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Abstract A ring of N cells rotates in discrete steps past N queues,
moving customers from their queues of arrival to randomly chosen desti-
nations. The model has applications in communication systems, proces-
sor interconnection networks, and flexible manufacturing. The arrivals to
the queues are independent and stochastically identical. The total num-
bers of arrivals to the system during successive steps are independent,
identically distributed random variables with mean A and finite second
and third moments. A greedy policy governs the insertion of customers
on the ring: A customer waiting at the head of a queue enters the next
unoccupied cell to appear at that queue. The customer then remains
on the ring a random travel time d, leaves, and frees its cell for another
customer.

A necessary condition for the system to be stable is AE[d] < N. If no
customer travels further than once around the ring (d < N), A < 1 is suf-
ficient for stability. Other results assume d to be stochastically bounded
by an exponentially distributed travel time with mean N/u. Then A < p
is sufficient for stability. In the limit of large NV, stable systems with fixed
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A and p have expected numbers o(1) of waiting customers per queue; then
a customer’s wait in a queue is usually negligible compared with his travel
time. Simulations suggest that the mean number waiting in a queue may

even be O(1/N).

Keywords: Processor rings, loop communication systems, cyclic ser-
vice, stability, asymptotics.



1. INTRODUCTION

A sequence of N queues is arranged around a circular conveyor, or ring of
cells numbered 1,2,..., N, N > 2. Each queue has access to one cell, but
the ring rotates unidirectionally in discrete steps so that the queue at cell
i will be at cell i — 1 on the next step (or at cell N if i = 1). The purpose
of the ring is to transport customers from one queue location to another;
once placed in a cell a customer remains there for a random number d
of steps, its travel time, and then leaves. In each step, events occur in
the following sequence: (i) the ring rotates one position as the queues
receive new arrivals, (ii) customers that have reached their destinations
leave, and (iii) each nonempty queue places one of its waiting customers
on the ring if it is opposite an empty cell.

The placement rule in (iii) is called the greedy policy, since an empty
cell is supplied with a new customer as soon as that cell encounters a
nonempty queue. Making (iii) follow (ii) prevents departing customers
from blocking new arrivals to the ring, i.e., a cell can discharge a customer
and accept a new one both in the same step.

At each step, the N queues receive i.i.d. numbers of new arrivals with
means A/N. Then ) is the mean total arrival rate to the system. The
number of arrivals to a queue at each step is also assumed to have O(1/N)
second and third moments; this assumption will be needed for the exis-
tence of the first and second moments of the queue-length distribution.
Customer travel times are i.i.d. random variables; cases of special interest
include the uniform and geometric distributions.

Each cell of the ring acts as a server but the ring is far from the
usual queueing system with N parallel servers. Idle servers and occupied
queues can coexist if these servers and queues are in different places. The
rotating ring creates an interdependence among the N queues that makes
a complete probabilistic analysis appear intractable. A principal source
of difficulty is a clumping effect that tends to concentrate the occupied
cells of the ring into isolated trains of nearby cells.

The lesser goals of stability conditions and asymptotic behavior hold
more promise. Section 2 includes simulations of ring systems with d
uniform on {1,..., N — 1}. These indicate that the queues are stable if
A < 2; indeed, the mean queue lengths tend to 0 as N — oco. No proof
of that is given but Section 3 allows any distribution with d < N and



proves that A < 1 is sufficient for stability. Sections 3 and 4 also consider
travel times d that are dominated by a geometrically distributed time
with mean N/pu; Sections 3 and 4 show that, if A < pu, then the queues
are stable and their mean lengths approach 0 as N increases.

A number of systems are modeled by rings. Pierce [21] proposed
a communication system featuring interconnected rings with informa-
tion packets as customers; combinatorial studies of such systems can be
found in [4, 7, 21]. In other applications, customers might be automo-
biles at a traffic circle or production items on a conveyor. Recently,
rings have found important applications in local area computer networks
[2, 3, 8, 9, 12, 15, 20] and in parallel computers, replacing earlier bus-
based interconnects; examples include the Scalable-Coherent-Interface
(SCI) ring [5, 14, 22], the Kendall Square Research (KSR-1) system [17],
and the Hector system [23]. Arrays of computers were studied in [16, 19]
using a probability model very similar to the present one. The model
here, like those in [16, 19] is idealized; more realistic models are briefly
discussed in Section 5 as directions for further research.

2. RING BEHAVIOR

Figure 1 shows the ring system in operation for one complete revolution.
Each column represents one cell, with time increasing downward. Rows
describe the cells just as they leave for their next queues. A slash mark \
denotes a full cell at a queue containing one or more waiting customers.
A vertical mark | denotes an empty cell opposite a queue that is also
empty. All other cells are full and are opposite empty queues. Small
circles represent new arrivals to queues. Since Fig. 1 is drawn from the
viewpoint of an observer fixed in the ring, the queues appear to be moving
to the right.

