(W, > n=3/%) = O(e="""") .

In fact, we show that there exists a packing of two intervals with wasted space less
than n=3/% with high probability (that is, with probability one minus a quantity
exponentially small in 2'/%). In what follows we make tacit use of standard Chernoff
bounds (or easy extensions of such bounds) on sums of Bernoulli random variables;
see e.g. Appendix A of Alon and Spencer [1], in particular Corollary A.14, p. 239.

Set ¢ = 1n=3/5. Bach of the first [n/2| intervals has left endpoint in [0,] and
right endpoint in [1/3,2/3] with probability 2¢/3, and these events are independent,
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so there will be at least nt/6 such intervals with high probability. Take the first
N L' |nt/6] of them, and associate to each the interval of length ¢ to the right of
its right endpoint. Since Nt = O(n~'/) < 1/6, each of the associated intervals is
disjoint from all the previous ones with probability at least 1/2. Hence at least N/4
of them are disjoint, with high probability, and their union 5 is of total length at
least (N/4)t. Each of the remaining [n/2] original intervals has its left endpoint in
S and its right endpoint in [1 — ¢, 1] with probability at least (N/4)t-t = O(n=%/?),
so there will be Q(n'/®) of them, with high probability. Any of these intervals I,
together with the interval I} whose associated interval contains the left endpoint of

I,, forms a packing with wasted space at most 3t = n=3/% proving (29).

Finally (29) implies that

Combining this with (23), (25), and (28) shows that E[IV,] = O(I&g:—”), as de-
sired. [

4. THE CIRCLE CASE

For contrast—both in ease and in results—we consider the effect of replacing the
unit interval by a unit-circumference circle, say by identifying 0 with 1in [0,1]. Then
we define arcs Iy, ..., I, instead of intervals, letting I; be directed left to right from
Xo;_1 to Xy;. It turns out that the arc-packings behave better than the interval-
packings with respect to independence, and thus a more precise quantitative analysis
is possible; we content ourselves below with a rough statement of the behavior of
optimal arc-packings.

Again we choose randomly a sequence of k arcs from among I;,...,I,; here we
obtain a packing (disjoint arcs in increasing order, mod 1) with probability 2k/(2k)!
since the X;’s must be in circular order. In that case there are k lengths by, ..., b;
but only k gaps ay, ... ,ay, letting a; = X1 — X5, (mod 1); the wasted space is y_ a;.
We have:
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Theorem 4. Let n random arcs be chosen in a circle, their endpoints taken in-
dependently and uniformly. Then for any € > 0 there are reals a and  and an
integer m such that for all n, with probability at least 1 — ¢, the number of arcs
in the optimal packing will be less than m and its wasted space W, will satisfy
a/n < W, < g/n.

Proof. Let X; be the number of packings of k arcs with wasted space less than a/n,
and let X = >°7_, X;.

Proceeding as in Section 2, we have

2k [0 2k (1 = 2) e

EX;, = n(n—1)---(n—k+1)- B [Tab=1(1 — o) —1de

< b 2k folm pk=1dy
- (2k) (k= 1)12/(2k)!

Oék

k(k — 1)

and thus in particular

(by Lemma 1)

EX:iExk gzn:ak <a/(l-a).

k=1 k=1
Taking a = (¢/3)/(1 + (¢/3)) ensures that Pr(W,, < a/n) < ¢/3.
On the other hand, the wasted space of a single random arc is uniform on [0,1];

hence taking k = 1 we already have

B B -
Pr(ang)Zl—(l—g) >1—e”

so that, taking § = —log(e/3), we obtain Pr(W,, > 5/n) < €/3 as well.
Finally we choose m so that

00 ﬁk
Zm<€/3

k=m
guaranteeing that with probability at least ¢/3 no packing of m or more arcs will

have wasted space less than G/n. O
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