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ABSTRACT
As the number of wavelengths in OBS systems increases, the uti-
lization achievable for a given blocking probability can be made to
approach 100% . This paper shows that this property applies to a
wavelength allocation algorithm of greedy type . Another property
of this rule, one shared by most other wavelength assignment al-
gorithms, is that, since lost traffic tends to occur near destinations,
where the resource usage wasted by such traffic is large, very low
blocking probabilities are important for efficient operation. To help
identify regions of low blocking probability, we derive an asymp-
totically exact condition for zero blocking probabilities; it has a
form reminiscent ofthe stability condition ofthe M/G/1 queue.
Keywords - Optical networks, Wavelength division multiplexing,
Optical burst switching, Stochastic modeling, Fluid limits, Hydro-
dynamic limits .

1. INTRODUCTION
Optical burst switching (OBS) has attracted much attention re-

cently [l, 2, 3, 4, 5, 6, 7, 8, 9] as a means of reducing the overhead
associated with circuit setup on very high data rate all-optical net-
works. Although OBS is motivated by dense wavelength division
multiplexing (DWDM), which is capable of carrying hundreds of
wavelengths over a single fiber, few studies to date have considered
systems with more than 32 wavelengths [8, 9] . This paper consid-
ers large systems, and shows that issues which are important for
small systems, such as wavelength assignment, sort themselves out
for realistic sized systems. The paper also discusses problems that
arise from the disparity in service provided to bursts with short and
long offsets .
OBS switches bursts ofoptical data which are long compared to

the length ofa packet, but may be short compared to the end-to-end
delay and the electronic processing required for connection estab-
lishment . Before a burst is transmitted, a connection request is sent
to alert switches on the route to establish a lightpath. Each switch
is told the size of the burst and an offset time which specifies the
advance notice, i.e ., the delay until the arrival of the burst . When
the burst is received at the switch, it passes straight through withno
buffering and no conversion to electronic form. If the lightpath has
not been established at the switch for any given burst arrival, the
burst is simply dropped. Thus, blocked bursts can waste resources
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elsewhere along the lightpath where reservation requests were ac-
cepted. At the source, a burst is sent chasing after its (slower) con-
nection request following a delay chosen so that the burst can not
catch up with the request before the latter reaches its destination.
The offset time therefore decreases on successive hops . As ex-
pected, this means that the failure to satisfy a connection requestin-
creases in probability as the request nears its destination. There are
certain ways of dealing with this undesirable effect, e.g ., see [1l],
but the problem emphasizes the need to keep blocking probabilities
tow.
When the connection request arrives, a switch must select the

outgoing wavelength for the connection. The Horizon rule [10],
which we analyze in this paper, gives arguably the simplest ap-
proach . As is typical, Horizon commits wavelengths at the times
reservations are made. Such algorithms are more easily imple-
mented than those not committing wavelengths until burst arrival
times. A greedy rule of the latter type will be discussed briefly in
the section containing final remarks.

Throughout the remainder ofthe paper, k denotes the number of
wavelengths . Horizon partitions the current set of reserved inter-
vals into subsequences, one for each wavelength, and is defined as
follows .

Horizon algorithm: Define the horizon hi(t), 1 < i < k, at time
t to be t if there are no currently reserved intervals on wavelength
i; otherwise, it is the latest reservedtime (right end ofthe rightmost
reserved interval) on wavelength i . A requestfor interval (a, b) at
time t is accepted and allocated to the wavelength with the largest
horizon hi (t) no greater than a, ifsuch a horizon exists. Ifno such
horizon exists, the request is blocked. Allocation on wavelength i
simply means adding the new interval as a new latest reserved in-
terval to the state ofwavelength i and updating hi(t) to b.

A burst succeeds in reaching its destination only if all connection
requests along the route have been accepted, but it makes the at-
tempt irrespective ofwhether any of itsrequests have been blocked.
Apart from this last property, each switch acts as a standard reser-
vation system for connection requests; in the broader setting, the
term "offset" is replaced by "advance notice ." Note that Horizon
does not attempt to exploit the voids it creates by using them for
the intervals requested by later arrivals . Techniques for making use
of voids include Just Enough Time (JET) [1] and Least Available
Unused Channel with Void Filling (LUAC-VF) [5]. The obvious
downside of such methods is the significantly greater time/space
complexity of void-searching algorithms. Moreover, in the asymp-
totic limits studied here, these methods offer no improvement .