Figure 1 is a computer simulation of the greedy policy; occupied queues
fill empty cells as soon as they arrive. The greedy policy, used throughout
this paper, is a natural one. All others let queues waste opportunities to
unload customers. However, one can easily construct examples in which,
for given arrivals and destinations, the greedy policy causes more total
customer delay than some nongreedy policy. (An example appears in
Section 4.)

Customers are assumed to leave the ring without blocking waiting cus-



tomers from entering their emptied cells in the same step. A system with
blocking departures would be equivalent to our nonblocking system with
all travel times d increased to d + 1 (the extra step provides the required
blocking at step d but leaves the cell available at step d 4 1).

When the queues are stable, an application of Little’s theorem to the
ring alone shows the mean number of customers on the ring to be AE[d].
In Fig. 1 with A = 1.5 and E[d] = N/2, one quarter of the cells are
expected to be empty. Since the ring holds at most N customers, a
necessary condition for stability is

A< N/E[d] . (2.1)

In many queueing problems, queues are automatically stable if the traf-
fic arrives slower than the maximum rate of the servers. Here too, (2.1) is
perhaps sufficient for stability, but that requires proof. A problem arises
because empty cells may remain idle while queues, located elsewhere, are
occupied. A trivial case in which (2.1) is sufficient for stability occurs
when d = 1 for all customers, since in that case each cell is able to accept
a new customer at each step.

The uniform distribution of d on {1,..., N —1} is an important special
case studied in other models of processor interconnection networks (see
[16, 19]). The necessary condition for stability in this case is A < 2, by
(2.1), but whether this condition is sufficient, and whether it implies that
expected queue lengths tend to 0 as N — oo remain to be proved. Insight
into the problem with uniform distributions was provided by simulations.
The simulations used A = 1.0, 1.9 with Poisson-distributed arrivals to
each queue at rate \/N per step. In tests on rings of reasonable size,
N = 10, 50, 100, 200, 10° consecutive steps of the ring were simulated
and 100 snapshots of the state of the system were recorded at intervals of
10" steps. Other tests to show asymptotic behavior took N = 8K, 16K,
32K, 64K ; simulations used 10 snapshots 10N steps apart in a total of
100 complete ring rotations. The simulations were costly, requiring about
10° random numbers for some values of N. A MasPar MP-1 parallel
computer was used.
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Figure 1: One complete revolution of a ring system with N = 50, arrival

rate A = 1.5, and uniform destinations.

Table 1 shows total numbers of customers in all N queues, averaged
over the available snapshots. The accuracy of this average as an estimator

for the mean number of customers is indicated by the number in paren-

theses; this is the standard deviation of the numbers from the snapshots.

There was no tendency for queues to continue growing as the numbers
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of trials increased. This observation strongly suggested that the queues
were indeed stable and that A < 2 was sufficient as well as necessary for
stability. Dividing the average total queue lengths in Table 1 by the ap-
propriate value of A gives estimates of average waiting times, by Little’s
theorem.

Table 1 is strong evidence that the expected total number waiting is
bounded by a constant as N — oo. This is powerful support indeed
for the conjecture that individual expected queue lengths tend to 0 as
N — o0, and at a rate O(1/N). This result implies that expected waiting
times are bounded by a constant as N — oc. To see this, look upon an
individual queue as a single-server system so that a customer’s time in
the system is his waiting time; then apply Little’s theorem.

Table 1: Total Queue Lengths from Simulations

A=1.0 A=1.9
N average median average median
10 1.09(.015) 1 50.7(3.6) 47
50 1.30(.019) 1 81.6(5.6)  79.5
100 1.33(.02) 1 90.1(7.1)  84.5
200 1.35(.02) 1 96.6(7.0) 97
8192 1.36(.027) 1 101.5(8.6) 118.5
16384 1.36(.017) 1 108.8(6.6) 104
32768 1.35(.023) 1.5 106.9(6.6) 109
65536 1.35(.022) 1.5 105.3(4.5) 98

A striking feature of the simulations was the appearance of long trains
of consecutive occupied cells on the ring. These trains are somewhat ev-
ident in Fig. 1. The clumping that appears in Fig. 1 is understandable
because, when a queue must wait for several steps to discharge a cus-
tomer, it often adds a customer at the end of the train that caused the
delay.

Statistics on train lengths were obtained from the snapshots used for
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Table 1; these are summarized in Table 2. Each occupied cell following
an empty cell counted as the start of a new train; also a ring with all
N cells occupied counted as a train of length N. It is interesting that
a mean train length in Table 2 does not differ greatly from the mean
length 1/(1 — A/2) that one can derive for a long row of cells occupied
independently with probabilities equal to the fraction of occupied cells,
i.e., with probabilities AE[d]/N = \/2. However, the long trains are
evident from the large maximum and small median train lengths. With
independently occupied cells, the median train length would have been
about 69% of the mean; by contrast, Table 2 shows that for A = 1.9 and
large N, the median is less than 38% of the mean. In such cases, train
lengths are distributed with long tails; there are a few very long trains
but the remaining customers scatter about the ring in a large number of
short trains.

Table 2: Train Lengths from Simulations

A=1.0 A=1.9

N average median maximum average median maximum
10 2.345 2 10 8.70 10 10
50 2.476 2 25 19.10 14 50
100 2.390 2 18 21.5 12 100
200 2.303 2 21 21.8 10 200
8192 2.39 2 28 22.0 8 549
16384 2.38 2 29 23.2 8 1052
32768 2.39 2 35 22.7 8 927
65536 2.39 2 43 21.9 8 973

The independent-cell idea can be incorporated into an approximate
ring model that has a O(1) mean total number of waiting customers as
N — oo. Replace the cells of the ring by new cells that are occupied
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independently at each step, and with the same probability AE[d]/N as
the original cells. This simplification removes the tendency to form very
long trains and allows the N queues to operate independently of one
another. See [22] for similar approximations. New customers arrive to
each queue independently at rate A/N. To keep the model simple, let the
number of arrivals to a queue at each step be 1 with probability A/N and 0
otherwise. To obtain a system resembling one with uniformly distributed
destinations, take A/2 to be the probability that a queue finds its cell
occupied. With these assumptions, the length of a queue increases by 1
with probability (A/2)(A/N) at each step, and the length of an occupied
queue decreases by 1 with probability (1 — A/2)(1 — A/N) at each step.
Otherwise queue lengths remains the same. For A < 2 the stationary
queue-length distribution is then found to be geometric with the mean
total number in all N queues approaching A\?/(2 — \) as N — oc. The
means approach 1 and 36.1 for A = 1 and 1.9. The agreement with the
average queue lengths in Table 1 is much better when A is small. The
greater discrepancies at larger A suggest that the underestimate of the
tail of the train-length distribution has a major effect for large A.

3. STABILITY

Define the system state Z(t), t = 0,1,2,..., at the beginning of step ¢
as a pair consisting of the queue state and the ring state. The queue
state gives the number in each queue and the ring state indicates for
each cell whether it is empty or occupied, and in the latter case how long
its occupant has been on the ring. The ring process {Z(t)} is clearly a
Markov chain; this section proves sufficient conditions for ergodicity in
the two cases described in Section 2, beginning with the case d < N for
all customers.

Theorem 1. Let d have any distribution on {1,....N}. If A < 1, then
{Z(t)} is an ergodic Markov chain. The stationary mean value of the
number ) of customers waiting in each queue is bounded by

< Lo?
T 2NYL—-1-1LX\)

E[Q] + L\,

where o2 is the variance of the number of arrivals to the system in each
step, and L = [1/(1 = X\)| + 1, with |x] the integer part of x.
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Before proving Theorem 1, we note that a ring with A < 1 can easily be
stabilized by adopting a nongreedy gating policy that forbids customers
from entering the ring except at times 0, N,2N,.... Since d < N, all
queues will find a cell available once every N steps. Between these times
a mean number A < 1 of new customers will arrive at each queue. Then an
easy analysis of individual queues shows that each is stable. By allowing
empty cells to pass occupied queues without accepting new customers,
the gating policy appears to be less effective than the greedy policy, which
suggests that the ring with the greedy policy is also stable for A < 1.

However, the two policies are hard to compare exactly, especially dur-
ing heavy traffic. For example, consider the test case where d = N for all
customers and A < 1 is necessary and sufficient for stability under both
the greedy and gating policies. In heavy traffic, during periods when all
queues are nonempty, the ring under the gating policy acts as N parallel
servers, operating independently except for the synchronization created
by the ring. Under the same conditions, the behavior of the greedy pol-
icy can be quite erratic, since one or more nonempty queues can fill all
of the cells, locking out the remaining queues for long periods of time.
(This type of behavior is the focus of the combinatorial analysis in [4].)
Theorem 1 proves that, in spite of this potential for erratic behavior,
the stability condition under the greedy policy remains the same as that
under N independent parallel servers.

Finally, note that large-N behavior for fixed A < 1 argues strongly
in favor of the greedy policy. Section 2 conjectured that the expected
waiting time is bounded by a constant as N — oo. On the other hand,
under the gating policy, arrivals to an empty queue must wait about N/2
steps on average. It follows easily that the expected waiting time must
grow linearly in N, under the gating policy.