Indeed, a key observation of this paper is that the relative amount
of void time per wavelength under Horizon tends to zero as the



number ofwavelengths increases while holding the per-wavelength
traffic intensity fixed. In this limit, the capacity achievable by Hori-
zon tends to that achievable by optimal scheduling. For several in-
teresting network topologies, simulation results indicate that as few
as 64 wavelengths may be enough for the asymptotic regime to give
useful approximations to Horizon.
Amathematical model ofthe OBS system is presented next .

2. OBS MODEL
In our model of the Horizon algorithm at an OBS switch, the

connection requests for transmission intervals arrive in a Poisson
stream; the offset times ti and the durations d of the requests are
independent of arrival times and are drawn from a given joint dis-
tribution.

To
avoid distractions, we assume that r andd are inde-

pendent, although much of our analysis would still apply were this
assumption not to hold. For the same reason, we assume that the
distribution of ti +d is strictly positive over a finite interval; the
right endpoint of the interval is denoted by r* . Finite support is
not a restrictive assumption in applications, but the strictly-positive
assumption entails approximations in a discrete world.
Our interest is in large-k asymptotics, more precisely the hydro-

dynamic limit, so the arrival rate scales with k. In particular, we
take the arrival rate to be kX for given X > 0, and thus keep the per-
wavelength offered load constant as k --> -. A useful measure of
the load at time t is given by the process

and therefore

N(k) (s,t) =#{i : h;(t) > t +s}

or its scaled, per-wavelength version,

n( k) (s,t) = IN(k) (s,t) .

which we call the occupancy process . Thus, n(k) (s,t) is the fraction
of the wavelengths to which a request arriving at time t with offset
s cannot be assigned. As a concession to tractability, we study a
continuous, differentiable hydrodynamic limit,

n(k)(s,t) --+ n(s,t)

as k -> ~, and compute desired quantities in this deterministic limit
as large-k approximations . The formalitiesconcerning convergence
to this limit are deferred to a more detailed report . Our objective
here is to give convincing, albeit heuristic, arguments in support of
the stated properties ofthe limit process .
The wavelengths at time t +At with horizons exceeding t +s

consist of those with horizons exceeding t +s+At at time t plus
those assigned arrivals in [t,t+At] with requested intervals that ex-
tend a horizon less than t + s to a horizon greater than t +s. Let
f(k) (s, t) be the probability that an arrival in [t, t + At] is accepted
and requests an interval extending a horizon from a point earlier
than t +s to a point later than t +s. Assuming that, in the hydro-
dynamic limit, f(k) (s,t) converges to a function f(s, t) then we can
write

n(s,t+At) =n(s+At,t)+).Atf(s,t)+o(At)

an (s, t) - an (s, t)
+Xf(s,t)

at as
For given boundary conditions, the problem comes down to find-

ing the function f(s, t) . Aworkable approach is most clearly seen
in the stationary regime, as in that regime we acquire a very useful
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monotonicity property. Eliminating the dependence on t in (1), we
arrive at the simple ode

d_n =
_Xf(S)

	

(2)ds
where n(--) = 0 is enough to evaluate the constant of integration.
We see immediately that the occupancy function n(s) must be non-
increasing in s and that this is the limit of a standard stochastic
ordering property of classical reservation systems: the greater the
advance notice given, the greater the likelihood that a request is
accepted. Precisely, at time t in the stochastic occupancy process,
the fraction of reserved intervals covering t +s is stochastically at
most the fraction covering t +s' for any0 < s' <s. To see why this
must hold, it is enough to observe that the arrival process is homo-
geneous in time, and that accepted requests with reserved intervals
covering t +s occurred in an interval [t +s -r*,t] which is properly
contained in the interval [t+s'- r*,t] where requests with reserved
intervals covering t +s' arrived' .