Return now to Theorem 1.

Proof. Two lemmas are required.

Lemma 1. Suppose some queue remains nonempty for kN steps, where
k is an integer > 1. During that time, each cell of the ring receives at
least k — 1 new customers.

Proof. During steps N+1,..., kN, each cell visits the nonempty queue
k — 1 times and departs occupied. The occupant of a cell cannot have
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been there for more than a rotation, so it must have entered after the
cell’s last visit to the queue. Then each of k — 1 visits accounts for a
different new occupant. S

Let M (t) and A(t) denote respectively the number of customers waiting
in all queues after step ¢ and the number of arrivals to all queues during
steps 1,...,t.

Lemma 2. For all k > 1,

M(EN) < A(EN) + max{0, M(0) — (k — 1)N} .

Proof. Write M (kN)= A(EN)+M(0)—M' where M’ is the number of
customers that left the queues on steps 1,2, ..., kN. If all M(0) original
customers have left, M’ > M(0). Otherwise, some queue contained an
original customer for kN steps and Lemma 1 shows that M' > (k—1)N.
Then M(0)— M' < max{0, M(0)—(k—1)N} and the lemma is proved. =

To finish the proof of the theorem, consider the sequence M (0), M(kN),
M(2kN), ... of numbers waiting at times kN steps apart. During steps
nkN +1,...,(n 4+ 1)kN there are A((n + 1)kN) — A(nkN) = a(n) new
arrivals to the queues. Define a new sequence {W(t)} by

W(0) = M(0),
W(t+1) = a(t+1)+max{0,W()—(k—1)N}, t=0,1,2....

The inequality M (tkN) < W (t), t > 0, follows from Lemma 2 by induc-
tion. Note that W (¢) has the same form as the sojourn time of customer
t in an ordinary queue where one customer arrives every (k — 1)N units
of time, service is by order of arrival, and {a(t)} is the sequence of service

times. If £ > 1/(1 — \), then
(k—1)N — Ela(t)] = (k= 1)N = XkN >0,

i.e., the mean service time is less than the time between arrivals. Standard
theory [1] shows that, under this condition, {W(t)} is an ergodic Markov
chain. This means that {W(#)} returns infinitely often to a finite set
near the origin and that the time between consecutive visits to this set is
integrable. Since M (tkN) < W (t), t > 0, and since there is only a finite
number of ring states, it is easy to see that both {M(#)} and {Z(¢)} must
also have this property. Then {Z(t)} is an ergodic Markov chain.
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By the above arguments the probability distributions of M (¢) and W ()
converge to stationary distributions of random variables M and W, with

M stochastically smaller than W. Now take k = L = |1/(1 = \)| + 1.

Then the stationary mean number waiting in all queues is

2

NE[Q] = E[M] < E[WV] Lo

< LN
s SON(T—1—In

where the bound on E[W] is an immediate consequence of inequality (9)
in Kingman [18]. The bound in the theorem statement follows immedi-
ately. S

Define p, = P{d = k|d > k}, the analog of the failure rate in continu-
ous time. The remainder of this section considers the class of travel-time
distributions for which

pr > p/N, E>1,2,... (3.1)

where 1 > 0 1s a given parameter, i.e., each customer on the ring at any
step has a probability at least u/N of leaving, regardless of how long
it has already been on the ring. Note that the uniform distribution on
{1,..., N} is covered by this model when pu = 1; the theorem below will
give the same sufficient condition (A < 1) for stability as in Theorem 1.

Each cell that visits any given queue is either empty or it will become
empty with probability at least y/N. Then the waiting time at the head
of the queue is stochastically smaller than a geometric random variable
with parameter p/N, independently of the other queues. This suggests
that an individual queue length can be bounded stochastically by that of
a single-server discrete-time queue with geometric service. Theorem 2, to
follow, proves this when the number Y of arrivals to a queue in one step
possesses first three moments satisfying

E[Y]=)/N, E[Y?=0(1/N), E[Y’]=0(1/N) (3.2)

as N — o0o. Most of the important arrival processes, e.g., those having
Y with Bernoulli or Poisson distributions, satisfy (3.2). E[Y?] can fail
to exist only if YV is distributed with a long tail, e.g., if P{Y = i} =
90/[r(i + 1)]*.

Theorem 2. Suppose X < p and (3.1) and (3.2) hold. Then (i) {Z(t)}
is an ergodic Markov chain, (ii) the stationary queue length Q; of the
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i'" queue is stochastically smaller than a random variable X, with first
and second moments bounded uniformly in N, independently of the other
queue lengths. That s,

Proof. Part (ii) is proved below; part (i) follows by standard arguments
which are omitted.

Introduce an artificial mechanism to decide customer departures from
the ring in two stages. At each step, cells draw independent binary ran-
dom numbers G with P{G = 1} = u/N. Consider a customer beginning
his k" step on the ring. In stage 1, the customer examines the G in his
cell and leaves if G = 1. Stage 2 is needed if G = 0; the customer now
makes a random decision to leave with probability (pr —u/N)/(1—p/N),
where p, = P{d = k|d > k} > pu/N. The effect of the two stages is to
make the customer leave with probability p;, as required.

Now replace one of the queues with a new queue that can release a
customer only into a cell with G = 1. Compare the original system with
the new one by starting them in the same state at time ¢ = 0 and letting
them have the same arrivals and the same sequences of G values in the
cells. The times the new queue can release a customer (when G = 1) are
a subset of the times when the original queue can release a customer (the
new queue cannot release a customer when the original queue releases
one in stage 2 nor can it release one if the cell arrives empty but has
G = 0). It follows by induction on ¢ that the number in the original
queue remains bounded by the number X in the new queue. Moreover
X is not influenced by events occurring at the other N — 1 queues.

Note that X is the number in an ordinary queueing system in which
the customer at the head of the queue is considered to be receiving ser-
vice; his service ends and he enters the ring when a cell with G = 1
arrives. A routine analysis of this queueing system gives the generating

function X(z) = Eo P{X =i}z for the distribution of X. Introduce the
i>

generating function Y (z) of the distribution of the number Y of arrivals
to a single queue in one step. The identity relating X (z) to Y (z) is

NX()D(=) = (= A)(1 - 2) (3.4)

13



where
D(iz)=[z4+pu(l=2)/N]Y(z)— =z .

The moment E[X*] is obtainable from the first k derivatives of X(z),
evaluated at z = 1. Differentiate (3.4) k + 1 times to get an identity
for derivatives of X (z). In it, the derivative k + 1 is multiplied by D(z).
Since D(1) = 0, the moment identity only relates the first & moments of
X to the first £+ 1 moments of Y. It then follows from (3.2) that X has
bounded first and second moments. o

Theorem 2 will be useful in a study of the limit N — oc, when the
mean and variance of the random variable X remain O(1). The fact that
the stochastic bound holds simultaneously for all queues will be crucial.

4. ASYMPTOTICS

This section examines the stationary queue-length distribution under the
greedy policy in the limit N — oco. The arrival and travel-time assump-
tions are those of Theorem 2. Then the stability condition (2.1) is satisfied
and the stochastic dominance (3.3) holds.

Theorem 3. If A < p and (3.1), (3.2) hold, then

lim E[Q]=0.

Proof. The proof is by contradiction. Assume that E[Q)] does not ap-
proach 0 as N — oo, and hence that there is a positive constant v, e.g.,

v = lim sup E[Q]/2, such that

ElQ] >v (4.1)

for infinitely many values of N. For the remainder of the proof, N is
restricted to the values for which (4.1) holds. In broad outline, the proof
starts by assuming that the ring is in equilibrium at time 0, and then
examines what happens in the next time interval of oV steps, where « is
a small parameter that remains fixed as N — oo. The proof shows that,
because of (4.1), there are enough admissions to the ring in [0, @N] to
produce a net decrease in E[Q]; but in equilibrium E[Q)] is the same at 0
and aN, a contradiction.
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Let C' denote the set of all customers in queues during [0, aN]; C' is
the union of CY, the set of customers waiting in the initial state, and
the set C, of arrivals during [0, aN]. A customer ¢ is represented by a
pair (s, 1), meaning that the customer arrives at time step t to the queue
that is then opposite cell s. Customers in Cy are given time ¢t = 0. In
diagrams like Fig. 1, customers are points (shown as small circles) in the
array H ={1,...,N} x {0,...,aN}.

Exactly as in the proof of Theorem 2, departures from the ring are
decided in two stages using a Bernoulli random variable G. An event
G = 1 in a cell is called an enabling and denoted by ). An enabling
also has a pair of coordinates, the time ¢ and cell s of the enabling. In
diagrams, enablings in H appear as x’s. When an enabling occurs in an
occupied cell, the cell must evict its occupant. Enablings that occur in
empty cells have no effect. Some customers may depart before their cells
become enabled, if travel times do not have the geometric distribution
with parameter p/N (as do the times between enablings at a cell). To
account for cells that are empty at time 0, let each such cell have an
enabling with ¢ = (0. The set of all enablings in H is denoted by F.