Since n(s) is nonincreasing in s, if there is a "saturation" region
of R+ where n(s) = 1, then it must be an initial interval [O's"] .
Thus, n(s) is constant at 1 throughout [O,s *], decreases monoton-
ically 2 to 0 at t + r*, and remains at 0 thereafter. Note that s*
can be regarded as the deterministic limit of the random thresholds
min,<i<k{hi(t) -t} in statistical equilibrium: arrivals with offsets
less than the current threshold are blocked. Then blocking proba-
bilities for requests with offsets less than s* tend to 1 as k -~ ~.
Now consider what happens to void times as k becomes large .

The horizon profile (hi, ilk), 1 < i < k, where the h; are distributed
as the hi (t) -t in decreasing size order, is a staircase function: when
a new request is assigned awavelengthby Horizon, a void bounded
by some step width is created . Step sizes decrease as k grows large;
in the hydrodynamic limit, k -4 -, the profile becomes a continu-
ous trajectory (h(y),y), 0 <y < 1, identical to the the occupancy
trajectory (s,n(s)) : If s* > 0, the limiting profile has value 1 out
to h(1) = s* and from that point decreases monotonically to 0 at
h(0) =r* (i .e., h(y) increases monotonically from s* to r* as y de-
creases from 1 to 0) . This continuous limit implies that the hydro-
dynamic limit of the equilibrium probability f(k) (s) that an arrival
increases the count N(k)(s) is simply the joint probability that a
requested interval is to the right of s* and covers the point s, i.e.,

f(s)=P(s*<ti<s<ti+d)

Note that f(s) depends on the arrival rate through the limit thresh-
olds,, . When s* > 0, continuity of the limitprofile also implies that,
under Horizon, the percentage oftime wasted in voids tends to 0 as
k -+ -. The maximum rate at which reserved intervals expire on
any wavelength is 1/E[d], so

?.E[d] > 1

is the condition for s* > 0 in the hydrodynamic limit. In this case,
the limiting arrival rate ofaccepted requests isL(s*)X, where L(s) =
P(, c > s) is the tail of the offset distribution . This arrival rate must
equal the limiting departure rate 1/E[d], and so s* is the solution to
L(s) = (XE[d]) -' Thus, we have the following complete solution
to (2) .

If ,E[d] < 1, then s* = 0 and

n(s) =XJ

	

f(x)dx

	

(3)

'The assumption of statistical equilibrium is needed here .
20ur assumption that the distribution of ti+d is strictly positive is
at play here.



and if XE[d] _> 1, then s, is the solution to L(s) _
(XE[d]) -t and
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1, 0<s<s*
n(s) _

	

Xfl* f(x)dx

	

s > s,

f,x (a + l -x)da =

f,l (a + 1-x)da =

3. FINALREMARKS

Example. To illustrate the calculations, suppose ti and d have the
uniform distribution on [0,1] . We computef first, as follows . As-
sume s, > 0. Then

(x -s*)[1 -

	

(x-s,)],
s* <x<1

(1-s*)[1-x+ 71(1 +s* )],
1<x<s*+1

Another greedy algorithm interesting for its simplicity commits
wavelengths only at burst arrival times. It is defined as follows.
Greedy algorithm: A connection request arriving at time t at-
tempting to reserve an interval [t +s,t +s+d] is accepted if and
only if all points in the interval are covered by at most k - 1 re-
served intervals.

If the request is accepted and the interval [t + s, t +s+d] re-
served, then at time t + s, a wavelength, say the j-th, will be made
available to the corresponding burst throughout [t+s,t+s+d]. At
time t +s+d, the reservation will be clearedfrom the system and
the j-th wavelength returned to a pool ofavailable wavelengths .

Greedy and Horizon have the same equilibrium hydrodynamic
limit. However, it is not hard to see that Greedy is, implicitly, a
void filling algorithm, so its large-k behavior requires a different
argument than that for Horizon. We are currently writing up an
analysis of the Greedy rule . We are also conducting an experimen-
tal comparison ofHorizon and Greedy. To complete the analysis of
both rules we are also deriving estimates of the total void time . Fi-
nally, we are investigating transient solutions n(s,t), which appear
to be significantly more elaborate than the results for the stationary
case.
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Figure 1: Limiting occupancy function n; X. =4.
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