To estimate the number of admissions to the ring during [0, aN], the
greedy policy will be compared with a more tractable one chosen from
the class of policies defined below. Lemma 3 proves that no policy in the
class has a smaller sum of waiting times

S = Z w(gb) ) (4'2)
peC
where w(¢) is the time ¢ spends waiting in queues during [0, aN].
Consider those policies that place customers only into enabled cells
(when a departure from a cell does not coincide with an enabling, the
cell must remain vacant until its next enabling). These policies induce
one-to-one maps, or matchings, between customers admitted to the ring
and the enablings that allow the customers to enter cells. Matchings have
the properties:

(i) If ¢ is matched to ¢, then the cell enabled by ¢ must appear at ¢’s
queue no later than ¢’s arrival there, and no later than a/N.

(ii) Suppose ¢, ¢' are matched to ¢, ¥’ in the same cell, with ¢’ later
than . Then ¢ must occur no earlier than ¢’s departure (which is
enabled by ¢ itself or some earlier enabling).
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The following property trivially implies (ii) and leads to a useful domi-
nance result.

(ii") No two enablings matched to customers in [0, «/N] occur in the same
cell (a cell admits at most one new customer during [0, aN]).

Lemma 3. For given sets C' and E, no matching that satisfies (i) and
(ii") has a smaller sum of waiting times S than the greedy matching.

Remark. Figure 2 shows that the lemma need not hold for matchings
satisfying (i) and (ii) but not (ii'). The nongreedy matching in Fig. 2
gives a smaller sum of waiting times than does the greedy matching, but
the nongreedy matching does not satisfy (ii’).

Proof of Lemma 3. Let m be a policy that only generates matchings
satisfying (i) and (ii’). If = places a customer ¢ into a cell during [0, aV],
let ¢(¢) denote that cell. Both the greedy policy and 7 will be compared
to an artificial policy ©* that sometimes returns customers from cells
to queues. Under 7*, an occupied queue places a customer into the first
available empty cell, just as with the greedy policy. However, if 7 matches
a customer ¢ to an enabling, 7 gives ¢ priority over cell ¢(¢); if a queue
containing ¢ ever meets c¢(¢), then ¢ must enter ¢(¢) even if that requires
evicting a customer from ¢(¢). An evicted customer joins the queue that
¢ just left. Thereafter, ¢ remains in ¢(¢) and can not be evicted for
another customer. Interchanging customers in this way leaves numbers
in the queues and cells the same as for the greedy policy; 7 merely
exchanges customer names. But the sum of waiting times in [0, «N] can

be expressed as
aN N

S=% Y Qi) (4.3)

t=1:=1
where );(t) is the number in queue i after step t. Therefore, 7* and the
greedy policy have the same S.
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Figure 2: Two policies. In the initial state all cells are full and all queues
are empty, except queues 72, 7, and k, which have one customer each.

It now suffices to show that w*(¢) < w(¢) for all ¢ in C, where w*
and w denote the respective times spent waiting in queues during [0, «N]
under 7* and 7. If 7 fails to place ¢ into a cell, then w*(¢) < aN = w(¢),
so suppose ¢ enters a cell under 7. Although 7* may put ¢ on and off
the ring several times, each step that ¢ waits in a queue brings ¢(¢) one
step closer. Once ¢ has waited time w(¢) in queues, ©* places ¢ into
c(¢). Thereafter 7* will never return ¢ to a queue, for (ii’) forbids 7 from
matching two customers to enablings in ¢(¢). Then w*(¢) < w(o). n

Next, define as follows a policy 7 satisfying properties (i) and (ii’). The
remainder of the proof of Theorem 3 will show that the sum of waiting
times under 7, and hence the sum under the greedy policy by Lemma 3,
is small enough to contradict (4.1).
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Policy 7 first subdivides H into aK? squares with sides N/K; K is an
integer that will ultimately be chosen “sufficiently large,” but K remains
fixed as N — oo. Figure 3 shows a typical subdivision. The square H;;
contains the points (s,t) with

s—iN/K=1,...,N/K and t—jN/K=1,...,N/K .

For simplicity, treat 2K as a divisor of N and a/N; otherwise, unimportant
edge effects become involved. On the top row of H, 7 likewise subdivides
the points with ¢ = 0 into K intervals Hy; lying above H;;. The initial
customers in Cy appear as x’s in the Hy; and the arrivals in C; appear as
x’s in the H;;, ¢ > 1.

. 1 2 3 N =27
Tlr---1F- 1
2b--1-aq-- |
] — :
S @b X :
S oqb :

H;; }N/Kz?; \

Rf_/

N/K

alN

alN =18

Figure 3: Partition of H (K =9, N = 27, a = 2/3), showing a customer
¢ in Hy ¢ served by a cell with enabling ¢ in Hyj.
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o 07 ™ x
~ x } N/K

alN

Figure 4: Illustrating steps 2, 3 of 7. Matches from Hyy to Hyy illustrate
step 2, and the others illustrate step 3. The x’s shown in Hyg, Ho7, Hsg
are among those left over after step 2.

Next, © performs the following three steps (see Figure 4).

1. If a cell has any enablings in [0, «N], © chooses one at random, with
all enablings equally likely. The enabling chosen is the only one from
that cell that may be matched to a customer during [0, aN]; the
other enablings are discarded. This step ensures that the matching
will satisfy property (ii’).

2. Next, m matches the arrivals in H;;( > 1), in any convenient way,
to the enablings that remain in H; ;.o (subscripts are added modulo
K'); 7 leaves no customer in H;; unmatched if it can be matched to
an unused enabling in H; ;19. Customers in H;; all move below H; ;9
(see Fig. 4), and so these matchings have property (i).

3. To match initial customers to enablings that remain from steps 1 and
2, w first matches as many customers in Hy; as possible to enablings
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left in Hj ji9. Next, 7 matches as many of these customers, that
are still unmatched, to enablings left in Hj ji3; ® continues diago-
nally downward, but uses only the enablings in [0,aN/2], the top
half of H (see Fig. 4). Any customers that remain unmatched after
trying H, /2 j+ak/2+1 are unmatched throughout [0, lN]. Again, the
matching has property (i).

Let R, and R; denote the subsets of customers in €, and C|, that are

matched in steps 2 and 3. The waiting-time bounds

w(¢p) <3N/K, ¢€R,, (4.4)
and
w(o) <aN/2+3N/K, ¢€ R (4.5)

follow easily from the definition of 7 (see Fig. 4). All unmatched cus-
tomers have

w(gb) <aN, o¢€ (Ca — Ra) U (CO — Ro) . (46)

The proof of Theorem 3 will be constructed from these bounds and the
following two lemmas.

Lemma 4. There exists an o > 0 wndependent of both I and N such
that the expected number of unmatched arrivals in [0, aN] satisfies

E|C, — R.|
.
N

Lemma 5. Under the assumption E[Q] > v in (4.1), there exists a con-
stant v > 0 independent of N such that the expected number of matched

0 as N — 0.

watial customers satisfies

E|Ry|

lim inf >~ as N — .

The analysis below first shows that these lemmas lead to the desired
contradiction of (4.1); the proofs of Lemmas 4 and 5 then conclude the
proof of Theorem 3.

By Lemma 3 and (4.4)(4.6), the sum S of waiting times under the
greedy policy has an expected value bounded by

E[S] < E|Ry|(aN/2+3N/K)+ E|Cy — Ry| - aN
+E[R,|-3N/K + E|C, — Ry| - aN .
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Rearranging and applying Lemma 4 gives
E|Ry|(aN/2—=3N/K) < E|Co|-aN —E[S|+FE|R,|-3N/K +0(N?) , (4.7)

as N — oo. Now, E|R,| < E|C,| = AaN and (4.3) implies E[S] =
aN?E[Q] = aNE|Cy|. Substituting for E|R,| and E[S] in (4.7), and
then dividing both sides by N?(a/2 — 3/K) gives

E|Ro| 6
< =
N — K-6/a

+o(1) , (4.8)

as N — oo. But « is chosen independently of iK', so the right-hand side
of (4.8) can be made as small as desired by taking K and N sufficiently
large. This contradicts Lemma 5 and proves the theorem.

Proof of Lemma 4. Let i/ be the effective rate of enablings remaining
after step 1 of m. The first requirement is to verify that o > 0 can be
chosen so that this rate of enablings is at least the rate of new customers,
e, A< .

Recall that the enabling chosen to remain in a column was selected

at random with each one equally likely. Columns with no enabling have
probability (1 — u/N)*Y < e, Then

, (I—e™)N ap’ 2
= - ——+0(a?).
> p——-+0(a%)

If o is small enough, A < ¢/ < p, as desired.

Next, let n; denote the number of arrivals (circles) in H;j, and let nj;
denote the number of enablings (x’s) in H;; after step 1 of 7. The means
are E[ng] = AN/K? and E[n};] = ' N/K?, so for any € > 0 the law of
large numbers says that inequalities

ny; A+e€

. 4.9

N S KT (4.9)

n;; ' —e

_u - 4.10

N~ kK (4.10)
hold with probability 1 — o(1). As ¢ and j range over 1 < i < o/ and

1 <k <K, (4.9) and (4.10) give 2a/? inequalities. Boole’s inequality
[11, p. 23] then shows that all the inequalities hold simultaneously with
probability at least 1 —2aK?0(1) = 1 —o(1). Now choose o so small that
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' > A, and take € < (¢ — A)/2. Then with high probability all of the
arrivals in C, (|C,| = ¥ n§;) become matched, i.e.,
0

Pr{|C,— R, =0} =1 as N — 0. (4.11)

By the assumptions of the arrival process,

E|C,| \ Var|Cy|
— —_— =
’ N

O(l), as N — oo,

so the family of random variables {%}]\Dl is uniformly integrable (see [6],

pp. 219-221). Then the family {M}Nx is also uniformly integrable,

N

E|Co—Ril
N
Q. u

which together with (4.11) implies the lemma, i.e., —0as N —

Proof of Lemma 5. Write the number of initial waiting customers as
a sum |Cy| = ny + --- + ng, where n; is the number waiting in the 5th
block Hy; of N/K queues. The proof shows first that three conditions
limiting the n; hold jointly with some positive probability as N — oo (see
(4.14)-(4.16) below). The remainder of the proof argues that the lemma
follows from these conditions and the probability estimate.

The N/K queue lengths of the j™ block are not independent, but
they are bounded stochastically by independent random variables X},
each distributed as X in Theorem 2. Then, for each j, the law of large
numbers gives

Pr{n; < 2E[X|N/K} > Pr {N/Z?



the overall rate of unmatched enablings after step 2 (i.e., after customers
in C, have been matched) exceeds

— A
,LLI—G—()\—|—€)=,LL—)\—3€=ILLT.

Then (4.9) and (4.10) imply that the aK? inequalities

X (¢]

e N(p—N)

ij i,j—2 T) 1§Z'§CY[(, 1§J§I{
bl ‘-

, (4.15)

for numbers of unmatched enablings in H;;, hold simultaneously with
probability 1 — o(1).
Finally, by assumption (4.1),

E|Co| _
N

ElQl>v>0.

Now |Co| = S Q;(0) is stochastically no larger than the sum of N in-
dependent random variables, each distributed as X in Theorem 2. By
Theorem 2, X has bounded first and second moments, so %' is uni-
formly integrable. Together with F|Cy|/N > v, this implies that there

exist positive numbers v’ and 6 such that |Cy|/N > v/, and therefore
n1—|—"'—|—nKZI/IN, (416)

holds with a probability exceeding 6.
Now when all of (4.14)-(4.16) hold there cannot be many small n;.

Indeed, a fraction
!

v
= 4.17
or more of them satisfy
VN
> — . 4.1
"2 9K (4.18)

For, otherwise, at least (1 — 3)K of the n; fail to satisfy (4.16) and the
remaining n; are bounded by (4.14); then

KNV 2E|X|N
Y ﬁ[g’# <V'N

ni+---+ng < (1-=7) 2K K

in violation of (4.16).
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After step 2, m uses the unmatched enablings from a sequence of iK' /2
squares for matching initial customers in a block Hy;. By (4.15) the
number of these customers that are matched is then min{n, n;}, where

alk N
= —  (u—MN—— = (u—=MNaN/(SK) .
9= "0 (0= N 3 = (1= NN/ (8K
Then the SK or more blocks that satisfy (4.18) have a total number of
matched customers at least

BK min{n, V' N/(2K)} = BN min{a(p — \)/8,v'/2} = Q(N) . (4.19)

This lower bound on |Ry| obtains whenever (4.14)-(4.16) hold jointly. But
(4.14), (4.15) each hold with probability 1 — o(1) and (4.16) holds with
probability 6 > 0, so |Ry| has the lower bound (4.19) with probability
5(1 — o(1)). Then liminf% > v as N — oo for any ~ satisfying
0<vy<éfmin{a(u—AN)/8, v'/2}, and the lemma is proved. n

This completes the proof of Theorem 3. S

5. FINAL REMARKS

In a parallel effort, Dai and Weiss [10] have applied different techniques
in a proof that AE[d] < N is a sufficient as well as necessary condition
for stability for any distribution of d with a finite mean. Note that Theo-
rems 1 and 2 here contain more information than just this stability result;
bounds are given in both cases.

Asymptotics in N pose interesting open questions. Does lim E[Q] = 0,
N — oo, when 1 < A < 2 and d is uniformly distributed on {1,..., N—1}7
Recall also that the simulations of Section 2 suggested the even stronger
result, E[Q] = O(1/N).

Adding more realistic features to the computer-ring model broadens
the scope for further research. For example, the model here makes no
allowance for variable-length packets or cache memory coherence [14]. A
further complication is that a packet’s destination may be too busy to
accept it. The ring then carries extra messages of acceptance or rejection
as well as retrial packets.

The greedy policy for placing customers on the ring idealizes register
insertion or SCI [14] and gives a discipline that some might consider
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unfair. An analysis of policies with greater fairness (e.g., smaller waiting-
time variances) would be interesting; such policies can require empty cells
to pass occupied queues and serve other queues where customers have
waited longer. However, when comparing such policies with the greedy
policy, a trade-off must be expected; fairness may entail longer mean
queue lengths.
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